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Abstract

3D mesh models are now widely available for use in varioudiapp

cations. The demand for automatic model analysis and utachels
ing is ever increasing. Mesh segmentation is an importaqt t&t-
wards model understanding, and acts as a useful tool fardiit
mesh processing applications, e.g. reverse engineershgnadel-

ing by example. We extend a random walk method used preyiousl

for image segmentation to give algorithms for both inteévacand
automatic mesh segmentation. This method is extremelyiesftic
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The basis for mesh segmentation derives from cognitivenseie

As pointed out by Hoffmann [Hoffmann and Richards 1984; Hoff
mann and Singh 1997], the human visual system perceivesrregi
boundaries at negative minima of principal curvature, arceme
creases—this observation is known asithieima rule The depth
of the concavity directly affects the salience of region rimbaries.
Such concave feature regions together with other infoomadire
important cues for segmentation. Moreover, it can be olaskiivat
only significant features are important to segmentatiorgllsstale
fluctuations should be ignored, even if they represent stragses.

On the other hand, in the case of reverse engineering, eliffeur-
faces are separated along sharp edges, which may be coraax-or
cave, or even along smooth edges—different criteria arbcaite
to segmentation for such uses.

and scales almost linearly with increasing number of fadest
models of moderate size, interactive performance is aetigith
commodity PCs. It is easy-to-implement, robust to noisehia t
mesh, and vyields results suitable for downstream appdieatfor

both graphical and engineering models. Recently, Grady [2006] proposed an interactive algorithnirhage

segmentation based on the use of random walks. The main ideas
are as follows: a set of seed pixels is first specified by the &es
all other pixels, using an efficient process, we determieeptiob-
ability that a random walk starting at that pixel first reazteach
particular seed, given some definition of the probabilitgtefpping
from a given pixel to each neighbor. The segmentation is éabyy
assigning the label of the seed first reached to the non-seeld p

CR Categories: 1.3.5 [Computational Geometry and Object Mod-
eling]: Geometric algorithms, languages, and systems;
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1 Introduction

Our work is an extension of the random walks method to thegart
ular problem of meskegmentatiorprevious work has already con-
sidered the use of random walks for solving the differenbfam

of meshdenoising[Sun et al. 2007]. By using different methods
of assigning probability distributions, we are able to segtrboth
engineering object models and graphical models. Our eatdtre-
liable even when the models are noisy or have small-scateres
that should be ignored.

With the development of 3D acquisition techniques, 3D mest-m
els are now widely available and used in various applicatidrne
demand for model analysis and understanding is thus everase
ing. However, techniques for intelligent automated preives of
large mesh models have not matched the growth in avaikalofit
models. The task of mestegmentatioris to decompose a mesh
model into a set of disjoint pieces whose union correspoodket
original model. To be useful, segmentation must decomposesh
into meaningful pieces (e.g. limbs and torso of an animabrars
which satisfy other desirable criteria (e.g. each pieceisided by
sharp edges or small radius blends).

As well as a method based on user selection of seeds, we gaére ag
eralization of this method to automatic mesh segmentatitiich
automatically places seeds (usually with more seeds thameth
quired number of regions) using feature sensitive isotrqquint
sampling. Our two-pass method segments the mesh usingitiiese
tial seeds, and then merges the regions found based onrgiiesia
of neighboring regions.

Mesh segmentation is an important step towards model dsalys
and understanding. A variety of different applicationslddenefit
from preprocessing the mesh using an efficient and relialdshm
segmentation method. In the field of reverse engineeringAid C
models, segmentation plays an important role in splittingaalel
into pieces, each of which may then be fitted with a singleydanal
ical surface [Varady et al. 1997]. In computer graphicgnsen-
tation can be applied in various applications, includingimsim-
plification [Zuckerberger et al. 2002], collision detectifLi et al.
2001], morphing [Shlafman et al. 2002; Zuckerberger et @22

Compared to other methods, our proposed method has thevfollo
ing advantages. Our method:

e provides results of comparable quality to state-of-tte-ar
methods, but is significantly more efficient, making it espe-
cially suitable for interactive applications or applicats that
require segmentation of large models, or large numbers of

and skeleton-driven animation [Katz and Tal 2003]. models
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e is robust to noise and small-scale texture that may be presen
in real scanned models,
e is applicable to both CAD models and graphical models, and
e is easy-to-implement.

Section 2 briefly reviews related work. Interactive and edtic
mesh segmentation algorithms based on random walks are pre-



sented in Sections 3 and 4 respectively. Experimental teeang
given in Section 5, with conclusions and discussions iniSeé.

2 Related Work

Compared to the problem of image segmentation, researoch int
mesh segmentation is much more recent; however, it is nove-an a
tive research topic, due to the wide range of potential appbns.

A complete survey of mesh segmentation is beyond the scdpe of
paper, but an up-to-date review and comparison of diffemseth-
ods can be found in [Attene et al. 2006a].

Based on the different aims, existing mesh segmentatianmitigns
can be generally categorized into two classes. The first dfas
aimed at applications such as reverse engineering of CADelsod
(e.g. [Attene et al. 2006b]). Such methods segment a meskelmod

nigue for making paper models from meshes. This can be consid
ered to be a specialized mesh segmentation method thatqa®du
naturally developable triangle strips.

In the sense of segmentation of engineering objects, edyefr
the purpose of reverse engineering, there exist quite a fexksy
Most of such work deals with point cloud directly instead 0f t
angle meshes due to its wide availability. Sapidis and Bsal [
pidis and Besl 1995] proposed a method to construct polyabmi
surfaces from point cloud data, using region growing fomseg-
tation. Benk& and Varady [2002] proposed a method to tirec
segment point cloud data of engineering objects based oriad se
of top-down recursive tests. Gelfand and Guibas [2004] gsegd
to use slippage analysis and multi-pass region growinggmsat
different regions based on different slippage signatur&slels-
brunner [Edelsbrunner et al. 2003] proposed to segment esesh
with piecewise linear Morse-Smale theory. This idea has lexe
tended to suit the needs for producing CAD-like segmentatie

into patches each of which is a best fit to one of a given class of Sults [Varady 2007].

mathematical surfaces, e.g. planes, cylinders, etc. Tdendeclass
tries to segment typically ‘natural objects’ into meaningbieces,
as expected by a human observer. Our algorithm is mainlychahe
solving problems of the latter class, but with certain madifions,
itis also able to handle engineering objects reasonably wel

Most state-of-the-art work on mesh segmentation is baseit on
erative clustering. Shlafman et al. [2002] Useéneans clustering

Certain work explicitly considers the problem of interaetmesh
segmentation. Lee proposed a method to segment models us-
ing user-guided or automatically extracted cut lines base®D
shakes [Lee et al. 2004; Lee et al. 2005]. Funkhouser [Furdéro

et al. 2004] provided an intuitive interactive segmentatiool to

find optimal cuts guided by user-drawn strokes, and appliezla
modeling system based on stitching parts extracted from @emo

to segment the models into meaningful pieces. Katz [Katz and database. An interactive segmentation method based o-grap

Tal 2003] improved on this by using fuzzy clustering and mmiai
boundary cuts to achieve smoother boundaries betweererdust
Top-down hierarchical segmentation has also been usegdhoess
objects with a natural hierarchy of features. Lai [Lai et2006]
suggested combining integral and statistical quantiteeied from
local surface characteristics, producing more meaningfults on
meshes with noise or repeated patterns. One of the most peami
drawbacks of such algorithms is the necessity to computevjzai
distances, making it expensive or even prohibitive to haralige
models directly. To handle models with e.g. more than 10,000
faces, mesh simplification [Katz and Tal 2003; Katz et al. 200
Liu and Zhang 2004] or remeshing [Lai et al. 2006] is typigall
used. Spectral clustering has also been used [Liu and ZHz04] 2
with good results, but this approach also suffers from perémce
problems, although Nystrom has given an approximatiorhouet
for accelerating it [Liu et al. 2006].

Unsupervised clustering techniques like the mean shifhatetan
also be applied to mesh segmentation. Shamir [Shamir eD@4]2

cut was proposed by Sharf, again for use in a cut-and-paste sy
tem [Sharf et al. 2006].

Our method is different to any of the above in that it is basedo
random walk paradigm. The formulation leads to the needli@so
a sparse linear system, which is very efficient. Unlike motgriac-
tive methods, user interaction is provided by specifyingtafseed
mesh faces, which is much easier than specifying a roughgutt
boundary. In applications where automatic methods arespes,
we use a two-stage method that first oversegments the mesi usi
a set of automatically chosen seeds, and then merges thgsak in
regions to give the final regions.

3 Interactive Segmentation

In this section, we will discuss our algorithm for interaetimesh
segmentation using random walks; extension to an autommesst
segmentation algorithm will be discussed in the next sactithe
basic idea of the algorithm is in spirit similar to the copesding

extended mean shift analysis to mesh models based on use of gnethod for image segmentation [Grady 2006], but due to tfereli

local parameterization method. Later, Yamauchi [Yamathdle
2005] applied mean shift clustering to surface normals hSueth-
ods tend to oversegment a model into more pieces than exparcte
desired.

ences of source data and aims, certain issues must be msolve

We assume that the given models are triangular meshes. Rando
walk mesh segmentation proceeds as follows: assume thaséne
picks n faces as seeds, whereis the number of final regions

Other methods for mesh segmentation also exist. Mangan anddesired; seeds are placed so that one seed ‘obviously’ itbinw

Whitaker [1999] applied bobsledding watershed algoritlomri:
angle meshes. Li [Li et al. 2001] proposed using skeletdiziza

each of the final regions the user desires. We denote the bgeds
s1,---,8n. Other faces are non-seed faces, denotefi by. ., fy..

based on edge contraction and space sweeping to perform meslwe associate a probability with each of the three edges of

decomposition. Visually appealing results are obtainexydver,
their results depend mainly on large-scale features, ambtial-
ways capture salient geometric features. Recently, Rerird
Telea [2007] used curve skeletons in hierarchical mesh eetam
tion. Katz [Katz et al. 2005] proposed a segmentation allgori
based on multidimensional scaling and extraction of feapaints
and cores. The method is able to produce consistent reshéa w
regions of a mesh are placed in differing relative poses. évew
an expensive method is used to find feature points, whichdimi
the complexity of models that can be efficiently handled neaféer
simplification. Mitani [Mitani and Suzuki 2004] proposedexh-

each non-seed fagk, denoted by 1, pr,2 andpy 3 respectively.
These correspond to the probabilities that a random walkovale
across a particular edge to the corresponding neighboseTlpm@b-
abilities satisfy the following equation:

3
Zpk,i =1
i=1

Fori = 1,2, 3, denote the face sharing, ; with f; by fi .. For
a particular seed face, denote the probability of a random walk

)



starting from a particular facg. arriving ats; first, before reaching important hints. For a given facg, we define aifference func-

other seeds, aB'(fy),forl = 1,...,n. P'(s;) = 1andP'(s;) = tion d( fi, fi,x) which measures the difference in some specific ge-
0 foranyk # I. As the number of steps considered increases, in the ometric property betweeyi and one of its neighboring faces .,
limit, the following equation holds for each non-seed fegge(for k = 1,2, 3. For graphical models, we define this function to mainly
eachl = 1,2,...n): depend on a functiod; measuring the dihedral angle:

3 . n 2
di(fi, fik) = n[1 = cos (dihedral(fi, fix))] = 5 [[N:i — Nig||”,
P'(fi) =Y prilP' (fr)- 2 2 @
=1 wheredihedral(f;, f,,) represents the dihedral angle between ad-
. ! jacent faceg; and f,,, andIN; is the normal to facg;. n is used to
For a particular seed face, the P () form a column vector of give higher priority to concave edges: we get 1.0 for concave

lengthm (denoted byP") that needs to be computed, and we have edges and a relatively small number (e.g. 0.2) for convexegdg
m equations of the form given in Eqn. 2. We may rewrite Eqn. 2 in according to the minima rule.

matrix form asA.,xmP' = B!, whereA and B' can be deduced
from Eqgn. 2. Most values if3' are zeros. However, from Eqn. 2,  To handle variations in the dihedral distribution, we nolimead;
for a non-seed fac¢, adjacent to a seed face, the corresponding by its average over all edged,, giving as the overall difference

P'(fx,:) is not a variable, but a constant, either 0 (if not tHe functiond:
seed) or 1 (foi*" seed). Since th&" seed has at most (and nor- d _da(fi, fix) 5
mally, exactly) three neighbor®' also has at most (and normally) (fis fin) = d ’ ®)

three non-zero values.

Note thatA is independent of the choice bfThus we may put the Given a definition for the difference function at hand, thelyabil-

P! together and form a matri®,, «» with rows P, ,, = Pl(fk), ity distribution is now computed as

to give AP = B, whereB = (By,...,By). This sparse linear

system has the same general nature as the one in [Grady 2086]; d(fi, fik)

system is sparse as each row of the matrix contains at mosi<4 no pik = |ei k| exp —f’ ) (6)

zero entries, as shown in Eqn 2. Following the argument iadig@r
2006], the matrixA is positive semi-definite, and the solution to
this linear system is uniquely determined. Please noterématom
walk model described above is in essence equivalent taieleet-
work model as the distribution of electric potentials atreéace,
where the probability to move to neighboring face corresisaio
the reciprocal of resistors (i.e. conductances). See agtl Snell
1984] for a thorough study.

where|e; k| is the edge length of the corresponding common edge,
ando is used to control how variation of differences maps to vari-
ations in probability. In our experiments, we have found= 1.0
works well for most of case$; i is then normalized to sum to one
over each face. An exponential function is used above as a con
venient way of mapping differences {1, co) to probabilities in
(0,1), where a high difference corresponds to a low probability
We now define that a given face belongs to the region attaahed t

seeds; if arandom walk starting at that face has a higher probabilit  3.1.2 Engineering models

of reaching this seed than any other seed. Thus, after camgput

P'(fy)forl =1,...,nandk = 1,2,...,m, we assign the label  Segmentation of engineering object meshes differs inits diom
for seeds; to those non-seed facgs which satisfy segmentation of graphical models. We usually want to segmen
such a mesh into pieces that can each be fitted with some analyt

P'(fi) = . rrllaXnPt(fk). (3 ical surface [Varady et al. 1997]. In many typical cases fit

all), Gaussian and mean curvatures should be almost unifgen
a segment, which is a different requirement from the caseayfty

It can be shown that each region produced by this segmemtatio
ical models.

process is guaranteed to be contiguous.

Again, we usel; to measure the change of normals between ad-
jacent faces; however, for engineering object mesh segtient

we setry = 1.0 for both convex and concave edges, since they are
equally important for the segmentation of such models. doze

we introduce two further difference measures for the vianmaof
Gaussian and mean curvatures. To begin with, we need toatstim
the Gaussian and mean curvatures on both sides of a given edge
Such curvature estimates are known to be sensitive to rensee

Given the basic framework given by the algorithm above, tige s
nificant issues remain: to determine appropriate prohaslifor
stepping from face to face, what optional preprocessingpast-
processing steps may be needed to further improve thesesult

3.1 Probability computation

Choice of suitable probability assignments, pgs, pi 2, ps,s3, for use robust estimators for this purpose—we use PCA-basegtait
each face is essential for the random walk approach to give good jnvariants in ball neighborhoods [Yang et al. 2006]. The hoet
mesh segmentation results. Appropriate probabilitiesafexted basically relies on a covariance analysis of the interseatolume
by the types of models, due to the different purposes of megh s petween a ball of radius and the volume of interior part of the
mentation. In the following, we will address ‘natural’ gtagel given model. Since the method actually computes princiadrs
models and engineering object models separately. at a regular mesh point, we may adapt this method to directly i
terpolate the principal curvatures at the center of each father
3.1.1 Graphical models than at each vertex. We denote Gaussian and mean curvatures a
face f; asK (f;) and H (f;) respectively. If the model is relatively
Mesh segmentation of graphical models should split a madel i clean, we may setto be 1 to 2 times the average edge length of the
meaningful pieces. The most important information for segta- model. For noisy models, to make the result robust, we muest us

tion comes from theminima rule as used by many segmentation a larger radiug at the cost of sacrificing the ability to accurately
algorithms, where significant (concave) features are densd as locate some boundaries.



The difference functions for Gaussian and mean curvatusesayv point a vertex of the revised mesh (as illustrated in Figef)).

defined as Projection is done quickly using the approximate neareighne
bors library [Mount and Arya 2005]. After projection, we find

da(fis fie) = [K(fi) = K(fi)l the geodesic path across the mesh between adjacent pdojecte

ds(fi, fix) = |H(f) — H(fir)|- ) tices [Surazhsky et al. 2005], and split each face crossethdy

geodesic into two. To ensure that the resulting mesh renzairis
angular mesh, quad faces induced by this splitting are éusplit

The overall difference function is defined by combinihg d» and into two triangles.

ds to be:

di(fis fir) do(fi, fir) da(fi, fik)

, , computation requires a data structure that cannot be esddlyted
dy da ds

for dynamic updating of the mesh structure, we use the assomp
o _ (8) that adjacent points on the smoothed boundaries are ustiatlg
whereds, d2 andds are average values of the corresponding dif- to each other, build a small patch of the input mesh that edveth
ference function over the whole model. Note that the maximum projected points, and compute the geodesics on such srbetigsa
of these three is used instead of their weighted averagepahk An example of such splitting is shown in Fig. 2(right). Theuébl

Such local updates can be performed efficiently. Since thdegsc
d*(fi, fik) = max{ }

responses of any component are significant, and this agpaiac edges correspond to those which must be added so that geodesi
avoids the difficulty of choosing appropriate weights. @ivé, the edges become edges of the mesh. Thick blue edges correspond t
probability is again defined using Egn. 6, but within place ofd. edges that are part of the smoothed boundary. After thisesmc
The method works well for separating smoothly touchingaesj the smoothed boundaries can be directly mapped to edge® of th
as illustrated in Fig. 1. modified input model, and the segmentation results aftengmg
may be represented by assigning a label to each face of théedod
input mesh.

4 Automatic Segmentation

The random walk segmentation method may be adapted to work
automatically. In this case, a set of seeds is automatisalcted,
generally with more seeds than the number of finally expeditest

ters. For segmentation of graphical models, we usuallyirecu
coarse segmentation, which does not need a dense set of &geds
engineering object meshes, or when a detailed segmentsfiwe-
ferred, more seeds may be necessary. Our interface all@ws s
specify both an approximate number of seeds, and to placéispe

Figure 1: segmentation of CAD models without sharp edges.  Seeds before or after automatic selection.

The random walk algorithm described above is used to segtinent
model. There will in general be more resulting pieces thairdd,
and so a further merging process is used to combine thessengver
mented pieces into the final segments. This approach workawe
practice, as it is based on our experimental observatidmahdom
walk segmentation results are not sensitive to the exaatitot of
the seeds (as demonstrated later).

3.2 Preprocessing and postprocessing

Although the method as described is much faster than anyadeth
based on iterative clustering, for very large models, it nbay
preferable to simplify or remesh the models to a more praksize
(e.g10, 000-20, 000 faces) for efficiency. This is also reasonable,
since extra detail in models actually provides little extedp in
segmentation. Segmentation can be computed using theddces 4.1 Coarse-Scale Seeding

the reduced model. This step is optional for the overall lpipe

If it is desired to segment the model into large pieces repes
ing large-scale structures, we should generally evenlyibige a
sparse set of seeds, so that only the most significant fesature
protrusions are captured. Based on the observation thatete
mentation results are generally insensitive to the exaxtion of
seeds, we use a clustering method similar to that usédnmeans
clustering segmentation.

After random walk segmentation, each segment is represégta
contiguous set of faces. The boundaries may be somewhatdagg
partly due to noise and other variations in local propertiear
the separating edges, and partially due to the limited uéisol of
the mesh. We use feature sensitive smoothing as proposédiin [
et al. 2007] to smooth the segment boundaries while keepiem t
snapped to features. This amounts to optimizing a disemtiz

spline-in-tension energy in the feature sensitive mefrie bound- The first seed face is selected as the (or a) face furthest, away
aries generally form a complicated graph, so branchingtpaire terms of geodesic distance, from the face closest to theaient
first detected and each boundary segment between brandiig p  of 5| faces. We then iteratively add new seed faces one by one
is smoothed independently. For any two faceg; and f;, apathfrom f; to f; is a contiguous

The smoothed boundaries are represented as a set of cahnecteS€quence of faces starting frofnand ending af;. For any path,
points; however each point generally will not be locatedat a ~ We may compute the sum of the difference measudresr d” if
vertex of the initial mesh. We suggest updating the inputimes appropriate), and select the minimal sum among all posgiitles,
model slightly so that the smoothed boundaries map to a seque ~ denoting it byD(f;, f;). Assumes, ..., s, aren faces already
of edges in the updated mesh. To do so, we first project eacih poi  Selected as seeds. The next seed face is determined by

on the smoothed boundary onto the input mesh model. The re-

sulting point may be located at a vertex, on an edge, or wihin {

face. In the latter two cases, we split the related faces teertris Sn+1 = atg MA%x

min D(fk,si)} , 9)

i=1,...,n



projected on face projected on edge

Figure 2: Projection and local update of the input model. Left: magpsmoothed boundary points onto the surface; right: mapping

smoothed boundary paths onto the surface.

Figure 3: Example of coarse seeding (left) and corresponding segtientresult (right).

where F' is the set of all the faces. This process terminates when number of faces, the time complexity@n log m), since nearest

a significant decrease dD occurs between the newly selected
sn+1 to the nearest neighboring seed, whereupgn; is dis-
carded. Note that this computation is efficient, since wg oeled

to solve a few single-source shortest distance problemtingta
from each seed face. Using Dijkstra’s algorithm gives a dewxity

of O(nmlog m), wheren andm are the number of seed faces and
the total number of faces, respectively.

Fig. 3 shows an example of coarse seeding. The left figures e
positions of seeds (the colored balls indicating the seealtions)
and the right figure is the corresponding segmentationtresul

4.2 Fine-Scale Seeding

In certain cases, we would like to segment the model into lemal
pieces, where significant parts are segmented as much ablposs
For example, given the skeleton example shown in Fig. 3, we ma
want to segment to further detail than simply 5 fingers. Foale
seeding based on automatic seed distribution and mergitingis
more appropriate.

4.2.1 Automatic seed selection

We should pick a set of random faces that are in general edésiy
tributed over the surface, and gives higher priority to psibns
and regions containing features. Feature sensitive sagfihe
first phase of feature sensitive remeshing proposed in [tai.e
2007]) suits this need well. The method basically distelsyparti-
cles over the model optimizing some spring-like energy Riiiand
Heckbert 1994]. After distribution, we pick those faceshwiarti-
cles in them as seeds. For our purpose, we may use a suffycientl
large number of sampling faces (e.g. 20-200 for most madels)
Again assuming that is the number of seeds, amd is the total

neighbor queries are performed usikdrtree acceleration. Place-
ment of initial seeds is typically very fast (much less thasea-
ond). Note that if the original number of seeds is not largeugh
to cover all the significant features, our semi-automatterface
allows users to add further seeds where desired.

4.2.2 Merging

Using such an approach, we expect many segments to have multi
ple seeds, which naturally leads to over-segmentation. ddewy
as segmentation results are in general not sensitive toxhet e
placement of seeds, we may simply merge the resulting segmen
to give suitable final regions. We perform merging as an tikera
process. To define the relative merging cost between twaenia
segmentsS; and S;, we first denote by)S; N 95; the common
boundary of the two segments, and®§; U 9.5; the combination
of the two boundaries. We integrate the difference meagyo¥
dx if appropriate) along the common boundary, and denote it by
Das;nas; = cc0S;n05, le|de, where|e| andd. are the length
of edgee and the difference measurk(or dx) between the two
faces adjacent te. We also define the overall length of common
boundary ad.ss,nas; = Zeesmsj lel- Das;uas; andLas;uas;
can be defined similarly. We then define the relative mergosg ¢
C;,j as!

Das;nos;/Las;nos;

Cij =

. 10
Das,vas;/Las;uss; (10)

For each adjacent pair of segmertis and S;, we compute the
merging costc; ; and put the pairs into a priority queue. The
merging process proceeds by picking the pair with minimalgne
ing cost, merging them into one segment and updating the-prio
ity queue accordingly. This process can be terminatedreithen



Figure 4: Example of fine-scale seeding. From top left to bottom rigigut model with automatic seed selection; initial (ovesegmented
results; result after merging; final result after boundama®othing and mapping.

Figure5: Segmentation of horse with varying seed locations. Bafieesent seed locations.

there exists a significant increaseriry for the current pair, orwhen  was also performed. Given some maximal seed shift radiuge
we have reached a final number of regions desired by the user. | allow all seeds to move randomly to any face within a geodgisic
our experiments, the merging process usually stops wittinmain tance ofr from their original seed position (but we restrict new seed
relative cost of about 0.5. positions to be within the same segment found by segmentatio
) i i ing the original seeds). We performed tests using maximiétissh
Experimental results of automatic segmentation before aftet of 3%, 6%, 9%, . ..,30% of the size of the model. In each test
merging are shown in Fig. 4. The initial number of seeds(is  \ye computed the percentage of faces with the same labels foun
and the number of segments after mergings when using the initial seeds (we call this thermalized coverage
To obtain a robust result, we perform&@o trials for each shift

5 Experimental Results distance and averaged the normalized coverage. As iltestia
Fig. 6, for models like the horse example in Fig. 5 where nartye
Our method is in general insensitive to the exact locatioseefds. defined boundaries exist between segments, the normalized-c

Fig. 5 shows an example of segmenting a horse model. Note that@ge decreases gradually with increasing shift. Even fdtsshf
there are no clearly defined boundaries between the legshend t UP t030%, the averaged normalized coverage is ab®vg. For
body, so changing the positions of the seeds has a slightt effe models Ilke' the hand skeleton example in Fig. 3, Wherg siganifi
the final result; however, even if the seed positions are gdin  features exist between segments, the averaged normatizetage

significantly, the results are similar, and snap to somd feaaures. IS @boved9.6% for shifts up to30%, which means almost identical
results are produced even with significant change of seedidos.
A more accurate test of stability with respect to choice efsiaces
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Figure 6: Stability test results of averaged normalized coverage.

Figure 7: Segmentation of engineering objects: rocker arm and
fan disk. Left: initial segmentation with fine-scale segdiRight:
results after merging and smoothing.

For a moderate example like the hand model in Fig. 8, the geera
normalized coverage is abo96.5% for seed shifts of up t680%.

Our method can also be applied to meshes representing engine
ing objects. Fig. 7 gives the results of segmenting the wadiwn
rocker arm and fan disk models. On the left are the segmentesi
sults with fine-scale seeding, while on the right are theaspond-
ing results after merging and smoothing. The number of sbeds
fore merging ist0 for both models. The numbers of segments after
merging are20 for the rocker arm and5 for the fan disk, respec-

i
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4

Figure 8: Examples of mesh segmentation of various graphical
models.

tively. Note that significant normal noise exists at shamtdees
of the input model, making the initial segmentation restéther
jagged. These initial results also suffer from oversegatent. Af-
ter the merging and smoothing phase, however, results giné-si
icantly improved. The averaged normalized coverage forfahe
disk (an engineering model) is also given in Fig. 7; in thisecthe
normalized coverage tends to lie between the values for ahe h
and the horse examples, being abév& for shifts up to30%.

We have also tested our method on various other graphicatisiod
a selection of which are shown in Fig. 8. Hand, Santa, chassma
cheetah models are segmented 6ita7, 7 and10 pieces, respec-
tively. Generally, intuitively reasonable and pleasingrsentation
results are produced for such examples.

Moreover, compared with state-of-the-art methods, ouhottis
very efficient both in time and memory usage. A detailed campa
ison of timings for a model remeshed 10K, 15K, 20K, 30K
and40K triangles with our method and an implementation of [Lai
et al. 2006] is presented in Table 1; 6 seeds were used in dach o
these experiments, which were carried out on an Intel Cane2D
2GHz laptop with 2GB RAM. Note that the computational time
for k-means clustering based methods [Katz and Tal 2003; Lai
et al. 2006; Liu and Zhang 2004] is dominated by pair-wise dis
tance computations, and leading to a complexity)¢fn? log m)

time andO(m?) memory, wheren is the number of faces. The
method in [Katz et al. 2005] utilizes non-linear multidinsénal
scaling, which is even slower. The computations in our curre
method are dominated by solving the sparse linear systenuséa:



Table 1: Timing comparison of &-means clustering based method and our current method.
Number of triangles  Clustering method [Lai et al. 2006],cs&ts  Current method, seconds  Current method, secondafigkes

10K 129 0.34 0.034
15K 303 0.47 0.031
20K 532 0.64 0.032
30K 1359 1.00 0.033
40K n/a 1.34 0.034

Table 2: Timings for the samé0 K -triangle model with differing numbers of seeds.
No.ofseeds 6 12 24 48
Timing (seconds) 1.3 2.1 34 6.5

MATLAB's direct solver (“backslash” operator) throughate pa- segmentation—a comparative study. Rroc. IEEE Conference
per, though sparse linear solver libraries like TAUCS [@olet al. on Shape Modeling and Applicatiqris-18.

2003] could also be used. Experimental results in Table i s$hat )
the times used per triangle are almost constant as the nuofiber ATTENE, M., FALCIDIENO, B., AND SPAGNUOLO, M. 2006. Hi-
triangles varies. Time also increases more or less linaeitly an erarchical mesh segmentation based on fitting primitivese
increasing number of seeds, as shown by the example in Table 2 Visual Computer 223, 181-193.

Clearly, such a linear bound is expected, as the linear myfie
each seed can be solved independently. (The practicalgisinow
that the performance is actually faster than linear). Inrsany, the
overall complexity with respect to the number of faeesand the

number of seeds is bounded byO (imn). DOVLE, P. G.,AND SNELL, J. L. 1984.Random walks and elet-
Note that models withi0K triangles or more cannot be pro- ric networks No. 22 in Carus Mathematical Monographs. The
cessed by the method in [Lai et al. 2006] without simplificator Mathematical Association of America.

remeshing, due to memory limitations. Our method only negi
O(m + n) memory to store the sparse linear equations and thus
does not have such memory limitations. For relatively smmedti-

els with 10K triangles, the current method is more ttg) times
faster, while for models as large 38K’ triangles, it is more than  FynkHoUSER, T., KAZHDAN, M., SHILANE, P.. MIN, P.,
1,000 times faster. For models of moderate size, the segmentation erer W., TAL, A., RUSINKIEWICZ, S.,AND DOBKIN, D.

BENKO, P., AND VARADY, T. 2002. Direct segmentation of
smooth, multiple point regions. IRroc. Geometric Modeling
and Processingl69-178.

EDELSBRUNNER, H., HARER, J.,AND ZOMORODIAN, A. 2003.
Hierarchical morse-smale complexes for piecewise linear 2
manifolds.Discrete Computational Geometry 30 87-107.

can be carried out in interactive time, suitable for intév@cappli- 2004. Modeling by examples. Rroc. ACM SIGGRAPHB52—
cations that require immediate feedback. 663.
6 Conclusions GELFAND, N., AND GUIBAS, L. J. 2004. Shape segmentation

using local slippage analysis. Rroc. Eurographics Symposium

In this paper, we have presented both an interactive and an au on Geometry Processing19-228.

tomatic method of mesh segmentation based on random walks.grapy. L. 2006. Random walks for image segmentatiéBEE
We have demonstrated the effectiveness of this method, hwitn Trans. Pattern Analysis and Machine Inbtelligence 28 1768—

‘natural’ graphical model meshes and engineering objeatieho 1783.

meshes. The results are pleasing, and the method is suffjcien

efficient to be useful in interactive applications, and iplagations HOFFMANN, D., AND RICHARDS, W. 1984. Parts of recognition.
that require segmentation of large models, or a large d@leof Cognition 18 65-96.

models. In future, we intend to explore extension of our roétto

hierarchical segmentation of models. HOFFMANN, D., AND SINGH, M. 1997. Salience of visual parts.

Cognition 63 29-78.
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