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Abstract

An alternative to representing curves at a single
scale or a fixed number of multiple scales is to rep-
resent them only at their natural (i.e. most signifi-
cant) scales. This allows all the important information
concerning the different sized structures contained in
the curve to be explicitly represented without the over-
head of redundant representations of the curve. This
paper describes several approaches to determining the
local natural scales of curves. That is, various possibly
overlapping sections of the curve should be represented
at certain scales depending on their shape. The merits
and drawbacks of the techniques are described, and the
results of implementing one of them are shown.

1 Introduction

Curves can contain a variety of structures at dif-
ferent scales. Moreover, these structures are often su-
perimposed, e.g. fine detail upon medium scale detail,
which in turn is superimposed on coarse detail. Most
processing techniques applied to curves (e.g. feature
detection, model matching) work best at the appro-
priate scales for each of these structures. Otherwise,
the spurious detail and noise that is present in most
real image curves is likely to produce undesirable side-
effects. For instance, when segmenting a curve into
primitive parts such as codons [3], noise, quantisation
effects, and irrelevant detail will cause the curve to be
over-segmented into many insignificant tiny parts [11].
This implies that the curve should be analysed at mul-
tiple scales. A number of scale-based approaches exist,
and can be ordered by two categories based on 1) the
size of the retained set of scales; and 2) the spatial
extent of analysis.

The standard multi-scale approach exhaustively
represents the curves at a fixed sampling rate (e.g. oc-
tave separated) over a wide range of scales [6, 7]. At

the other end of the spectrum the curve can be repre-
sented at a single scale [13]. An intermediate approach
is to represent the curve only at certain selected scales
called “natural scales” [9, 10]. These scales are in-
tended to capture all the significant structures in the
curve. Several scales may be necessary, particularly if
several structures at different scales are superimposed.
Each of these approaches provides a different trade-off
between conciseness and robustness. The fixed multi-
scale approach is the most cumbersome representa-
tion, but also the most robust – it is guaranteed to
include every relevant scale (assuming a fine enough
sampling of scale-space). The single scale approach
provides the most compact representation. However,
it may be unable to represent the complete curve at
the correct scale, particularly when several differently
sized structures are superimposed. Natural scales pro-
vide a compromise between the above two approaches.
All the relevant information is retained and made ex-
plicit without the cost of redundant representations.
However, since the technique is unlikely to be perfect,
it is liable to be less robust than the fixed multi-scale
approach.

The natural and single scale based approaches can
also be divided into global and local methods. Our
previous work on determining natural scales calcu-
lated global scales for representing the curve [9, 10].
However, if the curves contain different sizes of struc-
tures at different locations then the global approach is
not entirely suitable, although if there are still signif-
icant amounts of each sized structure then the global
approach can still work [10]. To overcome such prob-
lems the natural scales should be calculated locally
rather than globally. A simple approach would be to
segment the curve into a sequence of smaller sections
and independently determine their natural scales. Un-
fortunately this has the drawback that coarse scale
statistics concerning large structures cannot be effec-
tively calculated from small curve sections. There-
fore the spatial extent of analysis has to correspond to



the current scale of analysis. Previously we have de-
scribed a method for locally determining single scale
curve descriptions [12]. In this paper we describe sev-
eral approaches to determining the local natural scales
of curves, and show results from the implementation
of one of these methods.

2 Techniques for determining local
natural scales

A convenient way to represent the curve is by scale-
space [14]. The problem of detecting the local natu-
ral scales then becomes the task of finding significant
bands in scale-space as illustrated in figure 1. For
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Figure 1: Local natural scales in scale-space

simplicity, we are assuming here a constant natural
scale over a section of curve. Although examples con-
taining varying scales are possible (e.g. figure 2) they
can usually be approximated by piecewise constant
scales. In addition, since the shape of a curve is of-

Figure 2: Curve containing continually varying scales

ten formed by relatively uniform processes the natural
scales at points along the curve should also be rela-
tively uniform [3]. Whereas our algorithm for deter-
mining global natural scales was non-parametric [10]
it is difficult to design a non-parametric algorithm for
determining local natural scales. Even if a real world
(i.e. non-synthetic) curve appears to contain regular
structures of similar size they are unlikely to be pre-
cisely identical. Therefore their local natural scales

will vary slightly. This did not pose a severe prob-
lem to the global natural scale algorithm since such
irregularities were averaged out by calculating the sig-
nificance measure over the whole curve. In contrast,
all the following local techniques assign a set of nat-
ural scales to each pixel. However, individual pixels
are not suitable for high-level processing such as fea-
ture detection or model matching. Therefore, adjacent
pixels with similar natural scales must be merged to
form contiguous sections of curve. If only pixels with
identical natural scales were merged the resulting rep-
resentation would still be too fragmented to be use-
ful. The fragmentation can be overcome by allowing
some amount of deviation between adjacent natural
scales during merging. Ideally a cost function should
incorporate both the deviation of scales and the in-
creased length of the merged set of pixels. But since
the dimensions of scale space are incommensurate it is
difficult to decide in any principled manner how they
should be combined.

Below we outline various possible techniques and
their limitations for determining the local natural scale
of curves. It can be seen that most of them provide
different means to produce a similar intermediate re-
sult – a scale-space map – which is then analysed to
find natural scales. Also, all permit the reconstruc-
tion of the curve at these scales although the methods
include subsampling and B-spline fitting, parabola fit-
ting, low pass filtering in the frequency domain, Gaus-
sian smoothing, and regularization.

1/ Hoffman described a method for detecting lo-
cal natural scales that determined the degree of sub-
sampling of the data to provide control points for a
B-spline reconstruction of the curve at each scale (al-
though his single example only shows global natural
scales) [3]. At each point pt on the curve a pair of
windows centred at pt±f and length w (where w is
some function of the offset f) are considered. The
line between each corresponding pair of points in the
two windows (i.e. pt+f+s → pt−f−s; s = −w

2
. . . w

2
) is

taken as an estimate of the tangent at pt. The vari-
ance of the tangents is calculated and this process is
repeated over a range of offsets. Increasing the off-
set increases the scale of the analysis. Natural scales
are defined to be those offsets (scales) producing local
minima of tangent variance. One potential problem
with this approach is that variance estimates will be
unreliable at fine scales since the small windows will
only provide a few tangent samples. Also, it is not re-
ported how sensitive the algorithm is to the selection
of the window length function which was chosen fairly
arbitrarily.



2/ Witkin described how zero-crossings could be
linked over scale to form closed loops from which the
interval tree is generated [14]. This is a ternary tree
which partitions scale-space into rectangles. Each loop
defines a rectangle whose upper scale bound is the
maximum scale of the loop. The arc length positions
of the two ends of the loop at the finest scale define the
spatial bounds of the rectangle. The value of the max-
imum scale of the loop with the largest maximum scale
that is contained within the rectangle defines the rect-
angle’s lower scale bound. Witkin defined a stability
measure based on a rectangle’s persistence over scale
which was simply equal to its height in the scale do-
main. Rectangles were selected from the interval tree
by descending from the top until a rectangle’s stability
was greater than or equal to the mean stability of its
children. These provided a good single scale descrip-
tion for each section of the curve which was then re-
constructed by independently fitting parabolas to the
original data between the zero-crossings localised by
the selected rectangles. This approach could be ex-
tended to extract natural scales from the interval tree
in a similar manner by choosing all local maximally
stable rectangles rather than just the top-most ones.

3/ The Fourier based technique that we have ap-
plied to determine global natural scales [9] can be ex-
tended to apply locally. Previously, any Fourier de-
scriptors with large magnitudes were taken as indi-
cations of the presence of many structures at similar
scales. Whereas the Fourier transform is restricted
to the global analysis of signals, local analysis re-
quires that the curve be decomposed instead by spa-
tially localised basis functions such as Gabor filters or
wavelets [5]. These partition the signal in both the
spatial and frequency dimensions as shown in figure 3.
Natural scales could be defined as clusters of basis
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Figure 3: Partitioning of scale-space

functions (which are close both in scale and space)
with locally maximal magnitudes. A difficulty arises in
representing the curve so that it can be decomposed by
wavelets. In contrast to the Fourier transform which
has both real and imaginary components the wavelet
transform only has a real component. When using the

Fourier transform the curve can be parameterised by
its co-ordinates, allowing easy reconstruction of the
curve at the natural scales. This is not possible with
wavelets and instead a single valued parameterisation
such as tangent angle or curvature must be used. This
is less desirable since reconstructing the curve from its
filtered (smoothed) tangents or curvatures can pro-
duce distortions. For instance, closed curves generally
become open ones.

4/ Our original method for determining natural
scales calculated a significance measure Sσ defined as
the sum of the number of zero-crossings of curvature
at all points t on the curve normalised by the Gaussian
smoothing scale σ:

Sσ = σ
∑

t

zt where zt =

{

1 κt = 0, κ′
t 6= 0

0 otherwise

In fact the zero-crossing function zt also has to account
for straight sections of curve where the curvature is ex-
actly zero, although this rarely occurs with real data.
Natural scales are defined to be at scales producing
local minima of Sσ. If the significance value is con-
sidered as a normalised average zero-crossing density
measure then it can be easily applied locally to sec-
tions of curve. Each section of curve bounded by a
zero-crossing of curvature is treated as a primitive con-
cave/convex curve element. Within that section the
density of zero-crossings of curvature is taken as the
inverse of the length of the concave/convex section.
The significance value Sσ

t at each pixel in the con-
cave/convex curve section c of length lc at scale σ is
calculated as the normalised density of zero-crossings
of curvature of the section in a similar manner to the
global significance value:

Sσ
t =

σ

lc
; t ∈ c

The natural scales of pixels are those σ’s at which Sσ
t

is a local minima over adjacent scales.
5/ Recently, Deguchi and Hontani [1] described a

method for calculating natural scales based on the
scale-space plot of zero-crossings of curvature [7]. The
top of each arch specifies a natural scale. The com-
plete curve is retained at every such scale, but it is
smoothed adaptively to minimise distortion. At each
point on the curve the selected scale lies on the largest
scale closed arch whose peak is less than the natural
scale. If there is no such arch then no smoothing is per-
formed. This is shown in figure 4 where the dark line
drawn in scale-space specifies the amount of smooth-
ing applied to each point to generate the complete
curve for the third natural scale. The two main weak-
nesses of this approach are that the final smoothed
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Figure 4: Local scales selected by Deguchi

curves contain much redundancy since many parts of
them will be identical. Second, there are likely to be a
vast number of natural scales unless some thresholds
are introduced. For instance, although not explicitly
mentioned in the paper, a minimum level of smoothing
is retained as a lower limit to eliminate noise.

6/ Related work is described by Dudek & Tsot-
sos [2]. A regularization process (“curvature-tuned
smoothing”) is employed to smooth the curve where
the stabilising functional defines a target curvature.
This process is performed over a range of target curva-
tures to produce a multi-scale description. The energy
functional being minimised indicates the appropriate-
ness of the target curvature value. Sections of curve
whose energy exceeds a threshold are segmented and
those section with locally minimal average energy over
scale are retained. These sections are similar to the
local natural scales of the curve. However, their ap-
proach is more restrictive since it can only select curve
sections with roughly constant curvature.

3 Example of the concave/convex
length method

In this section we show an example of method 4
(based on the zero-crossing counting global natural
scale technique [10]) and describe its operation in fur-
ther detail. It is applied to the spiny/rippled pear from
Richards et al. [8]. The curve is smoothed by a Gaus-
sian filter at octave separations with Lowe’s method
for correcting curve shrinkage applied [4]. The scale-
space plot of the zero crossings of curvature are shown
in figure 5a (the scale dimension has been stretched for
display purposes). Note that it is not necessary to link
the zero-crossings over scale. This is especially useful
when there are artefacts like the dense triangle of zero-
crossings. These occur on diagonal straight lines and
are a product of the quantisation of the original pixel

Figure 5: (a) zero-crossings of spiny/rippled pear; (b)
significance measure; (c) minima of significance mea-
sure; (d) majority filtered significance minima

co-ordinate values. The significance measure at each
pixel over scale is shown in figure 5b; the image has
been log mapped for display purposes. Dark points
correspond to low values of the significance measure.
The dark patch extending from the coarsest scale to a
medium scale in the middle of the curve corresponds
to the bottom of the pear which has relatively little
structure at coarse scales compared to the spiny top
half.

Local minima of significance over scale are plotted
in grey in figure 5c. Since the measure is calculated
locally at every pixel it is not surprising that although
there is a certain spatial coherence it is also prone to
noise and minor variations. As discussed earlier this
fragmentation is undesirable to most applications, but
overcoming it unfortunately requires some threshold.
Currently we clean up the set of minima by indepen-
dently applying spatial majority filtering at each scale.
The neighbourhood of the filtering operation can be
varied to alter the amount of cleaning up. Figure 5d
shows the result of applying the majority filtering with
a window size of 32. It can be seen that small spatial
gaps in adjacent natural scales have been closed and
most small isolated stretches of natural scales have
been eliminated. The remaining sections of natural
scale shorter than the filtering window size (i.e. 32)
are further deleted. The remaining sections of curve
at their natural scales are plotted in black over the
original curve in figure 6. Both the finest and coars-
est scales for the complete curve have been retained
as describing important aspects of the curve, namely
the fine spiny and ripply detail. The shorter sections
of curve shown in the middle row describe the un-
derlying smooth base of the pear and the underlying



Figure 6: Selected local natural scales (black) overlaid on original curve (grey)

ripples of the top half of the pear. The remaining two
curve sections do not appear to describe such obvious
features.

4 Conclusions

We have described several techniques for determin-
ing the local natural scales of curves. Most are based
on creating a significance value over scale space which
is then used to partition scale-space, thereby generat-
ing local natural scales. An unfortunate by-product
of extending the global analysis of natural scales to
a more local basis is that in real curves the natu-
ral scales calculated at a pixel level tend to be frag-
mented. This can be overcome by merging fragments,
but requires the introduction of a parameter which
had been previously avoided in the global analysis.
When high level knowledge is available it may be pos-
sible to automatically determine a suitable merging
threshold. Currently we merge at each scale indepen-
dently. However, this ignores information from ad-
jacent scales that could help in the merging decision,
and we are currently investigating alternative methods
for merging natural scales. We are also currently im-
plementing the other methods for determining natural
scales so that their performance can be compared.
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