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Abstract

In this paper we de�ne a new linearity measure for open curve segments in 2D
and 3D. The measure considers the distance of the curve end points to the curve
centroid. It is simple to compute and has the basic properties that should be satis�ed
by any linearity measure. The new measure ranges over the interval (0; 1]; and pro-
duces the value 1 if and only if the measured curve is a perfectstraight line segment.
Also, the new linearity measure is invariant with respect to translations, rotations and
scaling transformations. The new measure is theoreticallywell founded and, because
of this, its behaviour can be well understood and predicted to some extent. This is
always bene�cial because it indicates the suitability of the new measure to the desired
application.

Several experiments are provided to illustrate the behaviour and to demonstrate
the e�ciency and applicability of the new linearity measure .
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1 Introduction

Shape descriptors have been employed in many computer vision and image processing tasks
(e.g. image retrieval, object classi�cation, object recognition, object identi�cation, etc). Dif-
ferent mathematical tools have been used to de�ne the shape descriptors: algebraic invari-
ants [14], Fourier analysis [6], morphological operations[26], integral transformations [23],
statistical methods [17], fractal techniques [15], logic [27], combinatorial methods [1], mul-
tiscale approaches [9], integral invariants [16], multi-scale integral geometry [3, 4, 18], etc.
Generally speaking, shape descriptors can be classi�ed into two groups: area based descrip-
tors and boundary based ones. Area based descriptors are morerobust (i.e. less sensitive
to noise or shape deformations) while boundary based descriptors are more sensitive. A
preference for either type of descriptor depends on the application performed and the data
available. For example low quality data would require robust descriptors (i.e. area based
ones) while high precision tasks would require more sensitive descriptors (i.e. boundary
based ones). In the literature so far, more attention has been paid to the area based descrip-
tors, not only because of their robustness but also because they are easier to be e�ciently
estimated when working with discrete data. Due to the recentproliferation of image veri�-
cation, identi�cation and recognition systems there is a strong demand for shape properties
that can be derived from their boundaries [16, 19, 30]. It is worth mentioning that some
objects, like human signatures for example, are open curvesby their nature and area based
descriptors cannot be used for their analysis.

In this paper we deal with linearity measures that should indicate the degree to which an
open curve segment di�ers from a perfect straight line segment. Several linearity measures
for curve segments are already considered in the literature[12, 13, 29, 32, 36]. All of these
measures have their strengths and their weakness. One measure performing well in one
application, might have a poor performance in another. Thisis why multiple measures, for
certain shape properties, are needed.

Perhaps the simplest way to de�ne the linearity measure of anopen curve segment is to
consider the ratio between the length of the curve considered and the distance between its
end points. This is a natural and simple de�nition which is also called thestraightness index
(or simply straightness) [5].

In this paper we introduce a new linearity measure for open curve segments. The new
linearity measure is computed as the sum of distances of the curve end points to the curve
centroid.

Both measures satisfy the following basic requirements fora linearity measure of open
curve segments.

� They vary through the interval (0; 1];

� They equal 1 only for straight line segments;

� They are invariant with respect to translation, rotation and scaling transformation on
a curve considered.

The straightness index is simple to compute and its behaviour can be clearly predicted,
i.e. we can see easily which curves have the same linearities, measured by the straightness
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index. It is obvious that those curves whose end points and the length coincide, have the
same straightness index. But the diversity of such curves ishuge and the straightness index
cannot distinguish among them, which could be a big drawbackin certain applications (of
course, in some applications it could be a desirable property). Some illustrations using simple
polygonal curves are shown in Figure 1.

0.661 0.512 0.545 0.526 0.512

Figure 1: Five displayed curves (solid lines) have di�erentlinearities measured by the new
measureL (C). The straightness index has the same value, equal to 1=2 for all �ve curves.
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Figure 2: The family of polylines� FPF , in (a), all produce a constant straightness index,
while P varies through the ellipse displayed. The graph in (b) plotsL (C), whereC = � FPF
is the same polyline as in (a), and� = \ FOP (O = (0 ; 0) is the origin).

Another example is given in �gure 2 which shows two line segments constructed from the
foci of an ellipse� F and a point on the ellipseP. Since the ellipse has the property that
� FP + PF remains constant (whileP varies through the ellipse), the straightness index of
the polyline � FPF has constant value (because the polyline has constant perimeter and
�xed endpoints). The proposed linearityL (C) (see De�nition 2, in Section 3, for a precise
de�nition) varies as shown in the graph computed in �gure 2b (the angle� is determined by
the points F, O = (0 ; 0), and P). This construction is used to generate a further example in
�gure 3 in which the spikes of the shape are modi�ed such that all the shapes have constant
straightness values but varying linearities are measured by the new measureL (C).

Of course, for any shape measure (including the linearity measure proposed in this paper)
which maps the set of all planar curves onto the interval (0; 1], there must be in�nitely many
curvesC satisfying L (C) = l0, for some constantl0 2 (0; 1). For example: the new linearity
measure assigns the same value to all curves whose sum of the distances of the end points
to the curve centroid is the same, the measure from [36] assigns the same value for all the
curves having the same value of the boundary-based �rst Hu moment invariant analogue,
etc. This cannot be avoided. Some examples are given in �gure4, for which not only
the proposed linearity measure, but also the straightness index produces the same value.
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0.323 0.324 0.327 0.328 0.329

Figure 3: The �ve displayed curves have di�erent linearities measured by the new measure
L (C). The straightness index has the same value, equal to 0.209 for all �ve curves.

While there will exist examples of sets of shapes that have a constant linearity measure but
di�ering straightness index values, these are not easy to synthesise since this would require
constructing two or more shapes with the same perimeter length, the same distance between
centroid and endpoints, but di�erent distances between endpoints.

0.429 0.429 0.429

Figure 4: The linearities measured by the new measureL (C) and the straightness index all
produce identical values for the three displayed curves.

Another example comparing straightness andL (C) is given in �gure 5. Four examples of
hands have each been modi�ed by cropping increasing amountso� one end of the curve. As
can be seen, the straightness measure could be understood asmore sensitive thanL (C) to
the position of the curves' endpoints. The ranking byL (C) groups all the di�erent versions
of each of the four models, except for the middle two shapes in�gure 5. By contrast, the
ranking by the straightness index/measure is such that no grouping of three instances of any
of the four hand shapes is formed, and only one grouping of twoinstances occurs.

linearity L (C)

straightness

Figure 5: Hand outlines (with varying amounts of cropping at one end) ranked according to
linearity or straightness.

In this paper we de�ne a new linearity measureL (C) for open curve segments. The new
measure satis�es the basic requirements (listed above) which are expected to be satis�ed
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for any curve linearity measure. SinceL (C) considers the distance of the end points of the
curve to the centroid of the curve, the new measure is also easy to compute. The fact that
it uses the curve centroids implies that it takes into account a relative distribution of the
curve points. The method also has a straightforward extension to 3D.

The paper is organized as follows. Section 2 gives basic de�nitions and denotations.
The new linearity measure for planar open curve segments is introduced in Section 3. An
extension to 3D curves is content of Section 4. Several experiments which illustrate the
behaviour and the classi�cation power of the new linearity measure are provided in Section 5.
Concluding remarks are in Section 6.

2 De�nitions and Denotations

In this paper we deal with both 2D and 3D curve segments.
Without loss of generality, throughout the paper, it will beassumed (even if not men-

tioned) that every curveChas length equal to 1 and is given in an arc-length parametrization.
I.e., planar curve segmentC is represented as:

x = x(s); y = y(s); where s 2 [0; 1]:

The parameters measures the distance of the point (x(s); y(s)) from the curve start point
(x(0); y(0)); along the curveC.

A 3D curve segmentC is represented as:

x = x(s); y = y(s); z = z(s); where s 2 [0; 1]:

Analogously as in the planar case above,s measures the distance of the point (x(s); y(s); z(s))
from the curve start point (x(0); y(0); z(0)); along the curveC.

The centroid of a given planar curveC will be denoted by (xC; yC) and computed as

(xC; yC) =
� Z

C
x(s) ds;

Z

C
y(s) ds

�
: (1)

The centroid of a given 3D curve C will be denoted by (xC; yC; zC) and computed as

(xC; yC; zC) =
� Z

C
x(s) ds;

Z

C
y(s) ds;

Z

C
y(s) ds

�
: (2)

Taking into account that the length of C is assumed to be equal to 1, we can see that the
coordinates of curve centroid, as de�ned in both (1) and (2),are the average values of the
coordinates of all the curve points.

As usual,d2(A; B ) will denote the Euclidean distance between the pointsA and B.
As mentioned, we introduce a new linearity measureL (C) which assigns to each curve

C a number from the interval (0; 1]. The curve C is assumed to have the length 1. More
precisely, any appearing curve will be scaled by the factor which equals the length of it before
the processing. So, an arbitrary curveCa would be replaced with the curveC de�ned by

C =
1R

Ca
ds

� Ca =

( 
xR

Ca
ds

;
yR

Ca
ds

!

j (x; y) 2 Ca

)
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i.e. in 3D with

C =
1R

Ca
ds

� Ca =

( 
xR

Ca
ds

;
yR

Ca
ds

;
zR

Ca
ds

!

j (x; y; z) 2 Ca

)

:

Shape descriptors/measures are very useful for discrimination among the objects { in
this case open curve segments. A particular attention can begiven to the shape descriptors
having a clear geometric meaning, because shape measures assigned to such descriptors have
a predictable behaviour. This is an advantage because the suitability of a certain measure to
a particular shape-based task (object matching, object classi�cation, etc) can be predicted to
some extent. On the other hand, a shape measure assigns to each object (here curve segment)
just a single number. In order to increase the performance ofcomputational tasks based on
the shape characteristics comparison, a common approach isto assign a graph (instead of a
number) to each object. E.g. such approaches de�neshape signaturedescriptors, which are
also `graph' representations of planar shapes, often used in shape analysis tasks [10, 37].

We will apply a similar idea here as well. To compare objects considered we uselinearity
plots (the approach is taken from [36] and more details can be foundtherein) to provide
more information than a single linearity measurement. The idea is to compute linearity
incrementally, i.e. to compute linearity of sub-segments of C determined by the start point
of C and another point which moves along the curveC from the beginning ofC to the end of
C: The linearity plot P( C), associated with the given curveC is formally de�ned as follows.

De�nition 1 Let C be a curve given in an arc-length parametrization:x = x(s); y = y(s);
(i.e. x = x(s); y = y(s); z = z(s) in 3D) and s 2 [0; 1]: Let A (s) be the part of the
curve C bounded by the starting point(x(0); y(0)) (i.e. (x(0); y(0); z(0))) and by the point
(x(s); y(s)) 2 C (i.e. (x(s); y(s); z(s)) 2 C). Then, for a linearity measure L ; the linearity
plot P(C) is de�ned by:

P(C) = f (s;L (A (s)) j s 2 [0; 1]g: (3)

We also will use thereverse linearity plotPrev (C) de�ned as:

Prev (C) = f (s;L (A rev (1 � s)) j s 2 [0; 1]g; (4)

where A rev (1 � s) is the segment of the curveC determined by the end point (x(1); y(1))
(i.e. (x(1); y(1); z(1)) in 3D) of C and the point which moves from the end point ofC, to
the start point of C; along the curveC. In other words, Prev (C) is the linearity plot of the
curve C0 which coincides with the curveC but the start (end) point of C is the end (start)
point of C0: A parametrization of C0 can be obtained by replacing the parameters, in the
parametrization of C; by a new parameters0 such that s0 = 1 � s. Obviously such a de�ned
s0 measures the distance of the point (x(s0); y(s0)) (i.e. (x(s0); y(s0); z(s0))) from the starting
point (x(s0 = 0) ; y(s0 = 0)) (i.e. ( x(s0 = 0) ; y(s0 = 0) ; z(s0 = 0))) of C0 along the curveC0; as
s0 varies through the interval [0; 1]:

For the sake of simplicity, in the experimental section (Section 5), the function which
corresponds to the linearity plot P(C) will be denoted by P(C)(s); with s 2 [0; 1]. Similarly,
the function which corresponds to the reverse linearity plot P rev (C)(s) will be denoted by
Prev (C)(s).
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3 New Linearity Measure for Open Curve Segments

In this section we introduce a new linearity measure for openplanar curve segments. In the
next section we extend the results to the 3D case.

We start with the following theorem which says that amongst all curves having the same
length, straight line segments have the largest sum of distances between the curve end points
to the curve centroid. This result will be exploited to de�nethe new linearity measure for
open curve segments.

Theorem 1 Let C be an open curve segment given in an arc-length parametrization x =
x(s); y = y(s); and s 2 [0; 1]: The following statements hold:

(a) The sum of distances of the end points(x(0); y(0)) and (x(1); y(1)) from the centroid
(xC; yC) of the curveC is bounded from above by1, i.e.:

d2((x(0); y(0)); (xC; yC)) + d2((x(1); y(1)); (xC; yC)) � 1: (5)

(b) The upper bound established by the previous item is reached by the straight line segment
and, consequently, cannot be improved.

Proof. Let C be a curve given in an arc-length parametrization:x = x(s) and y = y(s);
with s 2 [0; 1], and let S = ( x(0); y(0)) and E = ( x(1); y(1)) be the end points ofC: We can
assume, without loss of generality, that the curve segmentC is positioned such that

� the end pointsS and E belong to thex-axis (i.e. y(0) = y(1) = 0), and

� S and E are symmetric with respect to the origin (i.e.� x(0) = x(1));

as illustrated in Fig. 6. Furthermore, let E = f X = ( x; y) j d2(X; S ) + d2(X; E ) = 1 g be

Figure 6: Denotations in the proof of Theorem 1 are illustrated above.

an ellipse which consists of points whose sum of distances tothe points S and E is equal to
1: Now, we prove(a) in two steps.
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(i) First, we prove that the curve Cand the ellipseE do not have more than one intersection
point (i.e. C belongs to the closed region bounded byE).
This will be proven by a contradiction. So, let us assume the contrary, that C intersects
E at k (k � 2) points: (x(s1); y(s1)) ; (x(s2); y(s2)) ; ..., (x(sk); y(sk)) ; where 0< s 1 <
s2 < : : : < s k < 1: Let A = ( x(s1); y(s1)) and B = ( x(sk); y(sk)) :

Now, by using the triangle equality and the fact that the length of any path between
two points is bounded below by the Euclidean distance between these two points, we
derive the contradiction 1< 1; as follows:

1 = d2(S; A) + d2(A; E ) < d2(S; A) + d2(A; B ) + d2(B; E )

�
Z

cSA

ds+
Z

dAB

ds+
Z

dBE

ds =
Z

C

ds = 1: (6)

So,C and E do not have more than one intersection point, implying thatC lies in the
closed region bounded byE:

(ii) Second, we prove that the centroid ofC does not lie outside ofE. The proof follows
easily, from the following two remarks:

{ The convex hull CH (C) of C is the smallest convex set which includesC and,
consequently, is a subset of the region bounded byE.

{ The centroid of C lies in the convex hullCH (C) of C because it belongs to every
half plane which includesC (the intersection of such half planes is actually the
convex hull ofC (see [31]));

Finally, since (xC; yC) 2 CH (C) � region boundedby E is proven, we deduce

d2((x(0); y(0)); (xC; yC)) + d2((x(1); y(1)); (xC; yC)) � 1:

This establishes(a) .
To prove (b) it is enough to notice that if C is a straight line segment of length 1; then

the sum of its end points to the centroid ofC is 1: �

Now, motivated by the results of Theorem 1, we give the following de�nition for a new
linearity measureL (C) for open curve segments.

De�nition 2 Let C be an open curve segment. Then, the linearity measureL (C) of C is
de�ned as the sum of distances between the centroid(xC; yC) of C and the end points ofC:
I.e.:

L (C) = d2((x(0); y(0)); (xC; yC)) + d2((x(1); y(1)); (xC; yC)) (7)

wherex = x(s); y = y(s); s 2 [0; 1] is an arc-length representation ofC:

The following theorem summarizes desirable properties ofL (C).
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Theorem 2 The linearity measureL (C) has the following properties:

(i) L (C) 2 (0; 1]; for all open curve segmentsC;

(ii) L (C) = 1 , C is a straight line segment;

(iii) L (C) is invariant with respect to the similarity transformations.

Proof. Item (i) is a direct consequence of Theorem 1.
To prove (ii) we will use the same notations as in the proof of Theorem 1 and give a

proof by contradiction. So, let assume the following:
{ the curve C di�ers from a straight line segment, i.e.,d2(S; E) < 1; and
{ the sum of distances between the end points, and the centroid of C is 1; i.e., (xC; yC) lies
on the ellipseE = f X = ( x; y) j d2(X; S ) + d2(X; E ) = 1 g:

Further, it would mean that there are points of the curveC belonging to both half-planes
determined by the tangent on the ellipseE passing through the centroid ofC: This would
contradict the fact that C and E do not have more than one intersection point (what was
proven as a part of the proof of Theorem 1).

To prove item (iii) it is enough to notice that translations and rotations do notchange
the distance between the centroid and the end points. SinceC is represented by using an
arc-length parametrization: x = x(s); y = y(s); with s 2 [0; 1]; the new linearity measure
L (C) is invariant with respect to scaling transformations as well. �

4 Linearity of Open Curve Segments in 3D

In this section we extend the linearity measureL (C) of planar curve segmentsC to 3D curve
segments. As in the second section which introduces basic de�nitions and denotations, we
will use the same notation:C for the 3D curves andL (C) for their linearity measures, but
this will not cause any confusion. Again, we will assume that all curves C have length 1 and
are represented in an arc-length parametrizationx = x(s); y = y(s); z = z(s); s 2 [0; 1];
where the parameters is the distance between the curve start point (x(0); y(0); z(0)) and
the point (x(s); y(s); z(s)) 2 C along the curveC: The centroid (xC; yC; zC) of C is de�ned as
in (2).

The following theorem is an analogue of Theorem 1.

Theorem 3 Let C be an open curve given in an arc-length parametrizationx = x(s); y =
y(s); z = z(s) and s 2 [0; 1]: Then the following statements hold:

(a) The sum of distances of the end pointsS = ( x(0); y(0); z(0)) and E = ( x(1); y(1); z(1))
from the centroid CC = ( xC; yC; zC) of C is bounded from above by1, i.e.:

d2(S;CC) + d2(E; CC) � 1: (8)

(b) The upper bound established by (8) is reached by the straightline segment and, conse-
quently, cannot be improved.
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Proof. We use the same idea and denotations as in the proof of Theorem1. So, let
S = ( x(0); y(0); z(0)) and E = ( x(1); y(1); z(1)); and let C be positioned such that
{ the points S and E belong to thex-axis, and
{ the points S and E are symmetric with respect to the origin.

We give a short proof of(a) because of an analogy to the 2D case. The proof of(b) is
omitted since the statement of(b) is easy to verify.

(a) Let E = f X = ( x; y; z) j d2(X; S ) + d2(X; E ) = 1 g. Similarly as in 2D case, we
can prove that the curveC and the ellipsoidE do not have more than one intersection point
(again, a proof by contradiction can be given, by using an ellipsoid instead of the ellipse).

Furthermore, as in the proof in the 2D case,CH (C) is a subset of the region bounded
by E. Also, (xC; yC; zC) 2 CH (C) because the centroid ofC lies in every half space which
includesC: The intersection of such half spaces is actually the convex hull of C:

Finally, since the centroid ofC lies inside the region bounded byE; the sum of its dis-
tances to the end points is not bigger than 1, which proves(a) . �

Based on the previous theorem, we extend De�nition 2 to open curve segments in 3D:

De�nition 3 Let C be an open curve segment in3D. Then, the linearity measureL (C) of
C is de�ned as the sum of distances between the centroid(xC; yC; zC) of C and the end points
of C:

The desirable properties ofL (C) listed in Theorem 2 hold also in 3D: We give the next
theorem without proof because it is identical to the proof ofTheorem 2.

Theorem 4 Let C be an open curve segment in3D. The following properties hold:

(i) L (C) 2 (0; 1];

(ii) L (C) = 1 , C is a straight line segment;

(iii) L (C) is invariant with respect to similarity transformations.

5 Experiments

In this section we provide several experiments in order to illustrate the behaviour and e�-
ciency of the linearity measure in both 2D and 3D.

First experiment ( 2D): Illustration. To demonstrate how various shapes produce
a range of linearity values, �gure 7 shows handwritten digits (0{9) from the training set
captured by Alimo�glu and Alpaydin [2] plotted in a 2D feature space of linearityL (C)
versus rectilinearityR 1(C) [34].1 In �gure 7a the �rst two samples of each handwritten digit

1The rectilinearity of a shape S is calculated by �Zuni�c and Rosin [34] as follows:
�

� � 2
p

2

�
max

� 2 [0;2� ]

P 1 (S;� )p
2P 2 (X )

� 2
p

2
�

�
where P2(S) is the perimeter of S under the L 2 norm, and P1(X; � ) is

the L 1 perimeter obtained by �rst rotating S by the angle � with the origin as the centre of rotation.
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Figure 7: Handwritten digits ordered by linearity and rectilinearity. (a) Two samples of each
digit; (b) All training digits 0, 2, 7 plotted as red, green, blue points.

is shown. Despite the variability of hand writing, most pairs of the same digit are reasonably
clustered. The major separations occur for:

{ \2" since only one instance has a loop in the middle;

{ \4" since the instance next to the pair of \7"s is missing thevertical stroke and con-
sequently looks very similar to a \7" rotated by 180� ;

{ \5" since the uppermost right instance is missing the horizontal stroke.

From the full training set of 7485 characters three digits are selected (2267 samples) and
plotted in �gure 7b in order to show more comprehensively that linearity can be used to
provide a reasonable separation of classes in feature space. Of course, by augmenting the
feature vector better classi�cation can be obtained. For instance, using all 10 digits from the
full training set, and a set of seven Hu moment invariants [14]and six further moment invari-
ants [21] as features to train a nearest neighbour classi�erwith Mahalanobis distances, the
classi�cation accuracy on the independent test set (3493 digits) is 86.5%, which is improved
by adding linearity measureL (C) as a feature to an accuracy of 90.0%. The straightness
index was also evaluated, and improved classi�cation accuracy to 91.50%. Examining the
mismatches encountered in the classi�cation step when using linearity reveals that these are
mainly due to some instances of \5" and \0" having very similar linearity values, whereas
their straightness values are more distinct (see �gure 8). Of course, there are also examples
in which the linearity values are more discriminative than the corresponding straightness
values, e.g. the \6" and \1" in �gure 8, but these are less frequent in this data set.

Figure 9 provides some examples of pairs of curves which produce identical (up to 6
decimal places) linearity or straightness values. From thecombined set of 10978 digits, there
were 114 pairs with identical linearity values, and 109 pairs had identical straightness values
(i.e. about 2%). Note that these sets did not overlap; i.e. no pair of digits had both identical
linearity and straightness values.
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linearity: 0.373 0.348 0.422 0.427 0.411 0.355 0.416 0.288
straightness: 0.368 0.074 0.421 0.039 0.298 0.306 0.232 0.288

misclassi�ed by linearity misclassi�ed by straightness

Figure 8: Misclassi�cation of digits using moments and linearity or moments and straight-
ness. For each pair of digits the �rst digit is the test shape and the second digit is the best
match from the training set.

0.176291 0.176291 0.300917 0.300917 0.500180 0.500180 0.702861 0.702861
0.044741 0.048905 0.299453 0.297275 0.467512 0.476084 0.637481 0.633180

0.404425 0.260906 0.352286 0.380776 0.401095 0.407330 0.695872 0.630343
0.000000 0.000000 0.244700 0.244700 0.400808 0.400808 0.627875 0.627875

Figure 9: Examples of pairs of curves which produce identical (up to 6 decimal places) values
for linearity (upper row) or straightness (lower row). Below each digit is its linearity value
followed by its straightness index.

For each of the 10 classes of digits the correlation between the linearity and straightness
values that were computed for all the training and test data are shown in table 1. It can
be seen that linearity and straightness are highly correlated for many digits, which is to
be expected since they are measuring the same shape characteristic, even thought they are
capturing di�erent aspects of it. In contrast, for those digits which are made up from closed
(or in practise, almost closed) curves, and therefore have low linearity and straightness values,
the two measures are essentially uncorrelated.

digit 0 1 2 3 4 5 6 7 8 9
� -0.075 0.832 0.832 0.945 0.878 0.984 0.949 0.959 -0.022 0.925

Table 1: Pearson's correlation coe�cient� between the linearity and straightness measures
for 10978 handwritten digits.

Second experiment ( 3D): Illustration. Figure 10 demonstrates the measure on some
simple synthetic 3D curves, and it can be seen how the measured linearityL (C) decreases as
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the curves become more convoluted (increasing abscissa in the graph). In particular see the
Hilbert curve example in which curve's complexity increasessubstantially as the number of
levels increases. In addition, when the helix is squashed along its length then the linearity
decreases as expected (dotted line versus solid line in �gure 10(a).
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Figure 10: Linearity computed for 3D curves. (a) helix: x(t) = sin( t); y(t) = cos(t); z = t
(solid line) and x(t) = sin( t); y(t) = cos(t); z = t=10 (dotted line); (b) Hilbert curve.

Figure 11 compares the behaviour of the linearity and straightness values as increasing
lengths of helix are traced out. It can be seen that the straightness index is sensitive to the
varying position of the endpoint, producing an undesirableoscillating pattern, whereas the
measured linearityL (C) decreases monotonically as the helix extends. This demonstration
of the sensitivity of the straightness index reinforces theprevious example given in �gure 5.
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Figure 11: Linearity and straightness computed for 3D helix.

Third experiment ( 2D): Filtering edges.
Figure 12 shows the application of the linearity to �ltering edges. The edges were ex-

tracted from the images using the Canny detector [7], connected into curves, and then
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Figure 12: Filtering connected edges by linearity. Left/�rst column: connected edges (min-
imum length: 25 pixels); second column: sections of curve with L (C) < 0:5; third column:
sections of curve withL (C) > 0:9; fourth column: sections of curve withL (C) > 0:95.
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thresholded according to total edge magnitude and length [24]. Linearity was measured in
local sections of curve of length 25, and sections above (or below) a linearity threshold were
retained. It can be seen that retaining sections of curve with L (C) < 0:5 �nds small noisy
or corner sections. Keeping sections of curve withL (C) > 0:9 or L (C) > 0:95 identi�es most
of the signi�cant structures in the image.

(a) (b) (c)

Figure 13: Reconstructing the image from its �ltered edges.(a) original intensity image;
(b) image reconstructed using all connected edges (minimumlength: 25 pixels); (c) image
reconstructed using sections of curve withL (C) > 0:95.

Experiments are also shown in which Poisson image reconstruction is performed from
the image gradients [22]. In �gure 13(b) all the connected edges with minimum length
of 25 pixels (shown at the bottom of the �rst column in �gure 12) have been used as a
mask to eliminate all other edges before image reconstruction was performed. Some �ne
detail has been removed in the reconstructed image; this is to be expected since small and
weak edges have been removed in the pre-processing stage. When linearity �ltering is also
applied to these pre-processed edges, and only edges corresponding to sections of curve with
L (C) > 0:95 are used (i.e. the original edge map is masked with the edges shown at the
bottom of the fourth column in �gure 13), then the image reconstruction retains only regions
that are locally linear structures (including sections of large circular objects).

Fourth experiment ( 2D): Signature veri�cation. For the second application we use
data from Munich and Perona [20] to perform signature veri�cation. The data consists of pen
trajectories for 2911 genuine signatures taken from 112 subjects, plus �ve forgers provided
a total of 1061 forgeries across all the subjects. Examples of corresponding genuine and
forged signatures are shown in �gure 14. To compare signatures we use the linearity plots
de�ned by (3) and (4) to provide more information than a single linearity measurement.
Linearity plot examples are in �gure 15 (additional examples for linearity plots based on the
3D linearity measure are in �gure 17 given below).
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Figure 14: Examples of genuine (leftmost three) and forged (rightmost three) signatures.
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Figure 15: Examples of linearity plots for the genuine signatures (leftmost two columns) and
the forged signatures (rightmost two columns) in �gure 14. Linearity plots are provided for
2D versions of the signatures.

A straightforward idea is that the quality of match between signaturesC1 and C2 is mea-
sured by the di�erence/distance between the linearity plots P(C1) and P(C2) (i.e. functions
P(C1)(s) and P(C2)(s), with s 2 [0; 1]). This di�erence can be measured by the area bounded
by the linearity plots P(C1) and P(C2) and by the vertical lines s = 0 and s = 1. In other
words, the di�erence between signaturesC1 and C2 can be measured by the quantity2

Z 1

s=0
jP(C1)(s) � P(C2)(s)j ds: (9)

But such a measure, for the di�erence between signaturesC1 and C2; is not most appropriate
in the situation considered here. Note that the linearity plots tend to level o� by about
s = 0:5. This is a consequence of it becoming progressively less likely that a shape remains
straight along its complete length.3 Since this means that the latter part of the linearity plots
consequently contain limited discriminatory power we alsoconsider traversing the curve in
reverse direction, i.e. by considering the reverse linearity plots P rev (C1) and Prev (C2): The
di�erence/distance of two signaturesC1 and C2 is now determined as a combination of the
two matches (see (9)):

area (P(C1); P(C2)) + area (P rev (C1); Prev (C2)) =

2Rather than measure the di�erence between points in the linearity plots at directly corresponding arc
lengths, we also considered performing dynamic time warping on pairs of linearity plots to align them more
closely to each other. However, we found this to degrade the results rather than improve them. In addition,
the computation time substantially increased.

3Not all shapes will have linearity plots that level o� like th e examples in �gure 15. Consider for instance
a curve that starts at one end as a spiral, and then continues into a long straight line. Traversing from the
spiral end, the linearity plot will initially sharply decre ase, and then (once the straight section is encountered)
monotonically increase.
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Z 1

0
jP(C1)(s) � P(C2)(s)j ds +

Z 1

0
jPrev (C1)(s) � Prev (C2)(s)j ds (10)

and we achieve better results by combining the two linearityplot di�erences.
Nearest neighbour matching is then performed on all the data using the leave-one-out

strategy. Signature veri�cation is a two class (genuine or fake) problem. Since the identity
of the signature is already known, the nearest neighbour matching is only applied to the set
of genuine and forged examples of the subject's signature. Our previous results using the
linearity measure de�ned in [36] achieved 93.1% accuracy, which is now improved. Comput-
ing linearity of the 2D signatures usingL (C) produces 97.2% accuracy. Note that applying
dynamic time warping on pairs ofL (C) linearity plots resulted in 96.0% accuracy, showing
the ine�ectiveness of warping in this context. For comparison, linearity was replaced by
straightness, giving 96.9% accuracy, showing thatL (C) provides a small improvement.

Fifth experiment ( 3D): Signature veri�cation { improved accuracy. A further
increase in accuracy in the signature veri�cation task is obtained by assuming that the
data samples along each signature were captured uniformly over time, and augmenting the
2D coordinates with time as the third dimension. That is, the data (x t ; yt ) is treated as
(x t ; yt ; �t ), where � is a scaling factor, and the 3D version of L (C) is applied. Two 3D
signature examples are displayed in �gure 16. The non-uniformity in the third dimension
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Figure 16: 3D versions of the leftmost signatures in �gure 14.

can be most easily seen in the jump at the beginning of each signature.
In this experiment we use linearity plots assigned to 3D signatures. Figure 17 demon-

strates the linearity plots for the signatures shown in �gure 14. The plots in the �rst (second
respectively) column contain the three genuine signaturesfrom the upper (lower respectively)
row in �gure 14. The linearity plots in the third and fourth columns contain the forged ver-
sions. In general they display uniformity within each individual/writer, although the greater
variability in the signatures in the second row of �gure 14 isre
ected in the correspond-
ing (i.e. 2nd and 4th) linearity plots. Note that the inclusion of temporal information has
increased the consistency of the second genuine set of signatures (compare the 2nd plot in
�gure 15 versus the 2nd plot in �gure 17).
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Figure 17: Examples of linearity plots for genuine signatures (leftmost two columns) and
forged signatures (rightmost two columns). Linearity plots are provided for 3D versions of
signatures, as displayed in �gure 16.

As in experiment 4, signature veri�cation is carried out using nearest neighbour matching
of each signature to the set of genuine and forged examples ofthat subjects signature. This
time the linearity plots are computed from the 3D version of the signature data. The accu-
racy of 97.2% obtained by computing linearity of the 2D signatures usingL (C) is marginally
improved. With � = 0:2 the signature veri�cation accuracy becomes 97.8%, which is close to
the accuracy of around 99% achieved by Munich and Perona's system that was speci�cally
designed for signature analysis.

Sixth experiment ( 3D): Classifying 3D brain tracts. Four sets of brain �bre tracts,
obtained by tractography from di�usion tensor imaging (DTI) scans of four subjects, are
analysed. Each scan consists of bundles of 3D curves (between 1282 and 2683 tracts per
subject), which were semi-automatically labelled into eight categories: left cingulum, right
cingulum, corpus callosum, corticospinal, left fornix, right fornix, uncinate fasciculus, ushape
(tracts connecting the cerebellar peduncles through the pons { these do not correspond to
a standard anatomic structure, but are reproducible); see �gure 18. 3D line moments were
computed for each tract as a basic feature. Since subjects' heads are in a standard position
when scanned, moment invariants were not necessary, and theten raw moments up to second
order were used. Classi�cation was performed using an SVM [8]with a Radial Basis Function
(RBF) kernel, and leave-one-out testing. Using just the moment features, the classi�cation
rate was 85.34%, which improved to 89.24% when the SVM used both the moments and
linearity. In comparison, using moments and straightness instead ofL (C) only produced a
classi�cation rate of 86.33%. Since the linearity and straightness measures provide somewhat
di�erent information they can be combined into the feature vector along with the moments.
This produced a small improvement, achieving a classi�cation rate of 91.27.

Seventh experiment (2D): The performance assessment in the p resence of
noise.
In this experiment we assess the performance of the new linearity measure in the presence

of noise. The problems of sensitivity (some people would prefer to say \non-robustness"
instead of \sensitivity") of the curve based methods in image processing and computer
vision tasks are well recognized. The performance of curve based methods, depending on
the noise level, can be strongly a�ected. On the other hand, the area based methods (in
which all shape points, both boundary and interior ones, areinvolved in the computation)

18



Figure 18: 3D tracts for four subjects with ground truth colour coding.

are more resistant to noise, or in general, small boundary deformations (like protrusions and
intrusions). Of course, there are applications where preference can be given to either of these
methods. For example, when working with low quality data, the preference would be given
to the robust methods (i.e. area based ones). On the other hand, when working on high
precision tasks the sensitivity property is preferred. Foran analysis of the behaviour of the
new measure in the presence of noise, we will use the same dataset as used in the First
Experiment, captured by Alimo�glu and Alpaydin [2] (consisting of 10978 handwritten digits
(0 - 9)).

We start with a small sample set, displayed in Figure 19. Three digits are distorted by
adding increasing amounts of normally distributed noise toeach coordinate.

As the curves become more sinuous their linearity values decrease as expected, and do so
in a stable manner. It can be seen that the addition of noise tothe digits \1" and \4" has
a similar e�ect on the straightness index. The digit \0" measured by the straightness index
has shown the highest resistance to the presence of noise, which is actually as expected. In
the ideal situation the digit \0" is represented by a closed curve, whose straightness index
is equal to 0 and should not be changed after noise is added. Inthe presented situation, the
digit \0" appears as a curve whose end points almost coincide, implying a very low (close to
0) value, which does not change much in the presence of noise.

The results of further analysis are demonstrated in �gure 20which shows test set clas-
si�cation accuracy when noise has been added to both the training and test data. We note
that accuracy is not unduly a�ected by the addition of even substantial levels of noise. Both
linearity and straightness provide similar levels of accuracy, and the combination of the two
measures produces a substantial increase in classi�cationaccuracy. An overall higher classi-
�cation accuracy by the straightness index can be explainedby the fact that the straightness
measure classi�es \0" and \8" with a better accuracy, because both digits \0" and \8" (in a
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Figure 19: E�ect of increasing amounts of noise on the measured linearity (on the left) and
straightness values (on the right) for three digits: 0, 1, and 4.

perfect situation) are presented by closed curves and theirstraightness index is 0 { i.e., very
close to zero if the selected data set is used. Since both willget a straightness value close to
zero then the classi�cation rate for these two digits will approach 50%, which is higher than
the classi�cation rate obtained for the other digits.4

It is very important to notice that, especially for relatively small noise levels, the combi-
nation of the two measures produces a substantial increase in classi�cation accuracy. This
shows that these two measures are compatible, and fairly independent. In simple words, the
message from this experiment is:Both linearity and straightness index are needed. The use
of one does not preclude the use of the other.

Table 2 shows the confusion matrix for the classi�cation labels for the original (noise

4The straightness measure gives 54% and 45% classi�cation rates for the digits \8" and \0" respectively,
if no noise added. In a presence of noise, for� = 10, these classi�cation rates are 53% and 56%.
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Figure 20: E�ect of increasing amounts of noise on the accuracy of classifying 3493 test
digits.
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Assigned Classes
0 1 2 3 4 5 6 7 8 9 total

0 32 6 8 2 2 3 5 1 28 13 100
1 10 24 9 10 6 12 7 6 8 9 100
2 9 11 12 11 7 9 13 4 7 17 100
3 1 11 11 16 12 15 14 7 1 13 100
4 1 10 4 10 19 13 9 28 0 5 100
5 2 14 10 14 12 17 11 13 1 6 100
6 7 10 14 12 8 9 15 4 7 15 100
7 3 7 5 7 23 7 4 36 1 6 100
8 29 4 10 1 3 3 10 0 28 13 100
9 12 8 16 11 6 7 15 4 7 15 100

total 106 99 94 98 94 103 102 88 110 105

Table 2: Confusion matrix for classi�cation of test digits by the proposed linearity measure.
Values have been scaled so that row values before rounding) sum to 100. Note that columns
totals are also computed from the original data before rounding.

free) test data.5 As expected, there is substantial confusion between certainclasses (e.g. \0"
and \8"; \2", \6" and \9"; \4" and \7"). When noise ( � = 4) is added to the data then,
as expected, there is further confusion between additionalclasses, see the confusion matrix
in table 3. Of course, as �gure 21 demonstrates, the further added noise (� = 10) has made
many instances from di�erent classes look similar to each other.

Tr
ue

C
la

ss
es

Assigned Classes
0 1 2 3 4 5 6 7 8 9 total

0 26 10 10 4 2 4 9 1 23 11 100
1 11 11 10 8 13 11 10 13 7 6 100
2 10 9 12 11 10 10 12 6 6 15 100
3 5 13 16 12 10 15 10 9 4 7 100
4 3 11 8 15 13 16 8 21 1 4 100
5 5 15 10 12 15 10 7 13 4 10 100
6 13 11 13 10 8 11 14 5 6 10 100
7 5 11 3 9 19 13 7 25 2 5 100
8 23 8 11 4 5 3 7 1 24 13 100
9 15 8 13 6 5 11 12 3 10 18 100

total 115 107 106 89 100 102 96 98 87 99

Table 3: Confusion matrix for classi�cation of test digits with added noise (� = 4) by the
proposed linearity measure. Values have been scaled so thatrow values (before rounding)
sum to 100. Note that columns totals are also computed from theoriginal data before
rounding.

5The row and columns totals were computed from the original data which has subsequently been rounded
for presentation, which explains the apparent small discrepancies in the totals.
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0/9 9/0 1/3 3/1 1/4 4/1 1/7 7/1 4/7 7/4

Figure 21: Misclassi�ed test digits with added noise� = 10 (the true class/assigned class is
shown underneath).

Eighth experiment (2D): Combination of open curve and area ba sed features.
The �nal experiments demonstrates that standard area baseddescriptors can be com-

bined with our shape measure applied applied to open curves.We use the data set consisting
of 808diatoms from the ADIAC project, which have been manually labelled into 38 classes.
Previously we have classi�ed this data using several convexity measures both alone and in
combination with the following set of descriptors [35]: circularity, ellipticity, rectangularity,
triangularity [25] aspect ratio, compactness, convexity,eccentricity, the �rst four rotation,
translation, and scale moment invariants, four rotation, translation, and scale moment in-
variants [28], the �rst three a�ne moment invariants [11]. For each diatom we have both the
contour of its outer boundary and also the diatom's ornamentation, which consists of zero or
more (mainly open) curve sections in the interior, see �gure22 for examples. We have rerun
the classi�cation task from [35], but in the current experiment, in addition to the convexity
measures, the new linearity descriptor is applied individually to a diatom's interior curves,
and for each diatom the weighted6 mean and standard deviation of these linearity values
is used as descriptors.7 The remaining shape descriptors, which are a mixture of areaand
boundary based, are applied to the outer boundaries. Classi�cation is performed using the
nearest neighbour classi�er with Mahalanobis distances.

As table 4 shows, the combination of linearity information from the open curves with the
various area based and boundary based descriptors computedfrom the shape's boundary
provides a consistent improvement in classi�cation accuracy.8

6 Conclusion

This paper has described a new shape descriptorL (C) for computing the linearity of open
curve segments in 2D and 3D. Through the paper we have assumed that all curves have
unit length and we then de�ne the linearity measure as the sumof distances of the curve end
points to the curve centroid. Of course, the assumption about the unit length of the curves
considered is not a restriction in terms of applications in image processing and computer

6The interior curve's perimeter are used as the weighting term when calculating mean and standard
deviation of linearity.

7For diatoms with no interior curves the mean and standard deviation linearity values are set to zero
(there was a single such diatom in the set of 808).

8The classi�cation results using convexity alone di�er from the results reported in [35] since a di�erent
classi�er is used in this paper which has improved performance.
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Figure 22: Diatoms ranked in increasing mean linearity of their internal contours. The top
shows the original images, the middle row shows each diatom's external contour, and the
bottom row shows the internal contours.

C2(S) C3(S) CZR (S)
convexity 16.83 11.26 16.83
convexity plus interior linearity 37.25 32.30 39.98
convexity and other features 87.75 86.88 87.75
convexity plus interior linearity and other features 88.99 90.47 88.24

Table 4: Classi�cation accuracies for 808 diatoms using convexity plus additional shape fea-
tures descriptors. The following convexity measures were used: C2(S) = area(S)

area(convex hull(S))
,

C3(S) = area(perimeter(S))

perimeter(S)
, CZR (S) [35].

vision tasks. Indeed, if it is preferred to avoid such an assumption, then the new linearity
measureL (C) can be computed as the ratio

Sum of distances of the curve end points to the curve centroid
Curve length
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which is obviously an invariant with respect to the scaling transformations.
The new linearity measure is both very simple to implement and e�cient to compute. It

satis�es the basic requirements for a linearity measure:

� L (C) is in the interval (0; 1];

� L (C) equals 1 only for straight line segments;

� L (C) is invariant with respect to translation, rotation and scaling transformation on a
curve considered.

In addition, the new measure is theoretically well founded.All statements are accom-
panied with rigorous proofs. Supported by this, the behaviour of the new measure is well
understood and predictable to some extent. This is an advantage since it enables a priori
judgment regarding the measure's suitability for particular applications.

Experiments show the e�ectiveness of the new measure on several tasks. Some synthetic
experiments are provided in order to illustrate that the newmeasure behaves in accordance
with human perception (second experiment). Additional experiments are provided to il-
lustrate the usefulness of the new measure in some application tasks. In the case of the
signature veri�cation, a high accuracy of 97:2% was achieved if the signatures are treated as
2D curves/objects. A further improvement of 97:8% was obtained when the signatures were
treated as 3D objects (third coordinate/dimension is time-related and is derived based on an
assumption that the signatures considered were captured uniformly over time). Taking into
account that the new linearity measure was derived as a general classi�cation/recognition
tool such an achieved accuracy of 97:8% can be considered to be very high, even though it is
slightly lower than the accuracy of around 99% obtained by a specially tailored system [20]
for such signature analysis task.
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