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Abstract

In this paper we de ne a new linearity measure for open curve sgments in D
and 3D. The measure considers the distance of the curve end pointtthe curve
centroid. It is simple to compute and has the basic propertis that should be satis ed
by any linearity measure. The new measure ranges over the ietval (0; 1]; and pro-
duces the value 1 if and only if the measured curve is a perfedtraight line segment.
Also, the new linearity measure is invariant with respect to translations, rotations and
scaling transformations. The new measure is theoreticallyvell founded and, because
of this, its behaviour can be well understood and predicted & some extent. This is
always bene cial because it indicates the suitability of the new measure to the desired
application.

Several experiments are provided to illustrate the behaviar and to demonstrate
the e ciency and applicability of the new linearity measure .
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1 Introduction

Shape descriptors have been employed in many computer ws@nd image processing tasks
(e.g. image retrieval, object classi cation, object recagtion, object identi cation, etc). Dif-
ferent mathematical tools have been used to de ne the shapestriptors: algebraic invari-
ants [14], Fourier analysis [6], morphological operatiori6], integral transformations [23],
statistical methods [17], fractal techniques [15], logi@T], combinatorial methods [1], mul-
tiscale approaches [9], integral invariants [16], multieslle integral geometry [3, 4, 18], etc.
Generally speaking, shape descriptors can be classi edartivo groups: area based descrip-
tors and boundary based ones. Area based descriptors are maybust (i.e. less sensitive
to noise or shape deformations) while boundary based deptors are more sensitive. A
preference for either type of descriptor depends on the apaltion performed and the data
available. For example low quality data would require robusdescriptors (i.e. area based
ones) while high precision tasks would require more sengéidescriptors (i.e. boundary
based ones). In the literature so far, more attention has be@aid to the area based descrip-
tors, not only because of their robustness but also becauseey are easier to be e ciently
estimated when working with discrete data. Due to the recergroliferation of image veri -
cation, identi cation and recognition systems there is a sbng demand for shape properties
that can be derived from their boundaries [16, 19, 30]. It isavth mentioning that some
objects, like human signatures for example, are open curvag their nature and area based
descriptors cannot be used for their analysis.

In this paper we deal with linearity measures that should indate the degree to which an
open curve segment di ers from a perfect straight line segmie Several linearity measures
for curve segments are already considered in the literatufg2, 13, 29, 32, 36]. All of these
measures have their strengths and their weakness. One measperforming well in one
application, might have a poor performance in another. Thigs why multiple measures, for
certain shape properties, are needed.

Perhaps the simplest way to de ne the linearity measure of aopen curve segment is to
consider the ratio between the length of the curve considerand the distance between its
end points. This is a natural and simple de nition which is ado called thestraightness index
(or simply straightness [5].

In this paper we introduce a new linearity measure for open ote segments. The new
linearity measure is computed as the sum of distances of theree end points to the curve
centroid.

Both measures satisfy the following basic requirements farlinearity measure of open
curve segments.

They vary through the interval (0; 1];
They equal 1 only for straight line segments;

They are invariant with respect to translation, rotation ard scaling transformation on
a curve considered.

The straightness index is simple to compute and its behaviowan be clearly predicted,
i.e. we can see easily which curves have the same linearjti®asured by the straightness
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index. It is obvious that those curves whose end points and enlength coincide, have the
same straightness index. But the diversity of such curves lsige and the straightness index
cannot distinguish among them, which could be a big drawbadh certain applications (of

course, in some applications it could be a desirable propgrt Some illustrations using simple
polygonal curves are shown in Figure 1.
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Figure 1: Five displayed curves (solid lines) have di ereninearities measured by the new
measureL (C). The straightness index has the same value, equal teZ for all ve curves.
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Figure 2: The family of polylines FPF, in (a), all produce a constant straightness index,
while P varies through the ellipse displayed. The graph in (b) plots (C), whereC=  FPF
is the same polyline as in (a), and =\ FOP (O =(0;0) is the origin).

Another example is given in gure 2 which shows two line segmisinconstructed from the
foci of an ellipse F and a point on the ellipseP. Since the ellipse has the property that
~ FP + PF remains constant (whileP varies through the ellipse), the straightness index of
the polyline FPF has constant value (because the polyline has constant pedatar and
xed endpoints). The proposed linearityL (C) (see De nition 2, in Section 3, for a precise
de nition) varies as shown in the graph computed in gure 2b the angle is determined by
the points F, O = (0;0), and P). This construction is used to generate a further example in
gure 3 in which the spikes of the shape are modi ed such thatlethe shapes have constant
straightness values but varying linearities are measured Ibhe new measurd. (C).

Of course, for any shape measure (including the linearity msure proposed in this paper)
which maps the set of all planar curves onto the interval (@], there must be in nitely many
curves C satisfying L (C) = |y, for some constanty 2 (0;1). For example: the new linearity
measure assigns the same value to all curves whose sum of tis¢éadces of the end points
to the curve centroid is the same, the measure from [36] assgthe same value for all the
curves having the same value of the boundary-based rst Hu mant invariant analogue,
etc. This cannot be avoided. Some examples are given in gu#e for which not only
the proposed linearity measure, but also the straightnesadex produces the same value.
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0.323 0.324 0.327 0.328 0.329

Figure 3. The ve displayed curves have di erent linearitis measured by the new measure
L (©). The straightness index has the same value, equal to 0.2@9 &ll ve curves.

While there will exist examples of sets of shapes that have arnstant linearity measure but
di ering straightness index values, these are not easy to sthesise since this would require
constructing two or more shapes with the same perimeter lethg the same distance between
centroid and endpoints, but di erent distances between erbints.

0.429 0.429 0.429

Figure 4. The linearities measured by the new measutgC) and the straightness index all
produce identical values for the three displayed curves.

Another example comparing straightness and(C) is given in gure 5. Four examples of
hands have each been modi ed by cropping increasing amoumtsone end of the curve. As
can be seen, the straightness measure could be understoodnase sensitive thanL (C) to
the position of the curves' endpoints. The ranking by (C) groups all the di erent versions
of each of the four models, except for the middle two shapes gure 5. By contrast, the
ranking by the straightness index/measure is such that no guping of three instances of any
of the four hand shapes is formed, and only one grouping of twtstances occurs.
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linearity L (C)
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straightness

Figure 5: Hand outlines (with varying amounts of cropping at ne end) ranked according to
linearity or straightness.

In this paper we de ne a new linearity measuré. (C) for open curve segments. The new
measure satis es the basic requirements (listed above) whi are expected to be satis ed

4



for any curve linearity measure. Sincé (C) considers the distance of the end points of the
curve to the centroid of the curve, the new measure is also gas compute. The fact that

it uses the curve centroids implies that it takes into accoura relative distribution of the
curve points. The method also has a straightforward extermi to 3D.

The paper is organized as follows. Section 2 gives basic déens and denotations.
The new linearity measure for planar open curve segments rgroduced in Section 3. An
extension to P curves is content of Section 4. Several experiments whictugtrate the
behaviour and the classi cation power of the new linearity masure are provided in Section 5.
Concluding remarks are in Section 6.

2 De nitions and Denotations

In this paper we deal with both 2 and 3D curve segments.

Without loss of generality, throughout the paper, it will beassumed (even if not men-
tioned) that every curveChas length equal to 1 and is given in an arc-length parametaton.
l.e., planar curve segmenC is represented as:

X = X(S); y = y(s); where s2 [0;1]

The parameters measures the distance of the pointx(s); y(s)) from the curve start point
(x(0); y(0)); along the curveC.
A 3D curve segmentC is represented as:

X = X(8); y = y(S); z=z(s); where s2 [0; 1]

Analogously as in the planar case abovemeasures the distance of the poink(s); y(s); z(s))
from the curve start point (x(0); y(0); z(0)); along the curveC.
The centroid of a given planar curveC will be denoted by K¢;yc) and computed as

z Z
(Xciye) = X(s) ds;  y(s) ds : (1)
C C
The centroid of a given ® curve C will be denoted by Kc; yc; zc) and computed as
Z Z Z
(XciYeize) = x(s) ds; y(s)ds; y(s)ds : 2)
C C C

Taking into account that the length of Cis assumed to be equal to 1, we can see that the
coordinates of curve centroid, as de ned in both (1) and (2)are the average values of the
coordinates of all the curve points.

As usual,d,(A; B) will denote the Euclidean distance between the pointd and B.

As mentioned, we introduce a new linearity measurke(C) which assigns to each curve
C a number from the interval (G 1]. The curveC is assumed to have the length 1. More
precisely, any appearing curve will be scaled by the factohich equals the length of it before
the processing. So, an arbitrary curv€&, would be replaced with the curveC de ned by

! )
1 X y .
- R~ = R - RY -
C s G O o ds j (Xy)2C,
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i.e. in 3D with

( ! )
1 X y z .
cC=R— G = R - R - R j (xy;2) 2Cy
Cﬁds Ceds Cﬁds Cﬁds

Shape descriptors/measures are very useful for discrimtrman among the objects { in
this case open curve segments. A particular attention can lggven to the shape descriptors
having a clear geometric meaning, because shape measursgasd to such descriptors have
a predictable behaviour. This is an advantage because thatability of a certain measure to
a particular shape-based task (object matching, object dai cation, etc) can be predicted to
some extent. On the other hand, a shape measure assigns tdeamject (here curve segment)
just a single number. In order to increase the performance cbmputational tasks based on
the shape characteristics comparison, a common approachasassign a graph (instead of a
number) to each object. E.g. such approaches de rehape signaturedescriptors, which are
also “graph' representations of planar shapes, often usedshape analysis tasks [10, 37].

We will apply a similar idea here as well. To compare object®usidered we usénearity
plots (the approach is taken from [36] and more details can be fourtderein) to provide
more information than a single linearity measurement. Thedea is to compute linearity
incrementally, i.e. to compute linearity of sub-segmentsfd determined by the start point
of C and another point which moves along the curv€ from the beginning ofC to the end of
C. The linearity plot P(C), associated with the given curveC is formally de ned as follows.

De nition 1  Let C be a curve given in an arc-length parametrizatiorx = x(s); y = y(s);
(he. x = X(8);y =Y(s); z= 2z(s) in 3D) and s 2 [0;1]: Let A(s) be the part of the
curve C bounded by the starting poin{x(0);y(0)) (i.e. (x(0);y(0);z(0))) and by the point
(X(8);y(s)) 2 C (i.e. (x(s);y(s);z(s)) 2 C). Then, for a linearity measure L ; the linearity
plot P(C) is de ned by:

P(C) = f(s;L(A(s)) | s20; 1o (3)

We also will use thereverse linearity plotP,e, (C) de ned as:
Prev(C) = f(siL(Arev(1 5)) | s2[0;1]g; (4)

where Ay (1 S) is the segment of the curveC determined by the end point &(1);y(1))
(i,e. (x(1);y(1);z(2)) in 3D) of C and the point which moves from the end point ofC, to
the start point of C, along the curveC. In other words, B, (C) is the linearity plot of the
curve C° which coincides with the curveC but the start (end) point of Cis the end (start)
point of C% A parametrization of C° can be obtained by replacing the parametes, in the
parametrization of C; by a new parameters® such thats°=1 s. Obviously such a de ned
s? measures the distance of the pointx(s9; y(s9) (i.e. (x(s9;y(s9; z(s9)) from the starting
point (x(s°=0);y(s’=0)) (i.e. (x(s°=0);y(s’=0);z(s’= 0))) of Calong the curveC® as
s?varies through the interval [Q 1]:

For the sake of simplicity, in the experimental section (Sé&on 5), the function which
corresponds to the linearity plot PC) will be denoted by PC)(s); with s 2 [0; 1]. Similarly,
the function which corresponds to the reverse linearity ptd® ., (C)(s) will be denoted by

Prev (O)(9).



3 New Linearity Measure for Open Curve Segments

In this section we introduce a new linearity measure for opgslanar curve segments. In the
next section we extend the results to the3 case.

We start with the following theorem which says that amongst lhcurves having the same
length, straight line segments have the largest sum of distees between the curve end points
to the curve centroid. This result will be exploited to de nethe new linearity measure for
open curve segments.

Theorem 1 Let C be an open curve segment given in an arc-length parametrigatx =
X(s); y = y(s); and s 2 [0; 1]: The following statements hold:

(@) The sum of distances of the end points(0); y(0)) and (x(1);y(1)) from the centroid
(Xc; Yo) of the curveCis bounded from above by, i.e.:

d2((x(0);¥(0)); (xciye)) + da2((x(1);y(1)); (Xci Ye)) L ()

(b) The upper bound established by the previous item is reachgdhe straight line segment
and, consequently, cannot be improved.

Proof. Let Cbe a curve given in an arc-length parametrizationx = x(s) and y = y(s);
with s 2 [0; 1], and let S = (x(0);y(0)) and E = (x(1);y(1)) be the end points ofC. We can
assume, without loss of generality, that the curve segmefitis positioned such that

the end pointsS and E belong to thex-axis (i.e. y(0) = y(1) = 0), and
S and E are symmetric with respect to the origin (i.e. x(0) = x(1));

as illustrated in Fig. 6. Furthermore, letE = fX = (x;y) j d2(X;S)+ dx(X;E) = 1gbe

Figure 6: Denotations in the proof of Theorem 1 are illustrad above.

an ellipse which consists of points whose sum of distanceghe points S and E is equal to
1: Now, we prove(a) in two steps.



(i) First, we prove that the curve Cand the ellipseE do not have more than one intersection
point (i.e. Cbelongs to the closed region bounded ).
This will be proven by a contradiction. So, let us assume thentrary, that Cintersects
Eatk (k 2) points: (X(s1);Y(s1)); (X(S2):¥(S2)); ... (X(Sk);Y(Sk)); where 0< s; <
Sp<:iii<sk< L Let A=(x(s1);y(s1)) and B = (x(sk); y(Sk)):
Now, by using the triangle equality and the fact that the lengh of any path between
two points is bounded below by the Euclidean distance betwee¢hese two points, we
derive the contradiction 1< 1; as follows:

1 = dyS;A)+ d(AE) < dy(S;A)+ dy(A;B)+ dy(B;E)
Z Z Z Z
ds+ ds+ ds= ds=1: (6)

SA AB gE c

So, C and E do not have more than one intersection point, implying thatC lies in the
closed region bounded b¥:

(i) Second, we prove that the centroid ofC does not lie outside ofE. The proof follows
easily, from the following two remarks:

{ The convex hull CH(C) of Cis the smallest convex set which include€ and,
consequently, is a subset of the region bounded By

{ The centroid of C lies in the convex hullCH (C) of C because it belongs to every
half plane which includesC (the intersection of such half planes is actually the
convex hull of C (see [31]));

Finally, since Xc;yc) 2 CH(C) region_boundedby E is proven, we deduce

d2((x(0);¥(0)); (Xci ye)) + d2((x(1); y(1)); (Xcy ye)) L

This establisheg(a) .
To prove (b) it is enough to notice that if Cis a straight line segment of length 1then
the sum of its end points to the centroid ofCis 1

Now, motivated by the results of Theorem 1, we give the followy de nition for a new
linearity measureL (C) for open curve segments.

De nition 2  Let C be an open curve segment. Then, the linearity measut€C) of C is
de ned as the sum of distances between the centrdixk; yc) of C and the end points ofC.
l.e.:

L(©) = d2((x(0);¥(0)); (Xciyc)) + da((x(1);¥(1)); (Xc; Ye)) (7)
wherex = X(S); y = y(s); s2 [0; 1] is an arc-length representation ofC.

The following theorem summarizes desirable properties b{C).
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Theorem 2 The linearity measureL (C) has the following properties:
(i) L(C 2 (0;1]; for all open curve segment€,
(i) L(©O =1 , C is a straight line segment;

(i) L(C) is invariant with respect to the similarity transformatiors.

Proof. Item (i) is a direct consequence of Theorem 1.

To prove (ii) we will use the same notations as in the proof of Theorem 1 and/g a

proof by contradiction. So, let assume the following:

{ the curve Cdi ers from a straight line segment, i.e.,d»(S;E) < 1; and

{ the sum of distances between the end points, and the centdoof C is 1, i.e., (Xc; Yc) lies
on the ellipseE = fX =(x;y) jda(X;S)+ d(X;E)=10:

Further, it would mean that there are points of the curveC belonging to both half-planes
determined by the tangent on the ellipsé& passing through the centroid ofC. This would
contradict the fact that C and E do not have more than one intersection point (what was
proven as a part of the proof of Theorem 1).

To prove item (iii) it is enough to notice that translations and rotations do notchange
the distance between the centroid and the end points. Siné€2is represented by using an
arc-length parametrization: x = x(s); y = y(s); with s 2 [0; 1]; the new linearity measure
L (© is invariant with respect to scaling transformations as we

4 Linearity of Open Curve Segments in 3D

In this section we extend the linearity measuré (C) of planar curve segment£to 3D curve
segments. As in the second section which introduces basic digons and denotations, we
will use the same notation:C for the 3D curves andL (C) for their linearity measures, but
this will not cause any confusion. Again, we will assume thatlacurves C have length 1 and
are represented in an arc-length parametrization = x(s); y = y(s); z = z(s); s 2 [0; 1];

where the parameters is the distance between the curve start pointx(0); y(0); z(0)) and

the point (x(s); y(s); z(s)) 2 C along the curveC: The centroid (Xc; Yc; zc) of Cis de ned as
in (2).

The following theorem is an analogue of Theorem 1.

Theorem 3 Let C be an open curve given in an arc-length parametrization= x(s); y =
y(s); z = z(s) and s 2 [0; 1]: Then the following statements hold:

(@) The sum of distances of the end pointS = (x(0); y(0); z(0)) andE = (x(1);y(1); z(1))
from the centroid C¢ = (Xc; Yc; zc) of Cis bounded from above by, i.e.:

d2(S;Cc) + d2(E;Co) 1 (8)

(b) The upper bound established by (8) is reached by the strailji® segment and, conse-
quently, cannot be improved.



Proof. We use the same idea and denotations as in the proof of Theordm So, let
S = (x(0);y(0);z(0)) and E = (x(1);y(1); z(1)); and let C be positioned such that

{ the points S and E belong to thex-axis, and

{ the points S and E are symmetric with respect to the origin.

We give a short proof of(a) because of an analogy to thel2 case. The proof ofb) is
omitted since the statement of(b) is easy to verify.

(@ Let E= fX = (x;y;2) j da(X;S) + do(X;E) = 1g. Similarly as in 2D case, we
can prove that the curveC and the ellipsoidE do not have more than one intersection point
(again, a proof by contradiction can be given, by using an glkoid instead of the ellipse).

Furthermore, as in the proof in the D case,CH (C) is a subset of the region bounded
by E. Also, (Xc;Yc;zc) 2 CH(C) because the centroid ofC lies in every half space which
includesC. The intersection of such half spaces is actually the convexlhof C.

Finally, since the centroid ofC lies inside the region bounded b¥; the sum of its dis-
tances to the end points is not bigger than 1, which provds) .

Based on the previous theorem, we extend De nition 2 to operuve segments in B:

De nition 3  Let C be an open curve segment iBD. Then, the linearity measureL (C) of
Cis de ned as the sum of distances between the centrdid; yc; zc) of C and the end points
of C.

The desirable properties ot (C) listed in Theorem 2 hold also in B: We give the next
theorem without proof because it is identical to the proof oTheorem 2.

Theorem 4 Let C be an open curve segment iBD. The following properties hold:
(i) L(O 2 (0;1];
(i) L(©O =1 , C Iisa straight line segment;

(i) L(C) is invariant with respect to similarity transformations.

5 EXperiments

In this section we provide several experiments in order tdultrate the behaviour and e -
ciency of the linearity measure in both B and 3D.

First experiment ( 2D): lllustration.  To demonstrate how various shapes produce
a range of linearity values, gure 7 shows handwritten digg (0{9) from the training set
captured by Alimaylu and Alpaydin [2] plotted in a 2D feature space of linearityL (C)
versus rectilinearity R 1(C) [34]. In gure 7a the rst two samples of each handwritten digit

The rectilinearity of a shape S is calculated by Zunt and Rosin [34] as follows:
. .
—*3 grgoa;]% 2.2 where P,(S) is the perimeter of S under the L, norm, and P1(X; ) is
the L, perirﬁeter obtained by rst rotating S by the angle with the origin as the centre of rotation.
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Figure 7: Handwritten digits ordered by linearity and rectilnearity. (a) Two samples of each
digit; (b) All training digits 0, 2, 7 plotted as red, green, blue points.

is shown. Despite the variability of hand writing, most pais of the same digit are reasonably
clustered. The major separations occur for:

{ \2" since only one instance has a loop in the middle;

{ \4" since the instance next to the pair of \7"s is missing thevertical stroke and con-
sequently looks very similar to a \7" rotated by 180;

{ \5" since the uppermost right instance is missing the horiantal stroke.

From the full training set of 7485 characters three digits & selected (2267 samples) and
plotted in gure 7b in order to show more comprehensively thalinearity can be used to
provide a reasonable separation of classes in feature spa®# course, by augmenting the
feature vector better classi cation can be obtained. For istance, using all 10 digits from the
full training set, and a set of seven Hu moment invariants [14Jnd six further moment invari-
ants [21] as features to train a nearest neighbour classi &ith Mahalanobis distances, the
classi cation accuracy on the independent test set (3493dgiis) is 86.5%, which is improved
by adding linearity measureL (C) as a feature to an accuracy of 90.0%. The straightness
index was also evaluated, and improved classi cation acagy to 91.50%. Examining the
mismatches encountered in the classi cation step when ugjtinearity reveals that these are
mainly due to some instances of \5" and \0" having very similalinearity values, whereas
their straightness values are more distinct (see gure 8). fourse, there are also examples
in which the linearity values are more discriminative than e corresponding straightness
values, e.g. the \6" and \1" in gure 8, but these are less fregent in this data set.

Figure 9 provides some examples of pairs of curves which pued identical (up to 6
decimal places) linearity or straightness values. From theombined set of 10978 digits, there
were 114 pairs with identical linearity values, and 109 parhad identical straightness values
(i.e. about 2%). Note that these sets did not overlap; i.e. nogir of digits had both identical
linearity and straightness values.
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o0 o0 bL 61

linearity: 0.373 0.348 0.422 0.427 0.411 0.355 0.416 0.288
straightness: 0.368 0.074 0.421 0.039 0.298 0.306 0.232880.2
misclassi ed by linearity misclassi ed by straightness

Figure 8: Misclassi cation of digits using moments and lirerity or moments and straight-
ness. For each pair of digits the rst digit is the test shaperad the second digit is the best
match from the training set.

Fy AT) 5 )

0.176291 0.176291 0.300917 0.300917 0.500180 0.500180 02861T 0.702861
0.044741 0.048905 0.299453 0.297275 0.467512 0.476084 3748H 0.633180

D) D97 6 |65

0.404425 0.260906 0.352286 0.380776 0.401095 0.407330 9580k 0.630343
0.000000 0.000000 0.244700 0.244700 0.400808 0.400808 278U0% 0.627875

Figure 9: Examples of pairs of curves which produce identidaip to 6 decimal places) values
for linearity (upper row) or straightness (lower row). Belav each digit is its linearity value
followed by its straightness index.

For each of the 10 classes of digits the correlation betwedretlinearity and straightness
values that were computed for all the training and test data i@ shown in table 1. It can
be seen that linearity and straightness are highly correlat for many digits, which is to
be expected since they are measuring the same shape charatte, even thought they are
capturing di erent aspects of it. In contrast, for those digts which are made up from closed
(or in practise, almost closed) curves, and therefore hava linearity and straightness values,
the two measures are essentially uncorrelated.

|digit|| o | 1 [ 2 | 3 | 4 | 5 | 6 | 7 | 8 [ 9 |
| [ -0.075] 0.832] 0.832] 0.945] 0.878] 0.984] 0.949] 0.959] -0.022[ 0.925

Table 1: Pearson's correlation coe cient between the linearity and straightness measures
for 10978 handwritten digits.

Second experiment ( 3D): lllustration. Figure 10 demonstrates the measure on some
simple synthetic D curves, and it can be seen how the measured linearltyfC) decreases as
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the curves become more convoluted (increasing abscissahe graph). In particular see the
Hilbert curve example in which curve's complexity increasesubstantially as the number of
levels increases. In addition, when the helix is squasheaiad its length then the linearity
decreases as expected (dotted line versus solid line in gut0(a).

e
1 10
number of cycles I

o
o

linearity

o
-

o

mber of fevels
number of levels ™
\\

(b)

Figure 10: Linearity computed for ® curves. (a) helix: x(t) = sin(t);y(t) = cos(t);z =t
(solid line) and x(t) = sin(t);y(t) = cos(t); z = t=10 (dotted line); (b) Hilbert curve.

Figure 11 compares the behaviour of the linearity and stragness values as increasing
lengths of helix are traced out. It can be seen that the stramgness index is sensitive to the
varying position of the endpoint, producing an undesirablescillating pattern, whereas the
measured linearityL (C) decreases monotonically as the helix extends. This demtasion
of the sensitivity of the straightness index reinforces thprevious example given in gure 5.

1.0-
() . .
5 — linearity
§ 0.5 — straightness
1S
00 1 10

number of cycles

Figure 11: Linearity and straightness computed for 3D helix

Third experiment ( 2D): Filtering edges.
Figure 12 shows the application of the linearity to lteringedges. The edges were ex-

tracted from the images using the Canny detector [7], conrted into curves, and then
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Figure 12: Filtering connected edges by linearity. Left/ st column: connected edges (min-
imum length: 25 pixels); second column: sections of curvetlwiL (C) < 0:5; third column:
sections of curve withL (C) > 0:9; fourth column: sections of curve with_(C) > 0:95.
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thresholded according to total edge magnitude and length4P Linearity was measured in
local sections of curve of length 25, and sections above (@ldw) a linearity threshold were
retained. It can be seen that retaining sections of curve witL (C) < 0:5 nds small noisy
or corner sections. Keeping sections of curve with(C) > 0:9 or L (C) > 0:95 identi es most
of the signi cant structures in the image.

(a) (b)

Figure 13: Reconstructing the image from its Itered edges(a) original intensity image;
(b) image reconstructed using all connected edges (minimulength: 25 pixels); (c) image
reconstructed using sections of curve with (C) > 0:95.

Experiments are also shown in which Poisson image reconstion is performed from
the image gradients [22]. In gure 13(b) all the connected g@&s with minimum length
of 25 pixels (shown at the bottom of the rst column in gure 12 have been used as a
mask to eliminate all other edges before image reconstruarti was performed. Some ne
detail has been removed in the reconstructed image; this is be expected since small and
weak edges have been removed in the pre-processing stage.efimearity Itering is also
applied to these pre-processed edges, and only edges cpoeding to sections of curve with
L(C) > 0:95 are used (i.e. the original edge map is masked with the edgehown at the
bottom of the fourth column in gure 13), then the image recostruction retains only regions
that are locally linear structures (including sections ofdrge circular objects).

Fourth experiment ( 2D): Signature veri cation. For the second application we use
data from Munich and Perona [20] to perform signature veri ation. The data consists of pen
trajectories for 2911 genuine signatures taken from 112 getts, plus ve forgers provided
a total of 1061 forgeries across all the subjects. Examplek anrresponding genuine and
forged signatures are shown in gure 14. To compare signags we use the linearity plots
de ned by (3) and (4) to provide more information than a singé linearity measurement.
Linearity plot examples are in gure 15 (additional example for linearity plots based on the
3D linearity measure are in gure 17 given below).
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Figure 14: Examples of genuine (leftmost three) and forgeddhtmost three) signatures.
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Figure 15: Examples of linearity plots for the genuine sighares (leftmost two columns) and
the forged signatures (rightmost two columns) in gure 14. Inearity plots are provided for
2D versions of the signatures.

A straightforward idea is that the quality of match between gynaturesG and G is mea-
sured by the di erence/distance between the linearity plat P(G) and P(G) (i.e. functions
P(G)(s) and P(G)(s), with s 2 [0; 1]). This di erence can be measured by the area bounded
by the linearity plots P(G) and P(G) and by the vertical liness = 0 and s = 1. In other
words, the di erence between signature§; and G can be measured by the quantity

Z,
. iP(G)(s) P(G)(s)j ds: 9)
5=
But such a measure, for the di erence between signatur€s and G; is not most appropriate
in the situation considered here. Note that the linearity plts tend to level o by about
s =0:5. This is a consequence of it becoming progressively legslii that a shape remains
straight along its complete length® Since this means that the latter part of the linearity plots
consequently contain limited discriminatory power we alsoonsider traversing the curve in
reverse direction, i.e. by considering the reverse linetyriplots P, (C) and P, (G): The
di erence/distance of two signaturesG, and G is now determined as a combination of the
two matches (see (9)):

area (P(Cl)| P(Q)) +area (Prev(cl); Prev(CZ)) =

2Rather than measure the di erence between points in the linarity plots at directly corresponding arc
lengths, we also considered performing dynamic time warpig on pairs of linearity plots to align them more
closely to each other. However, we found this to degrade theesults rather than improve them. In addition,
the computation time substantially increased.

3Not all shapes will have linearity plots that level o like th e examples in gure 15. Consider for instance
a curve that starts at one end as a spiral, and then continuesrito a long straight line. Traversing from the
spiral end, the linearity plot will initially sharply decre ase, and then (once the straight section is encountered)
monotonically increase.
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YA 1 YA 1
. JP(C)(s) P(G)(9)jds + . JPrev(G)(8)  Prev(G)(9)j ds (10)

and we achieve better results by combining the two linearitplot di erences.

Nearest neighbour matching is then performed on all the datasing the leave-one-out
strategy. Signature veri cation is a two class (genuine orake) problem. Since the identity
of the signature is already known, the nearest neighbour nehting is only applied to the set
of genuine and forged examples of the subject's signature.utQorevious results using the
linearity measure de ned in [36] achieved 93.1% accuracyhieh is now improved. Comput-
ing linearity of the 2D signatures usingL (C) produces 97.2% accuracy. Note that applying
dynamic time warping on pairs ofL (C) linearity plots resulted in 96.0% accuracy, showing
the ine ectiveness of warping in this context. For comparien, linearity was replaced by
straightness, giving 96.9% accuracy, showing th&t(C) provides a small improvement.

Fifth experiment ( 3D): Signature veri cation { improved accuracy. A further
increase in accuracy in the signature veri cation task is dhined by assuming that the
data samples along each signature were captured uniformlyeo time, and augmenting the
2D coordinates with time as the third dimension. That is, the d&a (x¢;V;) is treated as
(X¢;¥t; t), where is a scaling factor, and the B version of L(C) is applied. Two D
signature examples are displayed in gure 16. The non-unifoity in the third dimension

450
400
350
300
250
200
150
100 -

Figure 16: I versions of the leftmost signatures in gure 14.

can be most easily seen in the jump at the beginning of eachrsadure.

In this experiment we use linearity plots assigned to[3 signatures. Figure 17 demon-
strates the linearity plots for the signatures shown in gue 14. The plots in the rst (second
respectively) column contain the three genuine signatur&@®m the upper (lower respectively)
row in gure 14. The linearity plots in the third and fourth columns contain the forged ver-
sions. In general they display uniformity within each indiidual/writer, although the greater
variability in the signatures in the second row of gure 14 ige ected in the correspond-
ing (i.e. 2nd and 4th) linearity plots. Note that the inclusian of temporal information has
increased the consistency of the second genuine set of sigres (compare the 2nd plot in
gure 15 versus the 2nd plot in gure 17).
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Figure 17: Examples of linearity plots for genuine signates (leftmost two columns) and
forged signatures (rightmost two columns). Linearity plas are provided for ® versions of
signatures, as displayed in gure 16.

As in experiment 4, signature veri cation is carried out usig nearest neighbour matching
of each signature to the set of genuine and forged examplestadt subjects signature. This
time the linearity plots are computed from the ® version of the signature data. The accu-
racy of 97.2% obtained by computing linearity of the R signatures usind- (C) is marginally
improved. With = 0:2 the signature veri cation accuracy becomes 97.8%, which ¢lose to
the accuracy of around 99% achieved by Munich and Perona'sstgm that was speci cally
designed for signature analysis.

Sixth experiment ( 3D): Classifying 3D brain tracts.  Four sets of brain bre tracts,
obtained by tractography from di usion tensor imaging (DTI) scans of four subjects, are
analysed. Each scan consists of bundles of 3D curves (betwd282 and 2683 tracts per
subject), which were semi-automatically labelled into efd categories: left cingulum, right
cingulum, corpus callosum, corticospinal, left fornix, ght fornix, uncinate fasciculus, ushape
(tracts connecting the cerebellar peduncles through the ps { these do not correspond to
a standard anatomic structure, but are reproducible); seegure 18. 3D line moments were
computed for each tract as a basic feature. Since subject&dus are in a standard position
when scanned, moment invariants were not necessary, and tee raw moments up to second
order were used. Classi cation was performed using an SVM [8ith a Radial Basis Function
(RBF) kernel, and leave-one-out testing. Using just the monm features, the classi cation
rate was 85.34%, which improved to 89.24% when the SVM used bdahe moments and
linearity. In comparison, using moments and straightnessistead ofL (C) only produced a
classi cation rate of 86.33%. Since the linearity and strghtness measures provide somewhat
di erent information they can be combined into the feature ector along with the moments.
This produced a small improvement, achieving a classi cain rate of 91.27.

Seventh experiment (2D): The performance assessment in the p resence of

noise.

In this experiment we assess the performance of the new lingameasure in the presence
of noise. The problems of sensitivity (some people would pee to say \non-robustness”
instead of \sensitivity") of the curve based methods in imag processing and computer
vision tasks are well recognized. The performance of curvased methods, depending on
the noise level, can be strongly a ected. On the other handhe area based methods (in
which all shape points, both boundary and interior ones, ar@volved in the computation)
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Figure 18: 3D tracts for four subjects with ground truth colar coding.

are more resistant to noise, or in general, small boundaryfdemations (like protrusions and
intrusions). Of course, there are applications where preénce can be given to either of these
methods. For example, when working with low quality data, te preference would be given
to the robust methods (i.e. area based ones). On the other lhnwhen working on high
precision tasks the sensitivity property is preferred. Foan analysis of the behaviour of the
new measure in the presence of noise, we will use the same dshas used in the First
Experiment, captured by Alimaglu and Alpaydin [2] (consistng of 10978 handwritten digits
(0-9).

We start with a small sample set, displayed in Figure 19. Theedigits are distorted by
adding increasing amounts of normally distributed noise teach coordinate.

As the curves become more sinuous their linearity values dease as expected, and do so
in a stable manner. It can be seen that the addition of noise tihe digits \1" and \4" has
a similar e ect on the straightness index. The digit \0" measired by the straightness index
has shown the highest resistance to the presence of noiseicwhs actually as expected. In
the ideal situation the digit \0" is represented by a closed urve, whose straightness index
is equal to 0 and should not be changed after noise is added.tle presented situation, the
digit \0" appears as a curve whose end points almost coincidienplying a very low (close to
0) value, which does not change much in the presence of noise.

The results of further analysis are demonstrated in gure 2@hich shows test set clas-
si cation accuracy when noise has been added to both the trang and test data. We note
that accuracy is not unduly a ected by the addition of even shstantial levels of noise. Both
linearity and straightness provide similar levels of accacy, and the combination of the two
measures produces a substantial increase in classi catiaocuracy. An overall higher classi-
cation accuracy by the straightness index can be explainday the fact that the straightness
measure classi es \0" and \8" with a better accuracy, becawsboth digits \0" and \8" (in a
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Figure 19: E ect of increasing amounts of noise on the measur linearity (on the left) and
straightness values (on the right) for three digits: 0, 1, ah4.

perfect situation) are presented by closed curves and thetraightness index is 0 { i.e., very
close to zero if the selected data set is used. Since both it a straightness value close to
zero then the classi cation rate for these two digits will aproach 50%, which is higher than
the classi cation rate obtained for the other digits?

It is very important to notice that, especially for relatively small noise levels, the combi-
nation of the two measures produces a substantial increasedlassi cation accuracy. This
shows that these two measures are compatible, and fairly iplendent. In simple words, the
message from this experiment isBoth linearity and straightness index are needed. The use
of one does not preclude the use of the other.

Table 2 shows the confusion matrix for the classi cation laéls for the original (noise

4The straightness measure gives 54% and 45% classi cation tes for the digits \8" and \0" respectively,
if no noise added. In a presence of noise, for = 10, these classi cation rates are 53% and 56%.

~linearity
= straightness
-+ linearity & straightness

accuracy (%)

00 5 1o 15 20

noise € )

Figure 20: E ect of increasing amounts of noise on the accuma of classifying 3493 test
digits.
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Assigned Classes

\ T O J1 2345716 [7] 8] 09 [total ]
0 32 6 8 2 2 3 5 1 28 13 100
1 10 | 24| 9 10 | 6 12 7 6 8 9 100
3 2 9 11 (12 | 11 | 7 9 13 4 7 17 100
ﬁ 3 1 11 | 11 | 16 | 12 15 14 7 1 13 100
[s) 4 1 10 | 4 10 | 19 13 9 28 0 5 100
o 5 2 14 | 10 | 14 | 12 | 17 11 | 13 1 6 100
E 6 7 10 | 14 | 12 | 8 9 15 4 7 15 100
7 3 7 5 7 23 7 4 36 1 6 100
8 29 4 10 1 3 3 10 0 28 13 100
9 12 8 16 | 11 | 6 7 15 4 7 15 100

[fofal || 106 | 99 [ 94 | 98 [ 94 | 103 | 102 | 88 | 110 | 105 | ]

Table 2: Confusion matrix for classi cation of test digits ly the proposed linearity measure.
Values have been scaled so that row values before roundinginsto 100. Note that columns
totals are also computed from the original data before roumal.

free) test data® As expected, there is substantial confusion between certaitasses (e.g. \0"
and \8"; \2", \6" and \9"; \4" and \7"). When noise ( = 4) is added to the data then,
as expected, there is further confusion between additionelasses, see the confusion matrix
in table 3. Of course, as gure 21 demonstrates, the furthedded noise ( = 10) has made
many instances from di erent classes look similar to each foér.

Assigned Classes

\ [T O[T 1 7 271838 475 T[6]7][87]09|]toa |
0 26 | 10 | 10 | 4 2 4 9 23 [ 11 100
1 11 | 11 | 10 | 8 | 13 | 11 |10 | 13| 7 | 6 100
@ 2 10 9 12 [ 11| 10 | 10 | 12| 6 | 6 | 15 100
@ 3 5 13 16 | 12 | 10 15 [ 10 | 9 4 7 100
O 4 3 11 8 (15| 13 | 16 | 8 |21 | 1 | 4 100
o 5 5 15 | 10 |12 | 15 | 10 | 7 | 13| 4 | 10 100
= 6 13 | 11 | 13 | 10| 8 11 |14 | 5 | 6 | 10 100
7 5 11 3 9 [ 19 | 13 | 7 | 25| 2 | 5 100
8 23 8 11 | 4 5 3 7 1 [24] 13 100
9 15 8 13 | 6 5 11 | 12 | 3 | 10 | 18 100

[fotal || 115 | 107 | 106 | 89 | 100 [ 102 [ 96 | 98 | 87 | 99 | ]

Table 3: Confusion matrix for classi cation of test digits with added noise ( = 4) by the
proposed linearity measure. Values have been scaled so thaw values pefore rounding)
sum to 100. Note that columns totals are also computed from theriginal data before
rounding.

5The row and columns totals were computed from the original déa which has subsequently been rounded
for presentation, which explains the apparent small discreancies in the totals.
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Figure 21: Misclassi ed test digits with added noise = 10 (the true class/assigned class is
shown underneath).

Eighth experiment (2D): Combination of open curve and area ba sed features.

The nal experiments demonstrates that standard area basedescriptors can be com-
bined with our shape measure applied applied to open curvédle use the data set consisting
of 808diatoms from the ADIAC project, which have been manually labelled ind 38 classes.
Previously we have classi ed this data using several convgxmeasures both alone and in
combination with the following set of descriptors [35]: caularity, ellipticity, rectangularity,
triangularity [25] aspect ratio, compactness, convexitygccentricity, the rst four rotation,
translation, and scale moment invariants, four rotation, tanslation, and scale moment in-
variants [28], the rst three a ne moment invariants [11]. For each diatom we have both the
contour of its outer boundary and also the diatom's ornameation, which consists of zero or
more (mainly open) curve sections in the interior, see gurg2 for examples. We have rerun
the classi cation task from [35], but in the current experinent, in addition to the convexity
measures, the new linearity descriptor is applied individally to a diatom's interior curves,
and for each diatom the weighte® mean and standard deviation of these linearity values
is used as descriptoré. The remaining shape descriptors, which are a mixture of aread
boundary based, are applied to the outer boundaries. Clagsition is performed using the
nearest neighbour classi er with Mahalanobis distances.

As table 4 shows, the combination of linearity information fom the open curves with the
various area based and boundary based descriptors compufiedm the shape's boundary
provides a consistent improvement in classi cation accucg.?

6 Conclusion

This paper has described a new shape descripto(C) for computing the linearity of open
curve segments in @ and 3D. Through the paper we have assumed that all curves have
unit length and we then de ne the linearity measure as the surof distances of the curve end
points to the curve centroid. Of course, the assumption abothe unit length of the curves
considered is not a restriction in terms of applications inmage processing and computer

5The interior curve's perimeter are used as the weighting tem when calculating mean and standard
deviation of linearity.

"For diatoms with no interior curves the mean and standard devation linearity values are set to zero
(there was a single such diatom in the set of 808).

8The classi cation results using convexity alone di er from the results reported in [35] since a di erent
classi er is used in this paper which has improved performane.
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Figure 22: Diatoms ranked in increasing mean linearity of #ir internal contours. The top

shows the original images, the middle row shows each diat@éxternal contour, and the
bottom row shows the internal contours.

I 1 G(S) | G(S) | Gr(S) |

convexity 16.83| 11.26| 16.83
convexity plus interior linearity 37.25| 32.30| 39.98
convexity and other features 87.75| 86.88| 87.75

| convexity plus interior linearity and other features| 88.99| 90.47| 88.24 ||

Table 4: Classi cation accuracies for 808 diatoms using ceexity plus additional shape fea-
tures descriptors. The following convexity measures wersed: G(S) = areas)

_ aregconvex hullsy’
_ areaperimeters))

vision tasks. Indeed, if it is preferred to avoid such an assytion, then the new linearity
measurel (C) can be computed as the ratio

Sum of distances of the curve end points to the curve centroid
Curve length
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which is obviously an invariant with respect to the scalingransformations.
The new linearity measure is both very simple to implement ahe cient to compute. It
satis es the basic requirements for a linearity measure:

L (O is in the interval (O; 1];
L (O equals 1 only for straight line segments;

L (Q) is invariant with respect to translation, rotation and scding transformation on a
curve considered.

In addition, the new measure is theoretically well foundedAll statements are accom-
panied with rigorous proofs. Supported by this, the behavis of the new measure is well
understood and predictable to some extent. This is an adveaamge since it enables a priori
judgment regarding the measure's suitability for particur applications.

Experiments show the e ectiveness of the new measure on savéasks. Some synthetic
experiments are provided in order to illustrate that the newneasure behaves in accordance
with human perception (second experiment). Additional exp@nents are provided to il-
lustrate the usefulness of the new measure in some applicatitasks. In the case of the
signature veri cation, a high accuracy of 92% was achieved if the signatures are treated as
2D curves/objects. A further improvement of 978% was obtained when the signatures were
treated as D objects (third coordinate/dimension is time-related ands derived based on an
assumption that the signatures considered were captured itormly over time). Taking into
account that the new linearity measure was derived as a geakclassi cation/recognition
tool such an achieved accuracy of 8% can be considered to be very high, even though it is
slightly lower than the accuracy of around 99% obtained by goecially tailored system [20]
for such signature analysis task.
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