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Abstract. This paper describes the development of a knowledge- 
based system which will be used to automate the interpretation of 
an alarm event resulting from a perimeter intrusion detection 
system. The knowledge-based system analyses a sequence of digital 
images captured before, during and after the alarm is generated. 
Additional data, pertaining to the alarm sensor, prevailing 
weather conditions and time-of-day are also available to assist 
the interpretation. 

In order to cope with the diverse nature of the different data 
sources, a knowledge-based approach is used to perform the 
interpretation. Models are maintained for a variety of possible 
alarm causes (human, animal, environmental, false etc.) and each 
model characterises a number of properties associated with that 
particular alarm source. The event data is interrogated by the 
KBS following the selection of a particular model. 

Introduction 

This paper examines the development of a system to 
automate the interpretation of the cause of an alarm 
from a perimeter intrusion detection system (PIDS). 
The system is knowledge-based, classifying the cause 
of an alarm by combining information derived from a 
sequence of images from before, during and after the 
alarm event with non-visual data relating to 
environmental (weather. time-of-day, season) and alarm 
sensor characteristics. A more complete description of 
the PIDS can be found in an accompanying paper [l]. 

Alarms arise as a result of the triggering of some 
detection system and can occur due to a variety of 
causes. A genuine alarm results from the detection of 
an intruder (i.e. person). However, in most cases 
alarms are false, and may be attributed to other 
animals triggering the sensors, weather-related 
events, or unpredictable triggering of the alarm 
system due to noise. In order to verify the cause of 
an alarm, a image-based examination of the scene has 
been undertaken. (Note: it is not intended that the 
current work be used to determine alarms caused by 
weather-related events, as this has been the subject 
o f  a s e p a r a t e  p r o j e c t  o n  k n o w l e d g e - b a s e d  
classification [2].) 

In some cases, the image sequence alone contains 
insufficient detail or resolution to accurately 
identify the cause of the alarm, but can be used in 
conjunction with other available information to 
construct a valid and consistent interpretation. 

Figure 1 shows an example of an image sequence 
spanning an alarm event. Figure la is a single image 
shoving a pheasant activating a microwave beam alarm. 
Figure l b  is a composite picture assembled from a 
sequence of 8 images, spaced approximately 0 . 5  seconds 
apart. A second example, of a running dog. is shown in 
figure 2. 

Interpreting visual data from real-world scenes, where 
a two-dimensional image is formed by projection of 
complex three-dimensional objects, is a difficult and 
demanding task. On the one hand, the digitised image 
simply consists of a sampled array of light intensity 
values. On the other hand, a complete interpretation 
requires the attachment of semantic labels to objects 
in the scene ( e . g .  a person walking, a house, a road 
etc.) as well as labels defining the relationships 
between objects (e.g. a person in a car). 

Early stages in the image processing attempt to 
separate individual objects from the background, or to 
identify regions of interest. This image segmentation 
process is typically based on detecting regions of 
similarity (intensity, texture, colour etc.) or the 
boundaries (edges) between dissimilar regions. 
Following segmentation, a feature extraction process 
encodes the detected regions into primitive features. 
Where these primitives represent simple measurement 
features (size, length, shape etc.), statistical 
feature space analysis techniques can be used classify 
objects. However. in the majority of problems, 
classification is best achieved by matching the 
primitives against some appropriate model 
representations of the objects of interest. 

Identifying motion-related information contained in a 
sequence of images, taken from natural, outdoor scenes 
can significantly complicate the interpretation 
process. The interpretation may now be called on to 
perform additional steps in order to interpret actions 
(e.g. a person climbing a fence). as well as the other 
recognition tasks. Whilst on the one hand, the inter- 
f r a m e  a n a l y s i s  c a n  be u s e d  t o  r e i n f o r c e  
interpretations, the additional processing overhead 
and changing views of objects in motion can introduce 
confusing and ambiguous information. 

The first part of this paper examines some of the 
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Figure 1. Example of an image sequence. la shows a 
single image from the beginning of the sequence. lb 
shows a composite picture assembled from a sequence of 
8 images. 

general problems associated with analysing images in 
order to interpret information pertaining to motion- 
related events. The second part details some of the 
advantages of using a knowledge-based approach for 
representing models which describe the cause of such 
events, and briefly describes the system which is 
being used for the current task. The third part 
details the operation of the interpretation system and 
shows some results from several examples. 

Motion Analysis 

Generally, the dynamic scene analysis problem can be 
tackled either by using differencing and/or 
correlation in order to detect motion and locate 
changing regions in the image. Subtracting two 
registered contiguous images of a scene will result in 
a difference image that will be zero in all areas that 
have not changed between the two images. Sections of 
images that undergo movement can be thus isolated and 
any further processing can thus be concentrated on 
those segments [ 3 ] .  

(0) 

Figure 2. Second example of an image sequence, showing 
a dog running through the scene. 

These techniques enable tracking of the moving 
object(s) in consecutive frames. They are effective in 
simple cases e . g .  when the camera is fixed and the 
objects do not change their size and/or aspect from 
frame to frame. The fundamental problem with most 
cross-correlation and subtraction schemes, however. i s  
the underlying assumption that the image moves as a 
whole from frame to frame, and that any objects 
depicted in the image present the same aspect. Images 
containing independently moving objects with 
occlusions, changes of aspect and articulated non- 
rigid objects pose difficult problems to these 
techniques [ 4 ] .  Nevertheless, such methods enable the 
implementation of useful motion detectors and can form 
a basis for implementing higher-level inferencing 
mechanisms which can establish definitive 
relationships among motion parameters, object 
characteristics and the number of regions in 
difference images. 

In more complicated cases, however, e . g .  when a 
complete interpretation of the scene is required, this 
low-level approach is not sufficient. Higher-level 
schemes of optical flow or feature correspondence come 
into play. These schemes establish velocity vectors 
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representing the velocity of change of the image 
intensity structure (e.g. gradient) or image features 
(points. edge segments, etc.), respectively, From the 
visual motion vector field thus estimated, under 
certain circumstances represented as constraints in an 
optimisation problem, the 3-dimensional structure and 
motion in the scene can be estimated. 

The correspondence process [5.6] establishes a match 
of features from frame to frame. Originally, the 
features used were the elements of the primal sketch 
[7] and the correct correspondence was that which 
maximised the overall similarity between frames. The 
similarity was defined as the sum of cost functions 
that give a similarity value to each pairing in the 
two frames. In general, matching is achieved by 
successive approximation under a relaxation scheme. 
Various correspondence algorithms differ only in the 
complexity and dimensionality of the matching 
primitives chosen, and the type of similarity or 
affinity measure used [ 8 ] .  

Correspondence and optical flow can be used for 
recovering 3-dimensional structure of the scene 
depicted in a sequence of images from motion. But this 
has so far proved to be a very difficult task indeed, 
and has only been tackled under very constrained 
circumstances. To ensure that the 2-dimensional 
velocity field that is computed from the changing 
image corresponds to the true projected velocity field 
of the actual surfaces moving in space, requires 
additional constraints based upon assumptions about 
the physical world which generally hold true. A very 
general intuitive assumption is that the physical 
world consists of predominantly solid objects with 
smooth surfaces which usually generate a smoothly 
varying velocity field. 

The simplest additional assumption is that the 
velocity field is constant over an area of the image. 
This type of field is usually the result of pure 
translation along a straight line parallel to the 
image plane at constant speed. Most schemes are based 
on assumptions of increasingly complexity about the 
motions that take place in the scene i.e. translations 
and/or rotations and the way these scenes are 
projected on the image plane i.e. orthographic or 
perspective. In addition, assumptions about the shape 
of the moving object(s) are also made i.e. curved or  
polyhedral rigid bodies. It is clear that some form of 
models of the environment are assumed. 

Optical flow and correspondence approaches presently 
seem to be at experimental stages and have not yet 
been implemented in a working system. Their role is, 
at the moment, to provide an understanding and a 
computational model of the visual processes of motion. 
The solution of the optical flow and correspondence 
problem is heavily dependent on iterative methods of 
either solving differential equations or relaxation 
techniques and are therefore very time-consuming. 
Nevertheless, these approaches seem to be the ones 
that promise a general solution to the dynamic scene 
analysis problem. Very recently, however, the idea of 
correspondence as an independent preliminary process 
for the further analysis of dynamic images has come 
under severe criticism [ 8 ] .  Algorithms based on simple 
token matching have not been successful in most 
applications and this has led to the definition of 
increasingly elaborate and sophisticated token models 
and matching criteria. Additional psychophysical 
evidence indicates that Ullman's model [ 5 ]  is in need 
of review. 

On the other hand, the lower level pixel-based 
techniques seem to be suitable for practical 
applications due to their speed. But the range of 
problems that can be solved is very small and the 
solutions have to be tailored to the application by 
exploiting all a priori knowledge about the 
environment and the expected events in the image 

sequence. Several ad hoc schemes based on an 
assortment of pixel-based techniques combined with 
intelligent heuristics have been reported with various 
degrees of success. 

Knovledze-based Classification 

Classification based on traditional pattern 
recognition systems are generally application 
dependent, and restricted to highly constrained 
scenes. More sophisticated techniques are required for 
a flexible vision system that can deal with less 
structured and more varied environments. Due to the 
variability of scenes and viewing conditions such 
scenes tend to provide only uncertain, incomplete, and 
ambiguous data. Intelligent knowledge-based systems 
(IKBS) use large amounts of domain knowledge to aid 
interpretation of such data. This knowledge can be 
complex, encompassing hierarchical, causal, uncertain, 
ambiguous, and incomplete knowledge. Since knowledge 
is seen as the key to high performance systems, the 
choice of knowledge representation is important. 

Choice of knowledge representation is determined by 
what knowledge is to be represented: in this case the 
models are of causes of alarm triggers. With the 
available images, visual appearance of alarm triggers 
is often insufficient to distinguish the different 
causes. Therefore the models include in addition to 
their visual properties non-visual properties such as 
ranges of possible speed of travel, and environmental 
factors such as the effect adverse weather conditions 
have on the daily movements of animals. Since likely 
candidates for the cause of alarm triggers are found 
by differencing several frames from a video loop, 
moving objects show as a sequence of related objects 
through the frames. Object sequences must be modelled, 
including knowledge about constraints on the change of 
size and location of the objects throughout the 
sequence. 

Knowledge representations can be split into 
declarative and procedural approaches, i.e. the 
distinction is between "knowing what", and "knowing 
how". Declarative representations describe the static 
aspects of knowledge: facts about objects, events, and 
their relations. These facts are manipulated by a 
control procedure, kept separate from the declarative 
knowledge. Procedural representations embed knowledge 
within programs, which can be used to find relevant 
facts, and make inferences: the knowledge is implicit 
in contrast to the explicit knowledge in declarative 
representations. 

Commonly used knowledge representations include 
production systems, semantic networks and frames. Each 
scheme has its advantages and disadvantages: many 
strengths of one are the weaknesses of the other. 
Declarative representations offer readability, 
flexibility, and ease of modification. Procedural 
representations have the advantages that meta- 
knowledge and heuristics can be easily represented, 
enabling directness of line of inference; ease of 
coding; and understandability of the reasoning 
process. 

The representation used for the current task is based 
on a declarative, structured object representation, 
which combines related items of knowledge into chunks. 
These chunks are known as frames. In frames, all 
assertions about a particular entity are held 
together. A frame is the basic unit of knowledge, and 
consists of some slots that describe attributes of 
that frame. A frame can describe either classes or 
individual instances of stereotypical objects, acts or 
events. By supplying a place fOK knowledge the slot 
mechanism facilitates expectation driven processing. 

Although slots will initially be empty, they may have 
a range of expected values, which can act as a 

217 1989 ICCST, Zurich, Switzerland 



frame person 

ako value mammal 

"g' if-needed calculate-age 
height if-needed query-user 
height default average-height 

date-of-birth value [29,10,1953] 

Figure 3 .  Example of a simple frame. Two demons are 
attached to slots which do not have values. The value 
slots will be filled-in after the successful 
completion of the demon. If, for some reason, the 
"query-user" does not return a value, the default 
value (defined as a persons average height) may be 
used. 

validity check, and default values, which can 
substitute for known values if they are unavailable. 
If the frames are structured as a hierarchy, slots may 
inherit values from similar slots in ancestor frames. 

In addition to its declarative aspect, procedures can 
be attached to slots within a frame to drive the 
problem solving behaviour of the system. "Attached 
procedures" or demons are triggered when slot values 
are accessed. Take for example a frame describing a 
person, including amongst its slots one to store the 
date of birth. That slot could have a demon triggered 
when the slot is filled, which will execute a 
procedure to calculate the person's age and store it 
in the age slot. In addition, when the slot is read, 
if there is no value, another demon could be triggered 
that obtains the required value, either by calculating 
it, or by asking the user. 

FABIUS [9,10] is a frame-based system for image 
interpretation written in PROLOG. It combines the 
object oriented taxonomic structure of frames, with 
the problem solving and general inferencing mechanism 
of a logic language like PROLOG. It incorporates 
mechanisms to support property inheritance, which 
allovs common properties to be inherited by links 
between frames in an ako (a-kind-of) specialisation 
hierarchy. In addition, decompositional hierarchies 
are facilitated through ipo (is-part-of) links, 
allowing complex models to be described by decomposing 
them into sub-parts. Other features include defaults, 
value restrictions, and demons, as well as value and 
relational constraints. 

Models of objects are represented as frames, to be 
matched against sensor (image) data as each model is 
evaluated. One of the principal advantages of using a 
knowledge-based system for interpretation is that it 
allows the knowledge (including the extracted data) to 
be made explicit, and kept independent from the 
control mechanism which is performing the 
interpretation. Hence it is a much simpler task to 
develop and test alternative evaluation strategies. In 
addition, since demons can be attached arbitrarily t o  
frame slots and activated on access, much of the 
algorithmic computation involved in analysing the data 
can also be separated from the control mechanism, to 
be triggered not by explicit function calls, but only 
when a particular value or data is required. 

This matching operation must attempt to cope with a 
variety of confusing and ambiguous processes which 
distort the image data. Moving objects in the scene 
can become occluded or obscured as they pass behind or 
in front of other objects. Objects are inevitably 
self-occluding, hiding details according to the view 
or aspect currently projected onto the image frame. In 
addition, over the sequence of images, an object will 
inevitab,ly present differing viewpoints, adding to the 
confusion. 

A number of methods may be used to determine how well 
a particular model matches the data. FABIUS uses a 
variation of Baye's theory [ll] about conditional 
probabilities called Subjective Bayesian Updating [12] 
as used in Prospector, a well-known KBS for analysing 
mineral deposits. Probabilities propagate up from the 
leaves of a frame tree until they reach the root (top 
level model) hypothesis. In other words, the 
calculation of the hypothesis of each frame in the 
tree takes as its items of evidence the values of its 
children's hypotheses. 

As well as representing individual objects, frames can 
also be used to describe groups or combinations of 
objects. For instance, a sequence frame can be 
decomposed into a number of individual sequence 
element frames. Associated with the frame is a set of 
constraints over its sub-elements, constraining the 
elements to belong to sequential image frames, and 
defining their variability of size and proximity. 

Models 

The image sequences used in the interpretation are 
typically 8 frames in length, with frames spaced at 
approximately 0.5-1.0 seconds. The sequence is taken 
during the alarm event, with four images before and 
four after the actual event. Each image is a 512x512 
resolution image, digitised to 8 bits intensity 
resolution. Associated with each image sequence is a 
data file ( s e e  figure 4) which describes the 
conditions under which the sequence vas acquired: 
alarm sensor type, camera location, weather 
conditions, inter-frame time interval etc. 

DESCRIPTION: A, SRDBO18 

CAMERA NO : 20 
ALARM NO : 18 
IMAGE SIZE : 512 
NO. IMAGES : 8 
FRAME DELAY: 24 
LIGHTS : ON 
WIND DIR : E 
WIND SPEED : 2 
RAINING : NO 

DATEITIME : 29/04/88 05:26:43 

COMMENTS : Pheasant in foreground ,birds in distance. 
One or both break microwave beam. 

Figure 4. Example of event log file for image shown in 
figure 1. 

Various kinds of model are used to perform the 
interpretation. Since the camera is viewing an 
essentially static scene (typically, only strong winds 
affect this, occasionally causing small movement of 
the camera), image models can be constructed for 
individual camera positions which allow estimates of 
the range of an object (based on it actually touching 
one of the modelled surfaces, e.g. the ground or the 
fence), the area covered by various alarm sensors, and 
a segmentation map of the scene, which can be used to 
determine the objects location in the image. All these 
models are stored as images, s o  that looking up a 
value becomes simply a matter of accessing an 
appropriate location in the image to determine, for 
instance, whether the object is located on the ground, 
on the fence, in the trees etc. An example of an image 
segmentation model is shown in figure 5 .  

Figure 6 shows an example of a simple object model (a 
dog) using the frame description language of FABIUS. 
This describes the object as a kind of mammal, via 
which it can inherit properties of the general class 
of mammals (not defined in this case). The model 
describes some common physical properties of the dog 
which must be  matched against a set of primitive 
features extracted from the images. A pair of 
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Figure 7(a-h) shows a set of thresholded binary 
images, subsequent to image differencing, of the image 
sequence depicted in figure 1. Figure 7i shows the 
result of combining the binary information from all 
eight of the detected images in the sequence. A s  can 
be seen, a large number of small noise points are 
generated by the grey-level thresholding of the 
differenced images. A total of 181 objects are found 
in this combined image, of which only 29 are retained, 
following the area thresholding operation. 

Figure 8a shows the results of similar processing 
applied to the sequence in figure 2. One drawback of 
using a fixed value for the image thresholding is that 
strong shadows (as seen in this image) are detected 
equally with the dog. Figure 8b shows a similar 
combined sequence, obtained using a threshold level of 
28. 

Figure 5. Example of one of the image models which are 
constructed manually. This shows the segmentation map 
which is used to determine the location of an object 
in the scene. For this camera position, only three 
areas are defined: ground, trees and fence. 

weighting values are associated with each property, 
which are used to update the probabilities for and 
against the current model. Evidence values 
(measurements) are first converted to probability 
values (pdf) by one of a set of pre-defined functions 
(e.g. downslope), before the weightings are applied, 

frame dog 

ako value 
size if-needed 
size weight 
size Pdf 
size maxmin 
location one-of 
location weight 
location pdf 
location maxmin 
max-speed weight 
max-speed pdf 
max-speed maxmin 

Figure 6. Example of a crude model for a dog. 

ImaRe Interpretation 

In its present state, the control algorithm initially 
adopts a bottom-up processing strategy, which first 
generates a set of measurements from the image for 
each of the detected objects (image primitives). These 
objects are first detected by subtracting successive 
frames in the image sequence from a reference image of 
the scene. This reference image depicts the scene in 
its undisturbed state. The differenced images are then 
thresholded using a threshold value of 8, which 
adequately suppresses the pixel noise in the image 
whilst acting as a sensitive detector of genuine of 
motion-related events. Measurements are then made of 
isolated objects detected within the image, 
determining size, location and sequence number, as 
well a s  several crude measures of shape (compactness, 
aspect ratio etc.). A simple threshold is used to 
discard objects which are likely to be noise, based on 
a very low area (currently, a value of 10 pixels is 
used). 

Figure 8a. This shows a composite detected image for 
the image sequence shown in figure 2. Figure 8b shows 
the results of processing the same sequence but with a 
threshold level of 28 because of the strong shadow 
cast by the dog. 

Measurements on individual objects are asserted into 
the PROLOG data base as a frame. A typical example of 
an image primitive frame is shown in figure 9. Some of 
the measurements are those directly derived from the 
image. The centroid value represents the first order 
moments of the binary object and can be used to 
crudely locate the object relative to other 
primitives. The rectangle value is a list which 
contains the minimum and maximum X and Y co-ordinates 
contained in the object boundary. One of these values 
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Figure 7 .  7a-h shows a binary image, obtained by thresho ld ing  the  
differenced images, using a threshold level  of 8 .  The objects detected 
include the pheasant i n  the foreground and a group of birds (on the 
ground) i n  the  top r i g h t  corner .  7 i  i s  a composite image, made by 
combining images 7a-h. 
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frame sequence 

ak o 
inventory 

frame primitive1 

ako 
alarm 
area 
centroid 
first-coord 
location 
perimeter 
range 
rectangle 
scale 
scaled-area 
seeno 

value 
value 
value 
value 
value 
value 
value 
value 
value 
value 
value 
value 

image-blob 
[11,181 
43 
(410,1401 
[ 408,1361 
ground 
38 
77.0000 
[407.136,413.144] 
0.0017 
0,0741 
1 

Figure 9 .  Example of a frame of data from an image 
primitive. 

(Ymax) is used in conjunction with the segmentation 
map to determine the actual location of the object 
within the image (e.g. on the ground, on the fence 
etc.). This co-ordinate is also used to lookup the 
range of the object from the associated range map, and 
hence to determine the appropriate scaling factor for 
calculating the area of the primitive. 

The next step in the evaluation is the assembly a 
likely set of image primitives which are consistent 
with an object moving through the scene. This is a two 
stage process, with image primitives being 
instantiated to "blob" frames in order to ensure that 
the matched primitives are consistent: in this case, 
that the first blob is instantiated with a primitive 
from the first frame in the sequence, the second blob 
from the second etc. Frame Blob is defined 
(temporarily) as an "ako dog", s o  that image 
primitives matched to blobl-8 are compared with the 
dog model. In addition, a further constraint is used 
to ensure that the euclidean distance between 
consecutive blobs is within some threshold. The second 
stage defines the sequence frame (shown in figure 10) 
which is used to assemble such a set of image 
primitives. The inventory list describes the set of 
primitives (via an intermediate frame, the blob) which 
might form such a set, and associated with the 
complete set are several relational constraints which 
apply a more global proximity constraint over the 
entire set of blobs. 

Figure 11 shows the results of this sequence 
extraction process. Each of the binary objects 
measured from all of the detected images in the image 
sequence are candidates for this process. One of the 
consistent sets which have been selected are shown 
bordered. 

Given a consistent set of image primitives that form a 
sequence, the individual blobs in the sequence are 
matched against the set of models associated with the 
alarm causes. This allows the interpretation system to 
classify the sequence as a dog sequence, or a bird 
sequence or a man sequence according to the degree of 
match with each of the models over the sequence (i.e. 
the model with the highest probability). 

Discussion. 

This paper has described the initial stages in the 
development of a knowledge-based system for 
identifying the cause of alarms in a PIDS. Analysing a 
sequence of images from static cameras sufficiently 
constrains and simplifies the motion analysis, in 
order to allow an interpretation. In the first 
instance, the image can be easily modelled prior to 
analysis. This provides a simple mechanism for 
determining the location and range of an object 
detected in the image. Secondly, objects can be 
reliably detected by image subtraction, and fall into 

constraints 

blobl 
blob2 

blob4 
blob5 
blob6 
blob7 
blob8 

blob3 

value 
value 

value 

weight 
weight 
weight 
weight 
weight 
weight 
weight 
weight 

thing 
[blobl,blob2.blob3, 
blob4,blobS,blob6, 
blob7,blob8] 

blob3,blob4,blob5, 
blob6,blob7,blob8)] 

[all-near(blobl,blobZ, 

[1?11 
[1,11 

frame blob 

ako value dog 
seeno if-needed get-seeno 

seeno pdf [band, 1,1,8,8] 
seeno maxmin [1,0] 

seq-no weight [ ~ 5 1  

frame blobl 

ako value blob 
constraints value [check-seq-no(blobl,l)] 
primitive value image-blob 

frame blob2 

ako value blob 
constraints value [check_seeno(blob2,2) 

primitive value image-blob 
near(blobl,blob2,20] 

Figure 10. This describes the hierarchy of frames that 
extract a valid sequence of primitives and attach them 
to candidate "blob" frames and then assign them to the 
frame sequence. Frames for blobs 3 to 8 are ommitted, 
but are identical to blob2, except for the appropriate 
tags in the constraint slot. 

Figure 11. This shows the results of applying the 
model evaluation to the binary image in figure 8b. The 
objects selected for the sequence from the set of 
measured primitives extracted from the image are shovn 
bordered. 
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only a small number of classified categories. This is 
ultimately only two (i.e. human and false), but this 
initial investigation is using a wider range of 
classification groups in order to more precisely 
categorise the false classes. 

The system has thus far been developed on only a small 
number of examplar images. Work is in hand to test it 
on a larger number of alarms. It is anticipated that 
the current models will require considerable 
refinement and that alternative control strategies 
will be developed. 

There are several shortcomings with the current 
implementation which have yet to be broached: camera 
movement during the sequence (caused by strong winds) 
can produce significant false alarm features in the 
detected image. However, since a measure of the 
windspeed is available from the event l o g ,  such 
conditions can be anticipated, and it is intended that 
models will be developed to interpret such data. Short 
term lighting variations (i.e. within the sequence) 
can result in more significant errors in the detected 
image and are more difficult to predict from the event 
log. Again, models of such events will be developed to 
cope with this problem. Other problems are caused by 
flocking birds, which are too large in number to be 
tracked in the same manner as for small numbers of 
slower moving objects. However, the very nature of 
this type of event makes it fairly unique, and hence 
easy to detect and a s s i g n  a n  a p p r o p r i a t e  
interpretation. 

The flexible framework provided by the KBS provides a 
powerful and easily updateable environment for 
developing models and control strategies, and 
represents an excellent tool for such tasks. 
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Data on Influencing Factors 

In drawing up a picture of the general 
situation in which users of PIDS find themselves it 
is appropriate to look at the performance of 
systems from Home Office test sites and operational 
environments. Table 1 indicates the methodology 
used to classify the cause of an alarm. It is 
important that this table be studied as all alarms 
which are not due to human intervention are 
classified as "false". This terminology is 
different from that adopted by some organisations, 
but reflects the concern felt by users of systems, 
namely that any non-human triqqer of a PIDS causes 
an action to be carried out in> control room. The ~~. 
need for the control room to act to a false trigger 
creates an unnecessary financial burden on the 
organisation. Table 2 shows the breakdown of alarm 
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