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Digital Audio Effects

Having learned to make basic sounds from basic waveforms
and more advanced synthesis methods lets see how we can at
some digital audio effects.
These may be applied:

As part of the audio creation/synthesis stage — to be
subsequently filtered, (re)synthesised
At the end of the audio chain — as part of the
production/mastering phase.
Effects can be applied in different orders and sometimes
in a parallel audio chain.
The order of applying the same effects can have drastic
differences in the output audio.
Selection of effects and the ordering is a matter for the
sound you wish to create. There is no absolute rule for
the ordering.
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FX Pipeline
Apply effects in which order?

Some ordering is standard for some audio processing, E.g:
Compression→ Distortion→ EQ→ Noise Redux→ Amp Sim→
Modulation→ Delay→ Reverb
Can also be configurable.

Common for order guitar (and other sources) effects pedal:

ZOOM G1/G1X18

Compressor

Auto Wah

Booster

Tremolo

Phaser

FD Clean

VX Clean

HW Clean

US Blues

BG Crunch

Hall

Room

Spring

Arena

Tiled Room

Delay

Tape Echo

Analog
Delay

Ping Pong
Delay

AMP Sim.ZNR Chorus

Ensemble

Flanger

Step

Pitch Shift

COMP/EFX DRIVE EQ MODULATION REVERBDELAYAMPZNR
Effect modules

Effect types

Effect Types and Parameters

Linking Effects

The patches of the G1/G1X consist of eight
serially linked effect modules, as shown in the

illustration below. You can use all effect
modules together or selectively set certain
modules to on or off. 

Explanation of symbols

! Module selector
The Module selector symbol
shows the position of the knob at
which this module/parameter is
called up.

!  Expression pedal
A peda l  i con  in  t he  l i s t i ng
indicates a parameter that can be
controlled with the built-in or an
external expression pedal. 

When this item is selected, the parameter in the
module can then be controlled in real time with a
connected expression pedal. 

! Tap
A [TAP] icon in  the  l i s t ing
indicates a parameter that can be
set with the [BANK UP•TAP]
key. 

When the respective module/effect type is
selected in edit mode and the [BANK UP•TAP]
key is pressed repeatedly, the parameter (such as
modulation rate or delay time) will be set
according to the interval in which the key is
pressed.

TAP

* Manufacturer names and product names mentioned in this listing are trademarks or 
registered trademarks of their respective owners. The names are used only to illustrate sonic 
characteristics and do not indicate any affiliation with ZOOM CORPORATION.

For some effect modules, you can select an effect type from several possible choices. For example, the
MODULATION module comprises Chorus, Flanger, and other effect types. The REVERB module
comprises Hall, Room, and other effect types from which you can choose one.

Effect Types and Parameters

ZOOM G1/G1X 19

"PATCH LEVEL

"COMP/EFX (Compressor/EFX) module

"DRIVE module

PATCH LEVEL (Prm)

Determines the overall volume level of the patch.

Sets the patch level in the range from 2 – 98, 1.0. A setting of 80 corresponds to unity gain (input level 
and output level are equal).

This module comprises the effects that control the level dynamics such as compressor, and 
modulation effects such as tremolo and phaser.

COMP/EFX (Type&Prm)

Adjusts the COMP/EFX module effect type and intensity.

Compressor
This is an MXR Dynacomp type compressor. It attenuates high-level signal components and boosts 
low-level signal components, to keep the overall signal level within a certain range. Higher setting 
values result in higher sensitivity.

Auto Wah
This effect varies wah in accordance with picking intensity. Higher setting values result in higher 
sensitivity.

Booster
Raises signal level and creates a dynamic sound. Higher setting values result in higher gain.

Tremolo
This effect periodically varies the volume. Higher setting values result in faster modulation rate.

Phaser
This effect produces sound with a pulsating character. Higher setting values result in faster modulation 
rate.

Ring Mod (Ring Modulator)
This effect produces a metallic ringing sound. Higher setting values result in higher modulation 
frequency.

Slow Attack
This effect reduces the attack rate of each individual note, producing a violin playing style sound. 
Higher setting values result in slower attack times.

Vox Wah
This effect simulates a half-open vintage VOX wah pedal. Higher setting values result in higher 
emphasized frequency.

Cry Wah
This effect simulates a half-open vintage Crybaby wah pedal. Higher setting values result in higher 
emphasized frequency.

This module includes 20 types of distortion and an acoustic simulator. For this module, the two 
items DRIVE and GAIN can be adjusted separately.

DRIVE (Type)

Selects the effect type for the DRIVE module.

FD Clean VX Clean
Clean sound of a Fender Twin Reverb ('65 
model) favored by guitarists of many 
music styles.

Clean sound of the combo amp VOX AC-
30 operating in class A.

2 10

C1 C9

A1 A9

B1 B9

T1 T9

P1 P9

R1 R9

S1 S9

V1 V9

1 9

FD V
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Effects Types

Audio effects can be classified by the way process signals:

Basic Filtering: Lowpass, Highpass filter etc.,
Equaliser

Time Varying Filters: Wah-wah, Phaser

Delays: Vibrato, Flanger, Chorus, Echo

Modulators: Ring modulation, Tremolo, Vibrato

Non-linear Processing: Compression, Limiters, Distortion,
Exciters/Enhancers

Spacial Effects: Panning, Reverb, Surround Sound
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Basic Digital Audio Filtering Effects:

Equalisers

Filtering:

Filters by definition remove/attenuate audio from the
spectrum above or below some cut-off frequency.

For many audio applications this a little too restrictive

Equalisation:

Equalisers, by contrast, enhance/diminish certain frequency
bands whilst leaving others unchanged:

Built using a series of shelving and peak filters

First or second-order filters usually employed.
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Shelving and Peak Filters

Shelving Filter:

Boost or cut the low or high frequency bands with a
cut-off frequency, Fc and gain G :
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Shelving and Peak Filters (Cont.)

Peak Filter:

Boost or cut mid-frequency bands with a cut-off
frequency,Fc , a bandwidth, fb and gain G :
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Shelving Filters

A First-order Shelving Filter:

Transfer function:

H(z) = 1 +
H0

2
(1± A(z)) where LF/HF + /−

where A(z) is a first-order allpass filter — passes all frequencies but
modifies phase:

A(z) =
z−1 + aB/C

1 + aB/C z−1
B=Boost, C=Cut

which leads the following algorithm/difference equation:

y1(n) = aB/Cx(n) + x(n − 1)− aB/Cy1(n − 1)

y(n) =
H0

2
(x(n)± y1(n)) + x(n)
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Shelving Filters (Cont.)

Shelving Filter Parameters:

The gain, G , in dB can be adjusted accordingly:

H0 = V0 − 1 where V0 = 10G/20

and the cut-off frequency for boost, aB , or cut, aC are given
by:

aB =
tan(2πfc/fs)− 1

tan(2πfc/fs) + 1

aC =
tan(2πfc/fs)− V0

tan(2πfc/fs) + V0
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Shelving Filters Signal Flow Graph

y(n)A(z) ± ×
H0/2

+x(n) y1(n)

1

where A(z) is given by:

T
x(n − 1)

y(n)

× ×aB/C 1

+ +

× −aB/C

T

y1(n − 1)

x(n)

1
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Peak Filters

A 2nd-order Peak Filter

Transfer function:

H(z) = 1 +
H0

2
(1− A2(z))

where A2(z) is a second-order allpass filter:

A(z) =
−aB + (d − daB)z−1 + z−2

1 + (d − daB)z−1 + aBz−2

which leads the following algorithm/difference equation:

y1(n) = 1aB/Cx(n) + d(1− aB/C )x(n − 1) + x(n − 2)

−d(1− aB/C )y1(n − 1) + aB/Cy1(n − 2)

y(n) =
H0

2
(x(n)− y1(n)) + x(n)
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Peak Filters (Cont.)

Peak Filter Parameters:

The center/cut-off frequency, d , is given by:

d = −cos(2πfc/fs)

The H0 by relation to the gain, G , as before:

H0 = V0 − 1 where V0 = 10G/20

and the bandwidth, fb is given by the limits for boost, aB , or cut, aC are
given by:

aB =
tan(2πfb/fs)− 1

tan(2πfb/fs) + 1

aC =
tan(2πfb/fs)− V0

tan(2πfb/fs) + V0
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Peak Filters Signal Flow Graph

y(n)A(z) +× ×
−1 H0/2

+x(n) y1(n)

1

where A(z) is given by:
x(n)

T T

x(n − 1) x(n − 2)

× × ×−aB/C d(1 − aB/C) 1

+ + +
y(n)

× ×aB/C −d(1 − aB/C)

T T
y1(n − 2) y1(n − 1)

1
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Shelving Filter EQ MATLAB Example (1)

shelving.m

function [b, a] = shelving(G, fc, fs, Q, type)

%

% Derive coefficients for a shelving filter with a given amplitude

% and cutoff frequency. All coefficients are calculated as

% described in Zolzer's DAFX book (p. 50 -55).

%

% Usage: [B,A] = shelving(G, Fc, Fs, Q, type);

%

% G is the logrithmic gain (in dB)

% FC is the center frequency

% Fs is the sampling rate

% Q adjusts the slope be replacing the sqrt(2) term

% type is a character string defining filter type

% Choices are: 'Base_Shelf' or 'Treble_Shelf'

% Error Check

if((strcmp(type,'Base_Shelf') ~= 1) && ...

(strcmp(type,'Treble_Shelf') ~= 1))

error(['Unsupported Filter Type: ' type]);

end
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Shelving Filter EQ MATLAB Example (2)

shelving.m cont.

K = tan((pi * fc)/fs);

V0 = 10^(G/20);

root2 = 1/Q;

% Invert gain if a cut

if (V0 < 1)

V0 = 1/V0;

end

%%%%%%%%%%%%%%%%%%%%

% BASE BOOST

%%%%%%%%%%%%%%%%%%%%

if(( G > 0 ) & (strcmp(type,'Base_Shelf')))

b0 = (1 + sqrt(V0)*root2*K + V0*K^2) / (1 + root2*K + K^2);

b1 = (2 * (V0*K^2 - 1) ) / (1 + root2*K + K^2);

b2 = (1 - sqrt(V0)*root2*K + V0*K^2) / (1 + root2*K + K^2);

a1 = (2 * (K^2 - 1) ) / (1 + root2*K + K^2);

a2 = (1 - root2*K + K^2) / (1 + root2*K + K^2);
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Shelving Filter EQ MATLAB Example (3)

shelving.m cont.

%%%%%%%%%%%%%%%%%%%%

% BASE CUT

%%%%%%%%%%%%%%%%%%%%

elseif (( G < 0 ) & (strcmp(type,'Base_Shelf')))

b0 = (1 + root2*K + K^2) / (1 + root2*sqrt(V0)*K + V0*K^2);

b1 = (2 * (K^2 - 1) ) / (1 + root2*sqrt(V0)*K + V0*K^2);

b2 = (1 - root2*K + K^2) / (1 + root2*sqrt(V0)*K + V0*K^2);

a1 = (2 * (V0*K^2 - 1) ) / (1 + root2*sqrt(V0)*K + V0*K^2);

a2 = (1 - root2*sqrt(V0)*K + V0*K^2) / ...

(1 + root2*sqrt(V0)*K + V0*K^2);
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Shelving Filter EQ MATLAB Example (3)

shelving.m cont.

%%%%%%%%%%%%%%%%%%%%

% TREBLE BOOST

%%%%%%%%%%%%%%%%%%%%

elseif (( G > 0 ) & (strcmp(type,'Treble_Shelf')))

b0 = (V0 + root2*sqrt(V0)*K + K^2) / (1 + root2*K + K^2);

b1 = (2 * (K^2 - V0) ) / (1 + root2*K + K^2);

b2 = (V0 - root2*sqrt(V0)*K + K^2) / (1 + root2*K + K^2);

a1 = (2 * (K^2 - 1) ) / (1 + root2*K + K^2);

a2 = (1 - root2*K + K^2) / (1 + root2*K + K^2);
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Shelving Filter EQ MATLAB Example (4)

shelving.m cont.

%%%%%%%%%%%%%%%%%%%%

% TREBLE CUT

%%%%%%%%%%%%%%%%%%%%

elseif (( G < 0 ) & (strcmp(type,'Treble_Shelf')))

b0 = (1 + root2*K + K^2) / (V0 + root2*sqrt(V0)*K + K^2);

b1 = (2 * (K^2 - 1) ) / (V0 + root2*sqrt(V0)*K + K^2);

b2 = (1 - root2*K + K^2) / (V0 + root2*sqrt(V0)*K + K^2);

a1 = (2 * ((K^2)/V0 - 1) ) / (1 + root2/sqrt(V0)*K ...

+ (K^2)/V0);

a2 = (1 - root2/sqrt(V0)*K + (K^2)/V0) / ....

(1 + root2/sqrt(V0)*K + (K^2)/V0);

%%%%%%%%%%%%%%%%%%%%

% All-Pass

%%%%%%%%%%%%%%%%%%%%

else

b0 = V0;

b1 = 0; b2 = 0; a1 = 0; a2 = 0;

end

%return values

a = [ 1, a1, a2];

b = [ b0, b1, b2];
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Shelving Filter EQ MATLAB Example (5)

Example use: shelving eg.m

infile = 'acoustic.wav';

[ x, Fs] = audioread(infile);% read in wav sample

% Set parameters for Shelving Filter

% Change these to experiment with filter

G = 4; fcb = 300; Q = 3; type = 'Base_Shelf';

[b a] = shelving(G, fcb, Fs, Q, type);

yb = filter(b,a, x);

% Write output wav files

audiowrite('out_bassshelf.wav', yb, Fs);

% Plot the original and equalised waveforms

figure(1), hold on;

plot(yb,'b');
plot(x,'r');
title('Bass Shelf Filter Equalised Signal');
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Shelving Filter EQ MATLAB Example (6)

shelving eg.m cont.

% Do treble shelf filter

fct = 600; type = 'Treble_Shelf';

[b a] = shelving(G, fct, Fs, Q, type);

yt = filter(b,a, x);

% Write output wav files

audiowrite('out_treblehelf.wav', yt, Fs);

figure(1), hold on;

plot(yb,'g');
plot(x,'r');
title('Treble Shelf Filter Equalised Signal');
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Shelving Filter EQ MATLAB Example Output

The output from the above code is (red plot is original audio):
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1.5
Bass Shelf Filter Equalised Signal
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Treble Shelf Filter Equalised Signal
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0
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Original Audio

Click on above images or here to hear: original audio,
bass shelf filtered audio, treble shelf filtered audio.
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out_bassshelf.mp4
Media File (video/mp4)


out_trebleshelf.mp4
Media File (video/mp4)


acoustic.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/DSP/DSP_EGs/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/DSP/DSP_EGs/out_bassshelf.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/DSP/DSP_EGs/out_treblehelf.wav


Time-varying Filters

Time-varying Filter Effects

Some common effects are realised by simply time varying a
filter in a couple of different ways:

Wah-wah: A bandpass filter with a (modulated) time
varying centre (resonant) frequency and a small
bandwidth. Filtered signal mixed with direct
signal.

Phasing: A notch filter, that can be realised as set of
cascading IIR filters, again mixed with direct
signal.

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 22



Wah-wah Example

Wah-wah, Signal flow diagram:

y(n)+×

×BP

direct-mix

wah-mix
Time

Varying

x(n)

1

where BP is a time-varying frequency bandpass filter.

Wah-wah Variations

A phaser is similarly implemented with a notch filter
replacing the bandpass filter.
A variation is the M-fold wah-wah filter where M tap delay
bandpass filters spread over the entire spectrum change their
centre frequencies simultaneously.

A bell effect can be achieved with around a hundred M
tap delays and narrow bandwidth filters

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 23



Time Varying Filter Implementation:

State Variable Filter

The Practical State Variable Filter

In time varying filters we now want independent control over
the cut-off frequency and damping factor of a filter.

(Borrowed from analog electronics) We can implement a
State Variable Filter to solve this problem.

One further advantage is that we can simultaneously
get lowpass, bandpass and highpass filter output.
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The State Variable Filter

+ +

yh(n)

×
F1

+

yb(n)

×
F1

+

yl(n)

T T

×
−1 × Q1

T

T×
−1

x(n)

1

where:

x(n) = input signal

yl(n) = lowpass signal

yb(n) = bandpass signal

yh(n) = highpass signal
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The State Variable Filter Algorithm

State Variable Filter difference equations are given by:

yl(n) = F1yb(n) + yl(n − 1)

yb(n) = F1yh(n) + yb(n − 1)

yh(n) = x(n)− yl(n − 1)− Q1yb(n − 1)

with tuning coefficients F1 andQ1 related to the cut-off
frequency, fc , and damping, d :

F1 = 2 sin(πfc/fs), and Q1 = 2d
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MATLAB Wah-wah Implementation

Making a Wah-wah

We simply implement the State Variable Filter with a Sinusoid
Modulated (variable) frequency, fc .

wah wah.m:

% wah_wah.m state variable band pass

%

% BP filter with narrow pass band, Fc oscillates up and

% down the spectrum

% Difference equation taken from DAFX chapter 2

%

% Changing this from a BP to a BR/BS (notch instead of a bandpass)

% converts this effect to a phaser

%

% yl(n) = F1*yb(n) + yl(n-1)

% yb(n) = F1*yh(n) + yb(n-1)

% yh(n) = x(n) - yl(n-1) - Q1*yb(n-1)

%

% vary Fc from 500 to 5000 Hz
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Wah-wah Implementation

wah wah.m (Cont.):

infile = 'acoustic.wav';

% read in wav sample

[ x, Fs] = audioread(infile);

%%%%%%% EFFECT COEFFICIENTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% damping factor

% lower the damping factor the smaller the pass band

damp = 0.05;

% min and max centre cutoff frequency of variable bandpass filter

minf=500;

maxf=3000;

% wah frequency, how many Hz per second are cycled through

Fw = 2000;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Wah-wah Implementation

wah wah.m (Cont.):

% change in centre frequency per sample (Hz)

delta = Fw/Fs;

% create triangle wave of centre frequency values

Fc=minf:delta:maxf;

while(length(Fc) < length(x) )

Fc= [ Fc (maxf:-delta:minf) ];

Fc= [ Fc (minf:delta:maxf) ];

end

% trim tri wave to size of input

Fc = Fc(1:length(x));

% difference equation coefficients

% must be recalculated each time Fc changes

F1 = 2*sin((pi*Fc(1))/Fs);

% this dictates size of the pass bands

Q1 = 2*damp;
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Wah-wah Implementation

wah wah.m (Cont.):

yh=zeros(size(x)); % create emptly out vectors

yb=zeros(size(x));

yl=zeros(size(x));

% first sample, to avoid referencing of negative signals

yh(1) = x(1);

yb(1) = F1*yh(1);

yl(1) = F1*yb(1);

% apply difference equation to the sample

for n=2:length(x),

yh(n) = x(n) - yl(n-1) - Q1*yb(n-1);

yb(n) = F1*yh(n) + yb(n-1);

yl(n) = F1*yb(n) + yl(n-1);

F1 = 2*sin((pi*Fc(n))/Fs);

end

% normalise and Output .........
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Wah-wah MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):
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Click on images or here to hear: original audio, wah-wah audio.
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out_wah.mov
Media File (video/quicktime)


acoustic1.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_wah.wav


Delay Based Effects

Many useful audio effects can be implemented using a delay
structure:

Sounds reflected off walls

In a cave or large room we hear an echo and also
reverberation takes place – this is a different effect —
see later
If walls are closer together repeated reflections can
appear as parallel boundaries and we hear a modification
of sound colour instead.

Vibrato, Flanging, Chorus and Echo are examples of
delay effects
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Basic Delay Structure

The Return of IIR and FIR filters:

We build basic delay structures out of some very basic IIR and
FIR filters:

We use FIR and IIR comb filters

Combination of FIR and IIR gives the Universal Comb
Filter
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FIR Comb Filter

FIR Comb Filter: A single delay

This simulates a single delay:

The input signal is delayed by a given time duration, τ .

The delayed (processed) signal is added to the input
signal some amplitude gain, g

The difference equation is simply:

y(n) = x(n) + gx(n −M) with M = τ/fs

The transfer function is:

H(z) = 1 + gz−M
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FIR Comb Filter Signal Flow Diagram

+
y(n)

TM

×

×x(n − M)

1

g

x(n)

1
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FIR Comb Filter MATLAB Code

fircomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

g=0.5; %Example gain

Delayline=zeros(10,1); % memory allocation for length 10

for n=1:length(x);

y(n)=x(n)+g*Delayline(10);

Delayline=[x(n);Delayline(1:10-1)];

end;
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IIR Comb Filter

IIR Comb Filter

Simulates endless reflections at both ends of cylinder.

We get an endless series of responses, y(n) to input, x(n).

The input signal circulates in delay line (delay time τ) that is
fed back to the input.

Each time it is fed back it is attenuated by g .

Input sometime scaled by c to compensate for high
amplification of the structure.

The difference equation is simply:

y(n) = Cx(n) + gy(n −M) with M = τ/fs
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IIR Comb Filter Signal Flow Diagram

× +
y(n)

TM

× y(n − M)

g

c

x(n)

1
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IIR Comb Filter MATLAB Code

iircomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

g=0.5;

Delayline=zeros(10,1); % memory allocation for length 10

for n=1:length(x);

y(n)=x(n)+g*Delayline(10);

Delayline=[y(n);Delayline(1:10-1)];

end;
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Universal Comb Filter

Universal Comb Filter

Combination of the FIR and IIR comb filters.

Basically this is an allpass filter with an M sample delay
operator and an additional multiplier, FF.

TM

x(n − M)

×

×

BL

FF

+ +
y(n)

×
FB

x(n)

1

Parameters:
FF = feedforward, FB = feedbackward, BL = blend
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Universal Comb Filter Parameters

Why is “Universal”?

Universal in that we can form any comb filter, an
allpass or a delay filter:

BL FB FF
FIR Comb 1 0 g
IIR Comb 1 g 0
Allpass a −a 1
delay 0 0 1
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Universal Comb Filter MATLAB Code

unicomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

BL=0.5;

FB=-0.5;

FF=1;

M=10;

Delayline=zeros(M,1); % memory allocation for length 10

for n=1:length(x);

xh=x(n)+FB*Delayline(M);

y(n)=FF*Delayline(M)+BL*xh;

Delayline=[xh;Delayline(1:M-1)];

end;
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Vibrato - A Simple Delay Based Effect

Vibrato:

Vibrato — Varying (modulating) the time delay
periodically.

If we vary the distance between an observer and a
sound source (cf. Doppler effect) we hear a change in
pitch.

Implementation: A Delay line and a low frequency
oscillator (LFO) to vary the delay.

Only listen to the delay — no forward or backward feed.

Typical delay time = 5–10 Ms and LFO rate = 5–14Hz.
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Vibrato MATLAB Code

vibrato.m function:

See vibrato eg.m for sample call this function

function y=vibrato(x,SAMPLERATE,Modfreq,Width)

ya_alt=0;

Delay=Width; % basic delay of input sample in sec

DELAY=round(Delay*SAMPLERATE); % basic delay in # samples

WIDTH=round(Width*SAMPLERATE); % modulation width in # samples

if WIDTH>DELAY

error('delay greater than basic delay !!!');
return;

end;

MODFREQ=Modfreq/SAMPLERATE; % modulation frequency in # samples

LEN=length(x); % # of samples in WAV-file

L=2+DELAY+WIDTH*2; % length of the entire delay

Delayline=zeros(L,1); % memory allocation for delay

y=zeros(size(x)); % memory allocation for output vector
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Vibrato MATLAB Code (Cont.)

vibrato.m (Cont.)

for n=1:(LEN-1)

M=MODFREQ;

MOD=sin(M*2*pi*n);

ZEIGER=1+DELAY+WIDTH*MOD;

i=floor(ZEIGER);

frac=ZEIGER-i;

Delayline=[x(n);Delayline(1:L-1)];

%---Linear Interpolation-----------------------------

y(n,1)=Delayline(i+1)*frac+Delayline(i)*(1-frac);

%---Allpass Interpolation------------------------------

%y(n,1)=(Delayline(i+1)+(1-frac)*Delayline(i)-(1-frac)*ya_alt);

%ya_alt=ya(n,1);

end
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Vibrato MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):
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Click image or here to hear: original audio, vibrato audio.
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Comb Filter Delay Effects:

Flanger, Chorus, Slapback, Echo

A few other popular effects can be made with a comb filter (FIR or
IIR) and some modulation.
Flanger, Chorus, Slapback, Echo same basic approach but different
sound outputs:

Effect Delay Range (ms) Modulation
Resonator 0 . . . 20 None
Flanger 0 . . . 15 Sinusoidal (≈ 1 Hz)
Chorus 10 . . . 25 Random
Slapback 25 . . . 50 None
Echo > 50 None

Slapback (or doubling) — quick repetition of the sound,
Flanging — continuously varying LFO of delay,
Chorus — multiple copies of sound delayed by small random
delays
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Flanger MATLAB Code

flanger.m:

% Creates a single FIR delay with the delay time oscillating from

% Either 0-3 ms or 0-15 ms at 0.1 - 5 Hz

infile='acoustic.wav';
outfile='out_flanger.wav';

% read the sample waveform

[x,Fs] = audioread(infile);

% parameters to vary the effect %

max_time_delay=0.003; % 3ms max delay in seconds

rate=1; %rate of flange in Hz

index=1:length(x);

% sin reference to create oscillating delay

sin_ref = (sin(2*pi*index*(rate/Fs)))';

%convert delay in ms to max delay in samples

max_samp_delay=round(max_time_delay*Fs);
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Flanger MATLAB Code (Cont.)

flanger.m (Cont.):

% create empty out vector

y = zeros(length(x),1);

% to avoid referencing of negative samples

y(1:max_samp_delay)=x(1:max_samp_delay);

% set amp suggested coefficient from page 71 DAFX

amp=0.7;

% for each sample

for i = (max_samp_delay+1):length(x),

cur_sin=abs(sin_ref(i)); %abs of current sin val 0-1

% generate delay from 1-max_samp_delay and ensure whole number

cur_delay=ceil(cur_sin*max_samp_delay);

% add delayed sample

y(i) = (amp*x(i)) + amp*(x(i-cur_delay));

end

% write output

audiowrite(outfile, y, Fs);
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Flanger MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):
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Click here to hear: original audio, flanged audio.
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out_flanger.mov
Media File (video/quicktime)


acoustic3.mov
Media File (video/quicktime)
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Modulation

Modulation:

The process where parameters of a sinusoidal signal
(amplitude, frequency and phase) are modified or varied by an
audio signal.

We have met some example effects that could be considered
as a class of modulation already:

Amplitude Modulation: Wah-wah, Phaser

Frequency Modulation: Audio synthesis technique

Phase Modulation: Vibrato, Chorus, Flanger

We will now look at some other Modulation effects.
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Ring Modulation

Ring modulation (RM)

RM is where the audio modulator signal, x(n) is multiplied by a sine wave, m(n), with
a carrier frequency, fc .

This is very simple to implement digitally:

y(n) = x(n).m(n)

Although audible result is easy to comprehend for simple signals things get
more complicated for signals having numerous partials
If the modulator is also a sine wave with frequency, fx then one hears the sum
and difference frequencies: fc + fx and fc − fx , for example.
When the input is periodic with at a fundamental frequency, f0, then a
spectrum with amplitude lines at frequencies |kf0 ± fc |.
Used to create robotic speech effects on old sci-fi movies and can create some
odd almost non-musical effects if not used with care. (Original speech ).
ring modIlikeMM.m code here
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IlikeMM.mov
Media File (video/quicktime)


IlikeMM_ringmod.mov
Media File (video/quicktime)
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MATLAB Ring Modulation

Two examples

An audio sample and a sine wave being modulated by a sine
wave.

Example 1: Audio RM, ring mod.m

% read the sample waveform

[x,Fs] = audioread('acoustic.wav');

index = 1:length(x);

% Ring Modulate with a sine wave frequency Fc

Fc = 440;

carrier= sin(2*pi*index*(Fc/Fs))';

% Do Ring Modulation

y = x.*carrier;

% write output

audiowrite('out_ringmod.wav', y,Fs);
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Example 1: Audio RM Output
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Click image or here to hear: original audio,
ring modulated audio.
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out_ringmod.mov
Media File (video/quicktime)


acoustic4.mov
Media File (video/quicktime)
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MATLAB Ring Modulation: Two sine waves

Example 2: Two sine waves RM ring mod 2sine.m

% Ring Modulate with a sine wave frequency Fc

Fc = 440;

carrier= sin(2*pi*index*(Fc/Fs))';

%create a modulator sine wave frequency Fx

Fx = 200;

modulator = sin(2*pi*index*(Fx/Fs))';

% Ring Modulate with sine wave, freq. Fc

y = modulator.*carrier;

% write output

audiowrite('twosine_ringmod.wav', y,Fs);
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Example 2: Two Sine RM Output
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Click image or here to hear:
Two RM sine waves (fc = 440, fx = 200)

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 56


twosine_ringmod.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/twosine_ringmod.wav


Amplitude Modulation

Amplitude Modulation (AM)

AM is defined by:
y(n) = (1 + αm(n)).x(n)

Normalise the peak amplitude of m(n) to 1.

α is depth of modulation

α = 1 gives maximum modulation
α = 0 tuns off modulation

x(n) is the audio carrier signal

m(n) is a low-frequency oscillator modulator.

When x(n) and m(n) both sine waves with frequencies fc and fx
respectively we here three frequencies: carrier, difference and sum:
fc , fc − fx , fc + fx .

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 57



Amplitude Modulation: Tremolo

AM Example: tremolo

Modulate the amplitude:

Set modulation frequency of a sine wave to below 20Hz.

tremolo1.m

filename='acoustic.wav';% read the sample waveform

[x,Fs] = audioread(filename);

index = 1:length(x);

Fc = 5;

alpha = 0.5;

trem=(1+ alpha*sin(2*pi*index*(Fc/Fs)))';
y = trem.*x;

% write output

audiowrite('out_tremolo1.wav', y,Fs);
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Amplitude Modulation: Tremolo Output
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Click image or here to hear: original audio, AM tremolo audio.
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out_tremolo1.mov
Media File (video/quicktime)
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Tremolo via Ring Modulation

tremolo2.m

If you ring modulate with a triangular wave (or try another
waveform) you can get tremolo via RM.

% read the sample waveform

filename='acoustic.wav';
[x,Fs] = audioread(filename);

% create triangular wave LFO

delta=5e-4;

minf=-0.5;

maxf=0.5;

trem=minf:delta:maxf;

while(length(trem) < length(x) )

trem=[trem (maxf:-delta:minf)];

trem=[trem (minf:delta:maxf)];

end

%trim trem

trem = trem(1:length(x))';

%Ring mod with triangular, trem

y= x.*trem;

% write output

audiowrite('out_tremolo2.wav', y,Fs);
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Tremolo via Ring Modulation Output

0 5 10 15
x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Tremolo Output

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click here to hear: original audio, RM tremolo audio.
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out_tremolo2.mov
Media File (video/quicktime)


acoustic7.mov
Media File (video/quicktime)
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Non-linear Processing

Non-linear Processors:

Characterised by the fact that they create (intentional or
unintentional) harmonic and inharmonic frequency components
not present in the original signal.

Three major categories of non-linear processing:

Dynamic Processing: control of signal envelope — aim to
minimise harmonic distortion. Examples:
Compressors, Limiters

Intentional non-linear harmonic processing: Aim to introduce
strong harmonic distortion. Examples: Many electric
guitar effects such as distortion

Exciters/Enhancers: add additional harmonics for subtle sound
improvement.
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Limiter

Limiter:

A device that controls high peaks in a signal but aims to
change the dynamics of the main signal as little as possible:

A limiter makes use of a peak level measurement and
aims to react very quickly to scale the level if it is above
some threshold.

By lowering peaks the overall signal can be boosted.

Limiting is used not only on single instrument but on
final (multichannel) audio for CD mastering, radio
broadcast etc.
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MATLAB Limiter Example

limiter.m:

The following code creates a modulated sine wave and
then limits the amplitude when it exceeds some threshold.

% Create a sine wave with amplitude

% reduced for half its duration

anzahl=220;

for n=1:anzahl,

x(n)=0.2*sin(n/5);

end;

for n=anzahl+1:2*anzahl;

x(n)=sin(n/5);

end;
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MATLAB Limiter Example (Cont.)

limiter.m (Cont.) :

% do Limiter

slope=1;

tresh=0.5;

rt=0.01;

at=0.4;

xd(1)=0; % Records Peaks in x

for n=2:2*anzahl;

a=abs(x(n))-xd(n-1);

if a<0, a=0; end;

xd(n)=xd(n-1)*(1-rt)+at*a;

if xd(n)>tresh,

f(n)=10^(-slope*(log10(xd(n))-log10(tresh)));

% linear calculation of f=10^(-LS*(X-LT))

else f(n)=1;

end;

y(n)=x(n)*f(n);

end;
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MATLAB Limiter Example Output

Display of the signals from the above limiter example:
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Compressors/Expanders

Compressors:

Devices used to reduce the dynamics of the input signal:

Quiet parts are modified.

Loud parts are reduced according to some static curve.

A bit like a limiter and used again to boost overall signals
in mastering or other applications.

Often, used on vocals and guitar effects.

Expanders:

Devices that operate on low signal levels and boost the
dynamics in these signals.

Used to create a more lively sound characteristic.
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MATLAB Compressor/Expander

compexp.m:

function y=compexp(x,comp,release,attack,a,Fs)

% Compressor/expander

% comp - compression: 0>comp>-1, expansion: 0<comp<1

% a - filter parameter <1

h=filter([(1-a)^2],[1.0000 -2*a a^2],abs(x));

h=h/max(h);

h=h.^comp;

y=x.*h;

y=y*max(abs(x))/max(abs(y));
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MATLAB Compressor/Expander (Cont.)

Example call: compression eg.m:

% read the sample waveform

filename='acoustic.wav';
[x,Fs] = audioread(filename);

comp = -0.5; %set compressor

a = 0.5;

y = compexp(x,comp,a,Fs);

% write output

audiowrite('out_compression.wav', y,Fs,bits);

figure(1);

hold on

plot(y,'r');
plot(x,'b');
title('Compressed and Boosted Signal');
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MATLAB Compressor Output

A compressed signal looks and sounds like this:
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Click Image or here to hear: original audio, compressed audio.
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out_compression.mov
Media File (video/quicktime)


acoustic8.mov
Media File (video/quicktime)
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MATLAB Expander Output

An expanded signal looks like this:

expander eg.m:

% read the sample waveform

filename='acoustic.wav';
[x,Fs] = audioread(filename);

comp = 0.5; %set expander

a = 0.5;

y = compexp(x,comp,a,Fs);

% write output

audiowrite('out_expander.wav', y,Fs);

figure(1);

hold on

plot(y,'r');
plot(x,'b');
title('Expander Signal');

0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Expander Signal

Click image or here to hear: original audio, expander audio.
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Media File (video/quicktime)
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Overdrive, Distortion and Fuzz

Distortion:

plays an important part in electric guitar music, especially
rock music and its variants.

can be applied as an effect to other instruments including
vocals.

Three broad classes of distortion:

Overdrive — Audio at a low input level is driven by higher
input levels in a non-linear curve characteristic

Distortion — a wider tonal area than overdrive operating at
a higher non-linear region of a curve

Fuzz — complete non-linear behaviour, harder/harsher
than distortion
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Overdrive

Achieving Overdrive:

Symmetrical soft clipping of input values is performed.

A simple three layer non-linear soft saturation scheme
may be:

f (x) =


2x for 0 ≤ x < 1/3
3−(2−3x)2

3
for 1/3 ≤ x < 2/3

1 for 2/3 ≤ x ≤ 1

In the lower third the output is liner — multiplied by 2.
In the middle third there is a non-linear (quadratic)
output
response
Above 2/3 the output is set to 1.
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MATLAB Overdrive Example

p

Symmetrical soft clipping,
symclip.m:

function y=symclip(x)

N=length(x);

y=zeros(1,N); % Preallocate y

th=1/3; % threshold for symmetrical soft clipping

% by Schetzen Formula

for i=1:1:N,

if abs(x(i))< th, y(i)=2*x(i);end;

if abs(x(i))>=th,

if x(i)> 0, y(i)=(3-(2-x(i)*3).^2)/3; end;

if x(i)< 0, y(i)=-(3-(2-abs(x(i))*3).^2)/3; end;

end;

if abs(x(i))>2*th,

if x(i)> 0, y(i)=1;end;

if x(i)< 0, y(i)=-1;end;

end;

end;
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MATLAB Overdrive Example (Cont.)

An overdriven signal looks and sounds like this :

overdrive eg.m:

% read the sample waveform

filename='acoustic.wav';
[x,Fs] = audioread(filename);

% call symmetrical soft clipping

% function

y = symclip(x);

% write output

audiowrite('out_overdrive.wav', y,Fs);

figure(1); hold on;

plot(y,'r');
plot(x,'b');
title('Overdriven Signal');
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Click image or here to hear: original audio, overdriven audio.
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Distortion/Fuzz

Distortion/Fuzz implementation:

Apply non-linear amplification function.

A non-linear function commonly used to simulate
distortion/fuzz is given by:

f (x) =
x

|x |(1− eαx
2/|x |)

This a non-linear exponential function:
The gain, α, controls level of distortion/fuzz.
Common to mix part of the distorted signal with
original signal for output.
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MATLAB Fuzz Example

fuzzexp.m:

function y=fuzzexp(x, gain, mix)

% y=fuzzexp(x, gain, mix)

% Distortion based on an exponential function

% x - input

% gain - amount of distortion, >0->

% mix - mix of original and distorted sound, 1=only distorted

q=x*gain/max(abs(x));

z=sign(-q).*(1-exp(sign(-q).*q));

y=mix*z*max(abs(x))/max(abs(z))+(1-mix)*x;

y=y*max(abs(x))/max(abs(y));

Note: function allows to mix input and fuzz signals at
output
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MATLAB Fuzz Example (Cont.)

An fuzzed up signal looks and sounds like this:

fuzz eg.m:

filename='acoustic.wav';

% read the sample waveform

[x,Fs] = audioread(filename);

% Call fuzzexp

gain = 11; % Spinal Tap it

mix = 1; % Hear only fuzz

y = fuzzexp(x,gain,mix);

% write output

audiowrite('out_fuzz.wav', y,Fs); 0 5 10 15
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Click image or here to hear: original audio, Fuzz audio.
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Exciter and Enhancers

Exciter:

A signal processor that emphasises or de-emphasises certain
frequencies in order to change a signal’s timbre. It can bring
extra brightness without necessarily adding in equalisation.

Frequently used Fourier domain.

Enhancers:

Combine equalisation with non-linear processing.

introduce a small amount (‘just noticeable’) of distortion.
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Exciters

Achieving Excitation:

Basic signal processing is achieved by subtle amounts of
high frequency distortion and possible phase shifting.

Performed using the Short-Time (Windowed) Fourier
Transform (STFM) (see Phase Vocoder)

Compression often employed to non-linear frequency
processed element before mixing with the original signal

Effect can bring more presence and clarity to a single
instrument in a mix

Can add natural brightness to a stereo signal

Can aid intelligibility to speech and vocals.

Best applied to signals which lack high frequency content
unless some odd special effects are required.
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Enhancers

Achieving Enhancment:

Enhancers comprise of a filter network and harmonic
generator.

At least a three band filter is used and an equaliser will
boost or cut the frequencies in these bands —
independently therefore non-linearly.

Input signal usually mixed with enhanced signal to form
output.

Used in place of equalisers on some mixing consoles.

Stereo enhancement for radio broadcast and sound
reinforcement are also common applications.
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Reverb/Spatial Effects

Spatial Effects

The final set of effects we look at are effects that change to
spatial localisation of sound.

There a many examples of this type of processing we will
study two briefly:

Panning: in stereo audio

Reverb: a small selection of reverb algorithms
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Panning

What is Panning?

Mapping a monophonic sound source across a stereo audio image such
that the sound starts in one speaker (R) and is moved to the other
speaker (L) in n time steps.

We assume that we listening in a central position so that the angle
between two speakers is the same, i.e. we subtend an angle 2θl
between 2 speakers.
We assume for simplicity, in this case that θl = 45◦.
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Panning Geometry

Simple applications of basic rotation geometry:

We seek to obtain to signals one for each Left (L) and
Right (R) channel, the gains of which, gL and gR , are
applied to steer the sound across the stereo audio image.

This can be achieved by simple 2D rotation, where the
angle we sweep is θ:

Aθ =

[
cos θ sin θ
− sin θ cos θ

]
and

[
gL
gR

]
= Aθ.x

where x is a segment of mono audio
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MATLAB Panning Example

matpan.m:

% read the sample waveform

filename='acoustic.wav';
[monox,Fs] = audioread(filename);

initial_angle = -40; %in degrees

final_angle = 40; %in degrees

segments = 32;

angle_increment = (initial_angle - final_angle)/segments * pi / 180;

lenseg = floor(length(monox)/segments) - 1;

pointer = 1;

angle = initial_angle * pi / 180; %in radians

y=[[];[]]; % Preallocate

for i=1:segments

A =[cos(angle), sin(angle); -sin(angle), cos(angle)];

stereox =

[monox(pointer:pointer+lenseg)'; monox(pointer:pointer+lenseg)'];
y = [y, A * stereox];

angle = angle + angle_increment; pointer = pointer + lenseg;

end;

% write output .......
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MATLAB Panning Example Output
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Click image or here to hear: original audio,
stereo panned audio.
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Reverb

Reverberation

Reverb (for short) is probably one of the most heavily used effects in
audio.

Reverberation is the result of the many reflections of a sound that

occur in a room.

From any sound source, say a speaker of your stereo, there is

a direct path that the sounds covers to reach our ears.

Sound waves can also take a slightly longer path by reflecting

off a wall or the ceiling, before arriving at your ears.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 87



The Spaciousness of a Room

A reflected sound wave like this will arrive a little later than the
direct sound, since it travels a longer distance, and is generally a
little weaker, as the walls and other surfaces in the room will absorb
some of the sound energy.

Reflected waves can again bounce off another wall before arriving at
your ears, and so on.

This series of delayed and attenuated sound waves is what we call
reverb, and this is what creates the spaciousness sound of a room.

Clearly large rooms such as concert halls/cathedrals will have a
much more spaciousness reverb than a living room or bathroom.
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Reverb v. Echo

Is reverb just a series of echoes?

Echo — implies a distinct, delayed version of a sound,

E.g. as you would hear with a delay more
than one or two-tenths of a second.

Reverb — each delayed sound wave arrives in such a
short period of time that we do not perceive each
reflection as a copy of the original sound.

Even though we can’t discern every
reflection, we still hear the effect that the
entire series of reflections has.
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Reverb v. Delay

Can a simple delay device with feedback produce
reverberation?

Delay: can produce a similar effect but there is one very important feature
that a simple delay unit will not produce:

The rate of arriving reflections changes over time.
Delay can only simulate reflections with a fixed time interval.

Reverb: for a short period after the direct sound, there is generally a set of
well defined directional reflections that are directly related to the
shape and size of the room, and the position of the source and
listener in the room.

These are the early reflections
After the early reflections, the rate of the arriving reflections
increases greatly are more random and difficult to relate to
the physical characteristics of the room.
This is called the diffuse reverberation, or the late reflections.
Diffuse reverberation is the primary factor establishing a
room’s ’spaciousness’ — it decays exponentially in good
concert halls.
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Reverb Simulation

There are many ways to simulate reverb.

Two Broad classes of approach studied here (there are others):

Filter Bank/Delay Line methods

Convolution/Impulse Response methods
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Schroeder’s Reverberator

Schroeder’s model of Reverb (1961)

Early digital reverberation algorithms tried to mimic the a
rooms reverberation by using primarily consisted of two
types of infinite impulse response (IIR) filters with the
aim to make the output gradually decay.

Comb filter: usually in parallel banks
Allpass filter: usually sequentially after comb filter banks

Much of the early work on digital reverb was performed
by Schroeder.
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Schroeder’s Reverberator (Cont.)

Schroeder’s reverberator example (one of a few variations):

This particular design uses four comb filters and two allpass
filters:

Note:This design does not create the increasing arrival rate of
reflections, and is rather primitive when compared to current
algorithms.
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MATLAB Schroeder Reverb Example

Simple Schroeder: schroeder1.m:

n allpass filters in series. (No Comb Filters yet)

function [y,b,a]=schroeder1(x,n,g,d,k)

% This is a reverberator based on Schroeder's design which consists of n

% allpass filters in series.

%

% The structure is: [y,b,a] = schroeder1(x,n,g,d,k)

%

% where x = the input signal

% n = the number of allpass filters

% g = the gain of the allpass filters

% (should be less than 1 for stability)

% d = a vector which contains the delay length of each allpass filter

% k = the gain factor of the direct signal

% y = the output signal

% b = the numerator coefficients of the transfer function

% a = the denominator coefficients of the transfer function

%

% note: Make sure that d is the same length as n.

%
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MATLAB Schroeder Reverb Example (Cont.)

schroeder1.m (Cont.):

% send the input signal through the first allpass filter

[y,b,a] = allpass(x,g,d(1));

% send the output of each allpass filter to the input of

% the next allpass filter

for i = 2:n,

[y,b1,a1] = allpass(y,g,d(i));

[b,a] = seriescoefficients(b1,a1,b,a);

end

% add the scaled direct signal

y = y + k*x;

% normalize the output signal

y = y/max(y);
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MATLAB Schroeder Reverb Example (Cont.)

The support files to do the filtering (for following reverb
methods also) are here:

delay.m,

seriescoefficients.m,

parallelcoefficients.m,

fbcomb.m,

ffcomb.m,

allpass.m

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 96

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/delay.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/seriescoefficients.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/parallelcoefficients.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/fbcomb.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/ffcomb.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/allpass.m


MATLAB Schroeder Reverb (Cont.)

Example call, reverb schroeder eg.m:

filename='acoustic.wav'; % Read the waveform

[x,Fs] = audioread(filename);

% Set the number of allpass filters

n = 6;

% Set the gain of the allpass filters

g = 0.9;

% Set delay of each allpass filter in number of samples

% Compute a random set of milliseconds and use sample rate

rand('state',sum(100*clock))
d = floor(0.05*rand([1,n])*Fs);

%set gain of direct signal

k= 0.2;

[y b a] = schroeder1(x,n,g,d,k);

% write output

audiowrite('out_schroederreverb.wav', y,Fs);
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MATLAB Schroeder Reverb (Cont.)

The input signal (blue) and reverberated signal (red):
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Click images or here to hear: original audio, reverberated audio.
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MATLAB Classic Schroeder Reverb Example

Classic Schroeder Reverb, schroeder2.m:

4 comb and 2 allpass filters.

function [y,b,a]=schroeder2(x,cg,cd,ag,ad,k)

% This is a reverberator based on Schroeder's design which consists of 4

% parallel feedback comb filters in series with 2 allpass filters.

%

% The structure is: [y,b,a] = schroeder2(x,cg,cd,ag,ad,k)

% where x = the input signal

% cg = a vector of length 4 which contains the gain of each of the

% comb filters (should be less than 1)

% cd = a vector of length 4 which contains the delay of each of the

% comb filters

% ag = the gain of the allpass filters (should be less than 1)

% ad = a vector of length 2 which contains the delay of each of the

% allpass filters

% k = the gain factor of the direct signal

% y = the output signal

% b = the numerator coefficients of the transfer function

% a = the denominator coefficients of the transfer function
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MATLAB Classic Schroeder Reverb Example

(Cont.)

Classic Schroeder Reverb, schroeder2.m (Cont.):

% send the input to each of the 4 comb filters separately

[outcomb1,b1,a1] = fbcomb(x,cg(1),cd(1));

[outcomb2,b2,a2] = fbcomb(x,cg(2),cd(2));

[outcomb3,b3,a3] = fbcomb(x,cg(3),cd(3));

[outcomb4,b4,a4] = fbcomb(x,cg(4),cd(4));

% sum the ouptut of the 4 comb filters

apinput = outcomb1 + outcomb2 + outcomb3 + outcomb4;

%find the combined filter coefficients of the the comb filters

[b,a]=parallelcoefficients(b1,a1,b2,a2);

[b,a]=parallelcoefficients(b,a,b3,a3);

[b,a]=parallelcoefficients(b,a,b4,a4);

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 100

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/schroeder2.m


MATLAB Classic Schroeder Reverb Example

(Cont.)

Classic Schroeder Reverb, schroeder2.m (Cont.):

% send the output of the comb filters to the allpass filters

[y,b5,a5] = allpass(apinput,ag,ad(1));

[y,b6,a6] = allpass(y,ag,ad(2));

%find the combined filter coefficients of the the comb filters in

% series with the allpass filters

[b,a]=seriescoefficients(b,a,b5,a5);

[b,a]=seriescoefficients(b,a,b6,a6);

% add the scaled direct signal

y = y + k*x;

% normalize the output signal

y = y/max(y);

See forthcoming Lab Class for examples of this effect and

extensions.
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Moorer’s Reverberator

Moorer’s reverberator (1976): Build’s on Schroeder

Parallel comb filters with different delay lengths are
used to simulate modes of a room, and sound reflecting
between parallel walls
Allpass filters to increase the reflection density
(diffusion).
Lowpass filters inserted in the feedback loops to alter
the reverberation time as a function of frequency

Shorter reverberation time at higher frequencies is
caused by air absorption and reflectivity characteristics
of wall).
Implement a DC-attenuation, and a frequency
dependent attenuation.
Encode a difference in each comb filter because their
coefficients depend on the delay line length.
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Moorer’s Reverberator

(a) Tapped delay lines simulate early reflections — forwarded to (b)

(b) Parallel comb filters which are then allpass filtered and delayed

before being added back to early reflections — simulates diffuse

reverberation
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MATLAB Moorer Reverb

moorer.m:

function [y,b,a]=moorer(x,cg,cg1,cd,ag,ad,k)

% This is a reverberator based on Moorer's design which consists of 6

% parallel feedback comb filters (each with a low pass filter in the

% feedback loop) in series with an all pass filter.

%

% The structure is: [y,b,a] = moorer(x,cg,cg1,cd,ag,ad,k)

%

% where x = the input signal

% cg = a vector of length 6 which contains g2/(1-g1) (this should be less

% than 1 for stability), where g2 is the feedback gain of each of the

% comb filters and g1 is from the following parameter

% cg1 = a vector of length 6 which contains the gain of the low pass

% filters in the feedback loop of each of the comb filters (should be

% less than 1 for stability)

% cd = a vector of length 6 which contains the delay of each of comb filter

% ag = the gain of the allpass filter (should be less than 1 for stability)

% ad = the delay of the allpass filter

% k = the gain factor of the direct signal

% y = the output signal

% b = the numerator coefficients of the transfer function

% a = the denominator coefficients of the transfer function

%
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MATLAB Moorer Reverb (Cont.)

moorer.m (Cont.):

% send the input to each of the 6 comb filters separately

[outcomb1,b1,a1] = lpcomb(x,cg(1),cg1(1),cd(1));

[outcomb2,b2,a2] = lpcomb(x,cg(2),cg1(2),cd(2));

[outcomb3,b3,a3] = lpcomb(x,cg(3),cg1(3),cd(3));

[outcomb4,b4,a4] = lpcomb(x,cg(4),cg1(4),cd(4));

[outcomb5,b5,a5] = lpcomb(x,cg(5),cg1(5),cd(5));

[outcomb6,b6,a6] = lpcomb(x,cg(6),cg1(6),cd(6));

% sum the ouptut of the 6 comb filters

apinput = outcomb1 + outcomb2 + outcomb3 + outcomb4 + outcomb5 + outcomb6;

%find the combined filter coefficients of the the comb filters

[b,a]=parallelcoefficients(b1,a1,b2,a2);

[b,a]=parallelcoefficients(b,a,b3,a3);

[b,a]=parallelcoefficients(b,a,b4,a4);

[b,a]=parallelcoefficients(b,a,b5,a5);

[b,a]=parallelcoefficients(b,a,b6,a6);
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MATLAB Moorer Reverb (Cont.)

moorer.m (Cont.):

% send the output of the comb filters to the allpass filter

[y,b7,a7] = allpass(apinput,ag,ad);

%find the combined filter coefficients of the the comb filters in series

% with the allpass filters

[b,a]=seriescoefficients(b,a,b7,a7);

% add the scaled direct signal

y = y + k*x;

% normalize the output signal

y = y/max(y);
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MATLAB Moorer Reverb (Cont.)

Example call, reverb moorer eg.m:

% reverb_moorer_eg.m

% Script to call the Moorer Reverb Algoritm

% read the sample waveform

filename='../acoustic.wav';
[x,Fs] = audioread(filename);

% Call moorer reverb

%set delay of each comb filter

%set delay of each allpass filter in number of samples

%Compute a random set of milliseconds and use sample rate

rand('state',sum(100*clock))
cd = floor(0.05*rand([1,6])*Fs);

% set gains of 6 comb pass filters

g1 = 0.5*ones(1,6);

%set feedback of each comb filter

g2 = 0.5*ones(1,6);
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MATLAB Moorer Reverb (Cont.)

reverb moorer eg.m:

% set input cg and cg1 for moorer function see help moorer

cg = g2./(1-g1);

cg1 = g1;

%set gain of allpass filter

ag = 0.7;

%set delay of allpass filter

ad = 0.08*Fs;

%set direct signal gain

k = 0.5;

[y b a] = moorer(x,cg,cg1,cd,ag,ad,k);

% write output

audiowrite('out_moorerreverb.wav', y,Fs);
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MATLAB Moorer Reverb (Cont.)

The input signal (blue) and reverberated signal (red):
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Click here to hear: original audio, Moorer reverberated audio.
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out_moorerreverb.mov
Media File (video/quicktime)


acoustic10.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/out_moorerreverb.wav


Convolution Reverb

Convolution Reverb: Basic Idea
If the impulse response of the room is known then the most faithful
reverberation method would be to convolve it with the input signal.

Due to the usual length of the target response it is not feasible to
implement this with filters — several hundreds of taps in the filters
would be required.
However, convolution readily implemented using FFT:

Recall: The discrete convolution formula:

y(n) =
∞∑

k=−∞

x(k).h(n − k) = x(n) ∗ h(n)

Recall: The convolution theorem which states that:

If f (x) and g(x) are two functions with Fourier transforms

F (u) and G (u), then the Fourier transform of the

convolution f (x) ∗ g(x) is simply the product of the Fourier

transforms of the two functions, F (u)G (u).
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Commercial Convolution Reverbs

Commercial Convolution Reverbs

Altiverb — one of the first
mainstream convolution reverb
effects units

Most sample based synthesisers
(E.g. Kontakt, Intakt) provide
some convolution reverb effect

Dedicated sample-based software
instruments such as Garritan Violin
and PianoTeq Piano use
convolution not only for reverb
simulation but also to simulate key
responses of the instruments body
vibration.
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http://www.garritan.com/stradivari.html
http://www.pianoteq.com/


Room Impulse Responses

Record a Room Impulse

Apart from providing a high (professional) quality recording of a room’s
impulse response, the process of using an impulse response is quite
straightforward:

Record a short impulse (gun shot,drum hit, hand clap) in the room.

Room impulse responses can be simulated in software also.

The impulse encodes the rooms reverb characteristics:
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MATLAB Convolution Reverb (1)

Let’s develop a fast convolution routine: fconv.m

function [y]=fconv(x, h)

% FCONV Fast Convolution

% [y] = FCONV(x, h) convolves x and h,

% and normalizes the output to +-1.

% x = input vector

% h = input vector

%

Ly=length(x)+length(h)-1; %

Ly2=pow2(nextpow2(Ly)); % Find smallest power of 2

% that is > Ly

X=fft(x, Ly2); % Fast Fourier transform

H=fft(h, Ly2); % Fast Fourier transform

Y=X.*H; % DO CONVOLUTION

y=real(ifft(Y, Ly2)); % Inverse fast Fourier transform

y=y(1:1:Ly); % Take just the first N elements

y=y/max(abs(y)); % Normalize the output

See also: MATLAB built in function conv()
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MATLAB Convolution Reverb (2)

reverb convolution eg.m

% reverb_convolution_eg.m

% Script to call implement Convolution Reverb

% read the sample waveform

filename='../acoustic.wav';
[x,Fs] = audioread(filename);

% read the impulse response waveform

filename='impulse_room.wav';
[imp,Fsimp] = audioread(filename);

% Do convolution with FFT

y = fconv(x,imp);

% write output

audiowrite('out_IRreverb.wav', y,Fs);
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MATLAB Convolution Reverb (3)

Some example results:

Living Room Impulse Response Convolution Reverb:
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Click on above images or here to hear: original audio,
room impulse response audio,
room impulse reverberated audio.
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impulse_room.mov
Media File (video/quicktime)


out_IRreverb_room.mov
Media File (video/quicktime)


acoustic11.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/impulse_room.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/out_IRreverb_room.wav


MATLAB Convolution Reverb (4)

Cathedral Impulse Response Convolution Reverb:
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Click on above images or here to hear: original audio,
cathedral impulse response audio,
cathedral reverberated audio.
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impulse_cathedral.mov
Media File (video/quicktime)


out_IRreverb_cathedral.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/impulse_cathedral.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/out_IRreverb_cathedral.wav


MATLAB Convolution Reverb (5)

It is easy to implement some other (odd?) effects also

Reverse Cathedral Impulse Response Convolution Reverb:
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Click on above images or here to hear: original audio,
reverse cathedral impulse response audio,
reverse cathedral reverberated audio.
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impulse_revcathedral.mov
Media File (video/quicktime)


out_IRreverb_revcathedral.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/impulse_revcathedral.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/out_IRreverb_revcathedral.wav


MATLAB Convolution Reverb (6)

You can basically convolve with anything.

Speech Impulse Response Convolution Reverb!:
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Click on above images or here to hear: original audio,
speech ‘impulse response’ audio,
speech impulse reverberated audio.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 118


impulse_MM.mov
Media File (video/quicktime)


out_IRreverb_MM.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/impulse_MM.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/out_IRreverb_MM.wav
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