
CM3106 Chapter 7:

Digital Audio Effects

Prof David Marshall
dave.marshall@cs.cardiff.ac.uk

and

Dr Kirill Sidorov
K.Sidorov@cs.cf.ac.uk

www.facebook.com/kirill.sidorov

School of Computer Science & Informatics
Cardiff University, UK

www.facebook.com/kirill.sidorov

Digital Audio Effects

Having learned to make basic sounds from basic waveforms
and more advanced synthesis methods lets see how we can at
some digital audio effects.
These may be applied:

As part of the audio creation/synthesis stage — to be
subsequently filtered, (re)synthesised
At the end of the audio chain — as part of the
production/mastering phase.
Effects can be applied in different orders and sometimes
in a parallel audio chain.
The order of applying the same effects can have drastic
differences in the output audio.
Selection of effects and the ordering is a matter for the
sound you wish to create. There is no absolute rule for
the ordering.

CM3106 Chapter 7: Digital Audio Effects Intro 2

FX Pipeline
Apply effects in which order?

Some ordering is standard for some audio processing, E.g:
Compression→ Distortion→ EQ→ Noise Redux→ Amp Sim→
Modulation→ Delay→ Reverb
Can also be configurable.

Common for order guitar (and other sources) effects pedal:

ZOOM G1/G1X18

Compressor

Auto Wah

Booster

Tremolo

Phaser

FD Clean

VX Clean

HW Clean

US Blues

BG Crunch

Hall

Room

Spring

Arena

Tiled Room

Delay

Tape Echo

Analog
Delay

Ping Pong
Delay

AMP Sim.ZNR Chorus

Ensemble

Flanger

Step

Pitch Shift

COMP/EFX DRIVE EQ MODULATION REVERBDELAYAMPZNR
Effect modules

Effect types

Effect Types and Parameters

Linking Effects

The patches of the G1/G1X consist of eight
serially linked effect modules, as shown in the

illustration below. You can use all effect
modules together or selectively set certain
modules to on or off.

Explanation of symbols

! Module selector
The Module selector symbol
shows the position of the knob at
which this module/parameter is
called up.

! Expression pedal
A peda l i con in t he l i s t i ng
indicates a parameter that can be
controlled with the built-in or an
external expression pedal.

When this item is selected, the parameter in the
module can then be controlled in real time with a
connected expression pedal.

! Tap
A [TAP] icon in the l i s t ing
indicates a parameter that can be
set with the [BANK UP•TAP]
key.

When the respective module/effect type is
selected in edit mode and the [BANK UP•TAP]
key is pressed repeatedly, the parameter (such as
modulation rate or delay time) will be set
according to the interval in which the key is
pressed.

TAP

* Manufacturer names and product names mentioned in this listing are trademarks or
registered trademarks of their respective owners. The names are used only to illustrate sonic
characteristics and do not indicate any affiliation with ZOOM CORPORATION.

For some effect modules, you can select an effect type from several possible choices. For example, the
MODULATION module comprises Chorus, Flanger, and other effect types. The REVERB module
comprises Hall, Room, and other effect types from which you can choose one.

Effect Types and Parameters

ZOOM G1/G1X 19

"PATCH LEVEL

"COMP/EFX (Compressor/EFX) module

"DRIVE module

PATCH LEVEL (Prm)

Determines the overall volume level of the patch.

Sets the patch level in the range from 2 – 98, 1.0. A setting of 80 corresponds to unity gain (input level
and output level are equal).

This module comprises the effects that control the level dynamics such as compressor, and
modulation effects such as tremolo and phaser.

COMP/EFX (Type&Prm)

Adjusts the COMP/EFX module effect type and intensity.

Compressor
This is an MXR Dynacomp type compressor. It attenuates high-level signal components and boosts
low-level signal components, to keep the overall signal level within a certain range. Higher setting
values result in higher sensitivity.

Auto Wah
This effect varies wah in accordance with picking intensity. Higher setting values result in higher
sensitivity.

Booster
Raises signal level and creates a dynamic sound. Higher setting values result in higher gain.

Tremolo
This effect periodically varies the volume. Higher setting values result in faster modulation rate.

Phaser
This effect produces sound with a pulsating character. Higher setting values result in faster modulation
rate.

Ring Mod (Ring Modulator)
This effect produces a metallic ringing sound. Higher setting values result in higher modulation
frequency.

Slow Attack
This effect reduces the attack rate of each individual note, producing a violin playing style sound.
Higher setting values result in slower attack times.

Vox Wah
This effect simulates a half-open vintage VOX wah pedal. Higher setting values result in higher
emphasized frequency.

Cry Wah
This effect simulates a half-open vintage Crybaby wah pedal. Higher setting values result in higher
emphasized frequency.

This module includes 20 types of distortion and an acoustic simulator. For this module, the two
items DRIVE and GAIN can be adjusted separately.

DRIVE (Type)

Selects the effect type for the DRIVE module.

FD Clean VX Clean
Clean sound of a Fender Twin Reverb ('65
model) favored by guitarists of many
music styles.

Clean sound of the combo amp VOX AC-
30 operating in class A.

2 10

C1 C9

A1 A9

B1 B9

T1 T9

P1 P9

R1 R9

S1 S9

V1 V9

1 9

FD V

CM3106 Chapter 7: Digital Audio Effects Intro 3

Effects Types

Audio effects can be classified by the way process signals:

Basic Filtering: Lowpass, Highpass filter etc.,
Equaliser

Time Varying Filters: Wah-wah, Phaser

Delays: Vibrato, Flanger, Chorus, Echo

Modulators: Ring modulation, Tremolo, Vibrato

Non-linear Processing: Compression, Limiters, Distortion,
Exciters/Enhancers

Spacial Effects: Panning, Reverb, Surround Sound

CM3106 Chapter 7: Digital Audio Effects Intro 4

Basic Digital Audio Filtering Effects:

Equalisers

Filtering:

Filters by definition remove/attenuate audio from the
spectrum above or below some cut-off frequency.

For many audio applications this a little too restrictive

Equalisation:

Equalisers, by contrast, enhance/diminish certain frequency
bands whilst leaving others unchanged:

Built using a series of shelving and peak filters

First or second-order filters usually employed.

CM3106 Chapter 7: Digital Audio Effects Equalisation 5

Shelving and Peak Filters

Shelving Filter:

Boost or cut the low or high frequency bands with a
cut-off frequency, Fc and gain G :

CM3106 Chapter 7: Digital Audio Effects Equalisation 6

Shelving and Peak Filters (Cont.)

Peak Filter:

Boost or cut mid-frequency bands with a cut-off
frequency,Fc , a bandwidth, fb and gain G :

CM3106 Chapter 7: Digital Audio Effects Equalisation 7

Shelving Filters

A First-order Shelving Filter:

Transfer function:

H(z) = 1 +
H0

2
(1± A(z)) where LF/HF + /−

where A(z) is a first-order allpass filter — passes all frequencies but
modifies phase:

A(z) =
z−1 + aB/C

1 + aB/C z−1
B=Boost, C=Cut

which leads the following algorithm/difference equation:

y1(n) = aB/Cx(n) + x(n − 1)− aB/Cy1(n − 1)

y(n) =
H0

2
(x(n)± y1(n)) + x(n)

CM3106 Chapter 7: Digital Audio Effects Equalisation 8

Shelving Filters (Cont.)

Shelving Filter Parameters:

The gain, G , in dB can be adjusted accordingly:

H0 = V0 − 1 where V0 = 10G/20

and the cut-off frequency for boost, aB , or cut, aC are given
by:

aB =
tan(2πfc/fs)− 1

tan(2πfc/fs) + 1

aC =
tan(2πfc/fs)− V0

tan(2πfc/fs) + V0

CM3106 Chapter 7: Digital Audio Effects Equalisation 9

Shelving Filters Signal Flow Graph

y(n)A(z) ± ×
H0/2

+x(n) y1(n)

1

where A(z) is given by:

T
x(n − 1)

y(n)

× ×aB/C 1

+ +

× −aB/C

T

y1(n − 1)

x(n)

1

CM3106 Chapter 7: Digital Audio Effects Equalisation 10

Peak Filters

A 2nd-order Peak Filter

Transfer function:

H(z) = 1 +
H0

2
(1− A2(z))

where A2(z) is a second-order allpass filter:

A(z) =
−aB + (d − daB)z−1 + z−2

1 + (d − daB)z−1 + aBz−2

which leads the following algorithm/difference equation:

y1(n) = 1aB/Cx(n) + d(1− aB/C)x(n − 1) + x(n − 2)

−d(1− aB/C)y1(n − 1) + aB/Cy1(n − 2)

y(n) =
H0

2
(x(n)− y1(n)) + x(n)

CM3106 Chapter 7: Digital Audio Effects Equalisation 11

Peak Filters (Cont.)

Peak Filter Parameters:

The center/cut-off frequency, d , is given by:

d = −cos(2πfc/fs)

The H0 by relation to the gain, G , as before:

H0 = V0 − 1 where V0 = 10G/20

and the bandwidth, fb is given by the limits for boost, aB , or cut, aC are
given by:

aB =
tan(2πfb/fs)− 1

tan(2πfb/fs) + 1

aC =
tan(2πfb/fs)− V0

tan(2πfb/fs) + V0

CM3106 Chapter 7: Digital Audio Effects Equalisation 12

Peak Filters Signal Flow Graph

y(n)A(z) +× ×
−1 H0/2

+x(n) y1(n)

1

where A(z) is given by:
x(n)

T T

x(n − 1) x(n − 2)

× × ×−aB/C d(1 − aB/C) 1

+ + +
y(n)

× ×aB/C −d(1 − aB/C)

T T
y1(n − 2) y1(n − 1)

1

CM3106 Chapter 7: Digital Audio Effects Equalisation 13

Shelving Filter EQ MATLAB Example (1)

shelving.m

function [b, a] = shelving(G, fc, fs, Q, type)

%

% Derive coefficients for a shelving filter with a given amplitude

% and cutoff frequency. All coefficients are calculated as

% described in Zolzer's DAFX book (p. 50 -55).

%

% Usage: [B,A] = shelving(G, Fc, Fs, Q, type);

%

% G is the logrithmic gain (in dB)

% FC is the center frequency

% Fs is the sampling rate

% Q adjusts the slope be replacing the sqrt(2) term

% type is a character string defining filter type

% Choices are: 'Base_Shelf' or 'Treble_Shelf'

% Error Check

if((strcmp(type,'Base_Shelf') ~= 1) && ...

(strcmp(type,'Treble_Shelf') ~= 1))

error(['Unsupported Filter Type: ' type]);

end

CM3106 Chapter 7: Digital Audio Effects Equalisation 14

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/shelving.m

Shelving Filter EQ MATLAB Example (2)

shelving.m cont.

K = tan((pi * fc)/fs);

V0 = 10^(G/20);

root2 = 1/Q;

% Invert gain if a cut

if (V0 < 1)

V0 = 1/V0;

end

%%%%%%%%%%%%%%%%%%%%

% BASE BOOST

%%%%%%%%%%%%%%%%%%%%

if((G > 0) & (strcmp(type,'Base_Shelf')))

b0 = (1 + sqrt(V0)*root2*K + V0*K^2) / (1 + root2*K + K^2);

b1 = (2 * (V0*K^2 - 1)) / (1 + root2*K + K^2);

b2 = (1 - sqrt(V0)*root2*K + V0*K^2) / (1 + root2*K + K^2);

a1 = (2 * (K^2 - 1)) / (1 + root2*K + K^2);

a2 = (1 - root2*K + K^2) / (1 + root2*K + K^2);

CM3106 Chapter 7: Digital Audio Effects Equalisation 15

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/shelving.m

Shelving Filter EQ MATLAB Example (3)

shelving.m cont.

%%%%%%%%%%%%%%%%%%%%

% BASE CUT

%%%%%%%%%%%%%%%%%%%%

elseif ((G < 0) & (strcmp(type,'Base_Shelf')))

b0 = (1 + root2*K + K^2) / (1 + root2*sqrt(V0)*K + V0*K^2);

b1 = (2 * (K^2 - 1)) / (1 + root2*sqrt(V0)*K + V0*K^2);

b2 = (1 - root2*K + K^2) / (1 + root2*sqrt(V0)*K + V0*K^2);

a1 = (2 * (V0*K^2 - 1)) / (1 + root2*sqrt(V0)*K + V0*K^2);

a2 = (1 - root2*sqrt(V0)*K + V0*K^2) / ...

(1 + root2*sqrt(V0)*K + V0*K^2);

CM3106 Chapter 7: Digital Audio Effects Equalisation 16

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/shelving.m

Shelving Filter EQ MATLAB Example (3)

shelving.m cont.

%%%%%%%%%%%%%%%%%%%%

% TREBLE BOOST

%%%%%%%%%%%%%%%%%%%%

elseif ((G > 0) & (strcmp(type,'Treble_Shelf')))

b0 = (V0 + root2*sqrt(V0)*K + K^2) / (1 + root2*K + K^2);

b1 = (2 * (K^2 - V0)) / (1 + root2*K + K^2);

b2 = (V0 - root2*sqrt(V0)*K + K^2) / (1 + root2*K + K^2);

a1 = (2 * (K^2 - 1)) / (1 + root2*K + K^2);

a2 = (1 - root2*K + K^2) / (1 + root2*K + K^2);

CM3106 Chapter 7: Digital Audio Effects Equalisation 17

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/shelving.m

Shelving Filter EQ MATLAB Example (4)

shelving.m cont.

%%%%%%%%%%%%%%%%%%%%

% TREBLE CUT

%%%%%%%%%%%%%%%%%%%%

elseif ((G < 0) & (strcmp(type,'Treble_Shelf')))

b0 = (1 + root2*K + K^2) / (V0 + root2*sqrt(V0)*K + K^2);

b1 = (2 * (K^2 - 1)) / (V0 + root2*sqrt(V0)*K + K^2);

b2 = (1 - root2*K + K^2) / (V0 + root2*sqrt(V0)*K + K^2);

a1 = (2 * ((K^2)/V0 - 1)) / (1 + root2/sqrt(V0)*K ...

+ (K^2)/V0);

a2 = (1 - root2/sqrt(V0)*K + (K^2)/V0) /

(1 + root2/sqrt(V0)*K + (K^2)/V0);

%%%%%%%%%%%%%%%%%%%%

% All-Pass

%%%%%%%%%%%%%%%%%%%%

else

b0 = V0;

b1 = 0; b2 = 0; a1 = 0; a2 = 0;

end

%return values

a = [1, a1, a2];

b = [b0, b1, b2];

CM3106 Chapter 7: Digital Audio Effects Equalisation 18

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/shelving.m

Shelving Filter EQ MATLAB Example (5)

Example use: shelving eg.m

infile = 'acoustic.wav';

[x, Fs] = audioread(infile);% read in wav sample

% Set parameters for Shelving Filter

% Change these to experiment with filter

G = 4; fcb = 300; Q = 3; type = 'Base_Shelf';

[b a] = shelving(G, fcb, Fs, Q, type);

yb = filter(b,a, x);

% Write output wav files

audiowrite('out_bassshelf.wav', yb, Fs);

% Plot the original and equalised waveforms

figure(1), hold on;

plot(yb,'b');
plot(x,'r');
title('Bass Shelf Filter Equalised Signal');

CM3106 Chapter 7: Digital Audio Effects Equalisation 19

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/shelving_eg.m

Shelving Filter EQ MATLAB Example (6)

shelving eg.m cont.

% Do treble shelf filter

fct = 600; type = 'Treble_Shelf';

[b a] = shelving(G, fct, Fs, Q, type);

yt = filter(b,a, x);

% Write output wav files

audiowrite('out_treblehelf.wav', yt, Fs);

figure(1), hold on;

plot(yb,'g');
plot(x,'r');
title('Treble Shelf Filter Equalised Signal');

CM3106 Chapter 7: Digital Audio Effects Equalisation 20

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/shelving_eg.m

Shelving Filter EQ MATLAB Example Output

The output from the above code is (red plot is original audio):

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Bass Shelf Filter Equalised Signal

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Treble Shelf Filter Equalised Signal

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click on above images or here to hear: original audio,
bass shelf filtered audio, treble shelf filtered audio.

CM3106 Chapter 7: Digital Audio Effects Equalisation 21

out_bassshelf.mp4
Media File (video/mp4)

out_trebleshelf.mp4
Media File (video/mp4)

acoustic.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/DSP/DSP_EGs/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/DSP/DSP_EGs/out_bassshelf.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/DSP/DSP_EGs/out_treblehelf.wav

Time-varying Filters

Time-varying Filter Effects

Some common effects are realised by simply time varying a
filter in a couple of different ways:

Wah-wah: A bandpass filter with a (modulated) time
varying centre (resonant) frequency and a small
bandwidth. Filtered signal mixed with direct
signal.

Phasing: A notch filter, that can be realised as set of
cascading IIR filters, again mixed with direct
signal.

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 22

Wah-wah Example

Wah-wah, Signal flow diagram:

y(n)+×

×BP

direct-mix

wah-mix
Time

Varying

x(n)

1

where BP is a time-varying frequency bandpass filter.

Wah-wah Variations

A phaser is similarly implemented with a notch filter
replacing the bandpass filter.
A variation is the M-fold wah-wah filter where M tap delay
bandpass filters spread over the entire spectrum change their
centre frequencies simultaneously.

A bell effect can be achieved with around a hundred M
tap delays and narrow bandwidth filters

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 23

Time Varying Filter Implementation:

State Variable Filter

The Practical State Variable Filter

In time varying filters we now want independent control over
the cut-off frequency and damping factor of a filter.

(Borrowed from analog electronics) We can implement a
State Variable Filter to solve this problem.

One further advantage is that we can simultaneously
get lowpass, bandpass and highpass filter output.

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 24

The State Variable Filter

+ +

yh(n)

×
F1

+

yb(n)

×
F1

+

yl(n)

T T

×
−1 × Q1

T

T×
−1

x(n)

1

where:

x(n) = input signal

yl(n) = lowpass signal

yb(n) = bandpass signal

yh(n) = highpass signal

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 25

The State Variable Filter Algorithm

State Variable Filter difference equations are given by:

yl(n) = F1yb(n) + yl(n − 1)

yb(n) = F1yh(n) + yb(n − 1)

yh(n) = x(n)− yl(n − 1)− Q1yb(n − 1)

with tuning coefficients F1 andQ1 related to the cut-off
frequency, fc , and damping, d :

F1 = 2 sin(πfc/fs), and Q1 = 2d

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 26

MATLAB Wah-wah Implementation

Making a Wah-wah

We simply implement the State Variable Filter with a Sinusoid
Modulated (variable) frequency, fc .

wah wah.m:

% wah_wah.m state variable band pass

%

% BP filter with narrow pass band, Fc oscillates up and

% down the spectrum

% Difference equation taken from DAFX chapter 2

%

% Changing this from a BP to a BR/BS (notch instead of a bandpass)

% converts this effect to a phaser

%

% yl(n) = F1*yb(n) + yl(n-1)

% yb(n) = F1*yh(n) + yb(n-1)

% yh(n) = x(n) - yl(n-1) - Q1*yb(n-1)

%

% vary Fc from 500 to 5000 Hz

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 27

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/wah_wah.m

Wah-wah Implementation

wah wah.m (Cont.):

infile = 'acoustic.wav';

% read in wav sample

[x, Fs] = audioread(infile);

%%%%%%% EFFECT COEFFICIENTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

% damping factor

% lower the damping factor the smaller the pass band

damp = 0.05;

% min and max centre cutoff frequency of variable bandpass filter

minf=500;

maxf=3000;

% wah frequency, how many Hz per second are cycled through

Fw = 2000;

%%%

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 28

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/wah_wah.m

Wah-wah Implementation

wah wah.m (Cont.):

% change in centre frequency per sample (Hz)

delta = Fw/Fs;

% create triangle wave of centre frequency values

Fc=minf:delta:maxf;

while(length(Fc) < length(x))

Fc= [Fc (maxf:-delta:minf)];

Fc= [Fc (minf:delta:maxf)];

end

% trim tri wave to size of input

Fc = Fc(1:length(x));

% difference equation coefficients

% must be recalculated each time Fc changes

F1 = 2*sin((pi*Fc(1))/Fs);

% this dictates size of the pass bands

Q1 = 2*damp;

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 29

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/wah_wah.m

Wah-wah Implementation

wah wah.m (Cont.):

yh=zeros(size(x)); % create emptly out vectors

yb=zeros(size(x));

yl=zeros(size(x));

% first sample, to avoid referencing of negative signals

yh(1) = x(1);

yb(1) = F1*yh(1);

yl(1) = F1*yb(1);

% apply difference equation to the sample

for n=2:length(x),

yh(n) = x(n) - yl(n-1) - Q1*yb(n-1);

yb(n) = F1*yh(n) + yb(n-1);

yl(n) = F1*yb(n) + yl(n-1);

F1 = 2*sin((pi*Fc(n))/Fs);

end

% normalise and Output

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 30

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/wah_wah.m

Wah-wah MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Wah−wah and original Signal

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click on images or here to hear: original audio, wah-wah audio.

CM3106 Chapter 7: Digital Audio Effects Time-varying Filters 31

out_wah.mov
Media File (video/quicktime)

acoustic1.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_wah.wav

Delay Based Effects

Many useful audio effects can be implemented using a delay
structure:

Sounds reflected off walls

In a cave or large room we hear an echo and also
reverberation takes place – this is a different effect —
see later
If walls are closer together repeated reflections can
appear as parallel boundaries and we hear a modification
of sound colour instead.

Vibrato, Flanging, Chorus and Echo are examples of
delay effects

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 32

Basic Delay Structure

The Return of IIR and FIR filters:

We build basic delay structures out of some very basic IIR and
FIR filters:

We use FIR and IIR comb filters

Combination of FIR and IIR gives the Universal Comb
Filter

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 33

FIR Comb Filter

FIR Comb Filter: A single delay

This simulates a single delay:

The input signal is delayed by a given time duration, τ .

The delayed (processed) signal is added to the input
signal some amplitude gain, g

The difference equation is simply:

y(n) = x(n) + gx(n −M) with M = τ/fs

The transfer function is:

H(z) = 1 + gz−M

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 34

FIR Comb Filter Signal Flow Diagram

+
y(n)

TM

×

×x(n − M)

1

g

x(n)

1

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 35

FIR Comb Filter MATLAB Code

fircomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

g=0.5; %Example gain

Delayline=zeros(10,1); % memory allocation for length 10

for n=1:length(x);

y(n)=x(n)+g*Delayline(10);

Delayline=[x(n);Delayline(1:10-1)];

end;

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 36

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/fircomb.m

IIR Comb Filter

IIR Comb Filter

Simulates endless reflections at both ends of cylinder.

We get an endless series of responses, y(n) to input, x(n).

The input signal circulates in delay line (delay time τ) that is
fed back to the input.

Each time it is fed back it is attenuated by g .

Input sometime scaled by c to compensate for high
amplification of the structure.

The difference equation is simply:

y(n) = Cx(n) + gy(n −M) with M = τ/fs

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 37

IIR Comb Filter Signal Flow Diagram

× +
y(n)

TM

× y(n − M)

g

c

x(n)

1

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 38

IIR Comb Filter MATLAB Code

iircomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

g=0.5;

Delayline=zeros(10,1); % memory allocation for length 10

for n=1:length(x);

y(n)=x(n)+g*Delayline(10);

Delayline=[y(n);Delayline(1:10-1)];

end;

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 39

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/iircomb.m

Universal Comb Filter

Universal Comb Filter

Combination of the FIR and IIR comb filters.

Basically this is an allpass filter with an M sample delay
operator and an additional multiplier, FF.

TM

x(n − M)

×

×

BL

FF

+ +
y(n)

×
FB

x(n)

1

Parameters:
FF = feedforward, FB = feedbackward, BL = blend

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 40

Universal Comb Filter Parameters

Why is “Universal”?

Universal in that we can form any comb filter, an
allpass or a delay filter:

BL FB FF
FIR Comb 1 0 g
IIR Comb 1 g 0
Allpass a −a 1
delay 0 0 1

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 41

Universal Comb Filter MATLAB Code

unicomb.m:

x=zeros(100,1);x(1)=1; % unit impulse signal of length 100

BL=0.5;

FB=-0.5;

FF=1;

M=10;

Delayline=zeros(M,1); % memory allocation for length 10

for n=1:length(x);

xh=x(n)+FB*Delayline(M);

y(n)=FF*Delayline(M)+BL*xh;

Delayline=[xh;Delayline(1:M-1)];

end;

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 42

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/unicomb.m

Vibrato - A Simple Delay Based Effect

Vibrato:

Vibrato — Varying (modulating) the time delay
periodically.

If we vary the distance between an observer and a
sound source (cf. Doppler effect) we hear a change in
pitch.

Implementation: A Delay line and a low frequency
oscillator (LFO) to vary the delay.

Only listen to the delay — no forward or backward feed.

Typical delay time = 5–10 Ms and LFO rate = 5–14Hz.

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 43

Vibrato MATLAB Code

vibrato.m function:

See vibrato eg.m for sample call this function

function y=vibrato(x,SAMPLERATE,Modfreq,Width)

ya_alt=0;

Delay=Width; % basic delay of input sample in sec

DELAY=round(Delay*SAMPLERATE); % basic delay in # samples

WIDTH=round(Width*SAMPLERATE); % modulation width in # samples

if WIDTH>DELAY

error('delay greater than basic delay !!!');
return;

end;

MODFREQ=Modfreq/SAMPLERATE; % modulation frequency in # samples

LEN=length(x); % # of samples in WAV-file

L=2+DELAY+WIDTH*2; % length of the entire delay

Delayline=zeros(L,1); % memory allocation for delay

y=zeros(size(x)); % memory allocation for output vector

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 44

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/vibrato.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/vibrato_eg.m

Vibrato MATLAB Code (Cont.)

vibrato.m (Cont.)

for n=1:(LEN-1)

M=MODFREQ;

MOD=sin(M*2*pi*n);

ZEIGER=1+DELAY+WIDTH*MOD;

i=floor(ZEIGER);

frac=ZEIGER-i;

Delayline=[x(n);Delayline(1:L-1)];

%---Linear Interpolation-----------------------------

y(n,1)=Delayline(i+1)*frac+Delayline(i)*(1-frac);

%---Allpass Interpolation------------------------------

%y(n,1)=(Delayline(i+1)+(1-frac)*Delayline(i)-(1-frac)*ya_alt);

%ya_alt=ya(n,1);

end

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 45

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/vibrato.m

Vibrato MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Vibrato First 500 Samples

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click image or here to hear: original audio, vibrato audio.

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 46

out_vibrato.mov
Media File (video/quicktime)

acoustic2.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_vibrato.wav

Comb Filter Delay Effects:

Flanger, Chorus, Slapback, Echo

A few other popular effects can be made with a comb filter (FIR or
IIR) and some modulation.
Flanger, Chorus, Slapback, Echo same basic approach but different
sound outputs:

Effect Delay Range (ms) Modulation
Resonator 0 . . . 20 None
Flanger 0 . . . 15 Sinusoidal (≈ 1 Hz)
Chorus 10 . . . 25 Random
Slapback 25 . . . 50 None
Echo > 50 None

Slapback (or doubling) — quick repetition of the sound,
Flanging — continuously varying LFO of delay,
Chorus — multiple copies of sound delayed by small random
delays

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 47

Flanger MATLAB Code

flanger.m:

% Creates a single FIR delay with the delay time oscillating from

% Either 0-3 ms or 0-15 ms at 0.1 - 5 Hz

infile='acoustic.wav';
outfile='out_flanger.wav';

% read the sample waveform

[x,Fs] = audioread(infile);

% parameters to vary the effect %

max_time_delay=0.003; % 3ms max delay in seconds

rate=1; %rate of flange in Hz

index=1:length(x);

% sin reference to create oscillating delay

sin_ref = (sin(2*pi*index*(rate/Fs)))';

%convert delay in ms to max delay in samples

max_samp_delay=round(max_time_delay*Fs);

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 48

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/flanger.m

Flanger MATLAB Code (Cont.)

flanger.m (Cont.):

% create empty out vector

y = zeros(length(x),1);

% to avoid referencing of negative samples

y(1:max_samp_delay)=x(1:max_samp_delay);

% set amp suggested coefficient from page 71 DAFX

amp=0.7;

% for each sample

for i = (max_samp_delay+1):length(x),

cur_sin=abs(sin_ref(i)); %abs of current sin val 0-1

% generate delay from 1-max_samp_delay and ensure whole number

cur_delay=ceil(cur_sin*max_samp_delay);

% add delayed sample

y(i) = (amp*x(i)) + amp*(x(i-cur_delay));

end

% write output

audiowrite(outfile, y, Fs);

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 49

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/flanger.m

Flanger MATLAB Example (Cont.)

The output from the above code is (red plot is original audio):

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Flanger and original Signal

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click here to hear: original audio, flanged audio.

CM3106 Chapter 7: Digital Audio Effects Delay Based Effects 50

out_flanger.mov
Media File (video/quicktime)

acoustic3.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_flanger.wav

Modulation

Modulation:

The process where parameters of a sinusoidal signal
(amplitude, frequency and phase) are modified or varied by an
audio signal.

We have met some example effects that could be considered
as a class of modulation already:

Amplitude Modulation: Wah-wah, Phaser

Frequency Modulation: Audio synthesis technique

Phase Modulation: Vibrato, Chorus, Flanger

We will now look at some other Modulation effects.

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 51

Ring Modulation

Ring modulation (RM)

RM is where the audio modulator signal, x(n) is multiplied by a sine wave, m(n), with
a carrier frequency, fc .

This is very simple to implement digitally:

y(n) = x(n).m(n)

Although audible result is easy to comprehend for simple signals things get
more complicated for signals having numerous partials
If the modulator is also a sine wave with frequency, fx then one hears the sum
and difference frequencies: fc + fx and fc − fx , for example.
When the input is periodic with at a fundamental frequency, f0, then a
spectrum with amplitude lines at frequencies |kf0 ± fc |.
Used to create robotic speech effects on old sci-fi movies and can create some
odd almost non-musical effects if not used with care. (Original speech).
ring modIlikeMM.m code here

0 2 4 6 8 10 12
x 104

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Original: I Like Multimedia

0 2 4 6 8 10 12
x 104

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Ring Modulated: I Like Multimedia

Original Signal Ring Modulated Signal (Robotic)

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 52

IlikeMM.mov
Media File (video/quicktime)

IlikeMM_ringmod.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/IlikeMM_ringmod.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/IlikeMM.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/ring_modIlikeMM.m

MATLAB Ring Modulation

Two examples

An audio sample and a sine wave being modulated by a sine
wave.

Example 1: Audio RM, ring mod.m

% read the sample waveform

[x,Fs] = audioread('acoustic.wav');

index = 1:length(x);

% Ring Modulate with a sine wave frequency Fc

Fc = 440;

carrier= sin(2*pi*index*(Fc/Fs))';

% Do Ring Modulation

y = x.*carrier;

% write output

audiowrite('out_ringmod.wav', y,Fs);

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 53

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/ring_mod.m

Example 1: Audio RM Output

0 5 10 15
x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Ring_mod.m Output

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click image or here to hear: original audio,
ring modulated audio.

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 54

out_ringmod.mov
Media File (video/quicktime)

acoustic4.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_ringmod.wav

MATLAB Ring Modulation: Two sine waves

Example 2: Two sine waves RM ring mod 2sine.m

% Ring Modulate with a sine wave frequency Fc

Fc = 440;

carrier= sin(2*pi*index*(Fc/Fs))';

%create a modulator sine wave frequency Fx

Fx = 200;

modulator = sin(2*pi*index*(Fx/Fs))';

% Ring Modulate with sine wave, freq. Fc

y = modulator.*carrier;

% write output

audiowrite('twosine_ringmod.wav', y,Fs);

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 55

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/ring_mod_2sine.m

Example 2: Two Sine RM Output

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Output of Two sine wave ring modulation (fc = 440, fx = 380)

Click image or here to hear:
Two RM sine waves (fc = 440, fx = 200)

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 56

twosine_ringmod.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/twosine_ringmod.wav

Amplitude Modulation

Amplitude Modulation (AM)

AM is defined by:
y(n) = (1 + αm(n)).x(n)

Normalise the peak amplitude of m(n) to 1.

α is depth of modulation

α = 1 gives maximum modulation
α = 0 tuns off modulation

x(n) is the audio carrier signal

m(n) is a low-frequency oscillator modulator.

When x(n) and m(n) both sine waves with frequencies fc and fx
respectively we here three frequencies: carrier, difference and sum:
fc , fc − fx , fc + fx .

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 57

Amplitude Modulation: Tremolo

AM Example: tremolo

Modulate the amplitude:

Set modulation frequency of a sine wave to below 20Hz.

tremolo1.m

filename='acoustic.wav';% read the sample waveform

[x,Fs] = audioread(filename);

index = 1:length(x);

Fc = 5;

alpha = 0.5;

trem=(1+ alpha*sin(2*pi*index*(Fc/Fs)))';
y = trem.*x;

% write output

audiowrite('out_tremolo1.wav', y,Fs);

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 58

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/tremolo1.m

Amplitude Modulation: Tremolo Output

0 5 10 15
x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Tremolo Output

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click image or here to hear: original audio, AM tremolo audio.

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 59

out_tremolo1.mov
Media File (video/quicktime)

acoustic6.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_tremolo1.wav

Tremolo via Ring Modulation

tremolo2.m

If you ring modulate with a triangular wave (or try another
waveform) you can get tremolo via RM.

% read the sample waveform

filename='acoustic.wav';
[x,Fs] = audioread(filename);

% create triangular wave LFO

delta=5e-4;

minf=-0.5;

maxf=0.5;

trem=minf:delta:maxf;

while(length(trem) < length(x))

trem=[trem (maxf:-delta:minf)];

trem=[trem (minf:delta:maxf)];

end

%trim trem

trem = trem(1:length(x))';

%Ring mod with triangular, trem

y= x.*trem;

% write output

audiowrite('out_tremolo2.wav', y,Fs);

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 60

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/tremolo2.m

Tremolo via Ring Modulation Output

0 5 10 15
x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Tremolo Output

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click here to hear: original audio, RM tremolo audio.

CM3106 Chapter 7: Digital Audio Effects Modulation based Effects 61

out_tremolo2.mov
Media File (video/quicktime)

acoustic7.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_tremolo2.wav

Non-linear Processing

Non-linear Processors:

Characterised by the fact that they create (intentional or
unintentional) harmonic and inharmonic frequency components
not present in the original signal.

Three major categories of non-linear processing:

Dynamic Processing: control of signal envelope — aim to
minimise harmonic distortion. Examples:
Compressors, Limiters

Intentional non-linear harmonic processing: Aim to introduce
strong harmonic distortion. Examples: Many electric
guitar effects such as distortion

Exciters/Enhancers: add additional harmonics for subtle sound
improvement.

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 62

Limiter

Limiter:

A device that controls high peaks in a signal but aims to
change the dynamics of the main signal as little as possible:

A limiter makes use of a peak level measurement and
aims to react very quickly to scale the level if it is above
some threshold.

By lowering peaks the overall signal can be boosted.

Limiting is used not only on single instrument but on
final (multichannel) audio for CD mastering, radio
broadcast etc.

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 63

MATLAB Limiter Example

limiter.m:

The following code creates a modulated sine wave and
then limits the amplitude when it exceeds some threshold.

% Create a sine wave with amplitude

% reduced for half its duration

anzahl=220;

for n=1:anzahl,

x(n)=0.2*sin(n/5);

end;

for n=anzahl+1:2*anzahl;

x(n)=sin(n/5);

end;

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 64

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/limiter.m

MATLAB Limiter Example (Cont.)

limiter.m (Cont.) :

% do Limiter

slope=1;

tresh=0.5;

rt=0.01;

at=0.4;

xd(1)=0; % Records Peaks in x

for n=2:2*anzahl;

a=abs(x(n))-xd(n-1);

if a<0, a=0; end;

xd(n)=xd(n-1)*(1-rt)+at*a;

if xd(n)>tresh,

f(n)=10^(-slope*(log10(xd(n))-log10(tresh)));

% linear calculation of f=10^(-LS*(X-LT))

else f(n)=1;

end;

y(n)=x(n)*f(n);

end;

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 65

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/limiter.m

MATLAB Limiter Example Output

Display of the signals from the above limiter example:

0 50 100 150 200 250 300 350 400 450
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Input Signal x(n)

0 50 100 150 200 250 300 350 400 450
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Output Signal y(n)

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Input Peak Signal xd(n)

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gain Signal f(n)

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 66

Compressors/Expanders

Compressors:

Devices used to reduce the dynamics of the input signal:

Quiet parts are modified.

Loud parts are reduced according to some static curve.

A bit like a limiter and used again to boost overall signals
in mastering or other applications.

Often, used on vocals and guitar effects.

Expanders:

Devices that operate on low signal levels and boost the
dynamics in these signals.

Used to create a more lively sound characteristic.

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 67

MATLAB Compressor/Expander

compexp.m:

function y=compexp(x,comp,release,attack,a,Fs)

% Compressor/expander

% comp - compression: 0>comp>-1, expansion: 0<comp<1

% a - filter parameter <1

h=filter([(1-a)^2],[1.0000 -2*a a^2],abs(x));

h=h/max(h);

h=h.^comp;

y=x.*h;

y=y*max(abs(x))/max(abs(y));

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 68

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/compexp.m

MATLAB Compressor/Expander (Cont.)

Example call: compression eg.m:

% read the sample waveform

filename='acoustic.wav';
[x,Fs] = audioread(filename);

comp = -0.5; %set compressor

a = 0.5;

y = compexp(x,comp,a,Fs);

% write output

audiowrite('out_compression.wav', y,Fs,bits);

figure(1);

hold on

plot(y,'r');
plot(x,'b');
title('Compressed and Boosted Signal');

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 69

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/compression_eg.m

MATLAB Compressor Output

A compressed signal looks and sounds like this:

0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Compressed and Boosted Signal

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click Image or here to hear: original audio, compressed audio.

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 70

out_compression.mov
Media File (video/quicktime)

acoustic8.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_compression.wav

MATLAB Expander Output

An expanded signal looks like this:

expander eg.m:

% read the sample waveform

filename='acoustic.wav';
[x,Fs] = audioread(filename);

comp = 0.5; %set expander

a = 0.5;

y = compexp(x,comp,a,Fs);

% write output

audiowrite('out_expander.wav', y,Fs);

figure(1);

hold on

plot(y,'r');
plot(x,'b');
title('Expander Signal');

0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Expander Signal

Click image or here to hear: original audio, expander audio.

CM3106 Chapter 7: Digital Audio Effects Non-linear Effect Processing 71

out_expander.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/expander_eg.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_expander.wav

Overdrive, Distortion and Fuzz

Distortion:

plays an important part in electric guitar music, especially
rock music and its variants.

can be applied as an effect to other instruments including
vocals.

Three broad classes of distortion:

Overdrive — Audio at a low input level is driven by higher
input levels in a non-linear curve characteristic

Distortion — a wider tonal area than overdrive operating at
a higher non-linear region of a curve

Fuzz — complete non-linear behaviour, harder/harsher
than distortion

CM3106 Chapter 7: Digital Audio Effects Distortion 72

Overdrive

Achieving Overdrive:

Symmetrical soft clipping of input values is performed.

A simple three layer non-linear soft saturation scheme
may be:

f (x) =


2x for 0 ≤ x < 1/3
3−(2−3x)2

3
for 1/3 ≤ x < 2/3

1 for 2/3 ≤ x ≤ 1

In the lower third the output is liner — multiplied by 2.
In the middle third there is a non-linear (quadratic)
output
response
Above 2/3 the output is set to 1.

CM3106 Chapter 7: Digital Audio Effects Distortion 73

MATLAB Overdrive Example

p

Symmetrical soft clipping,
symclip.m:

function y=symclip(x)

N=length(x);

y=zeros(1,N); % Preallocate y

th=1/3; % threshold for symmetrical soft clipping

% by Schetzen Formula

for i=1:1:N,

if abs(x(i))< th, y(i)=2*x(i);end;

if abs(x(i))>=th,

if x(i)> 0, y(i)=(3-(2-x(i)*3).^2)/3; end;

if x(i)< 0, y(i)=-(3-(2-abs(x(i))*3).^2)/3; end;

end;

if abs(x(i))>2*th,

if x(i)> 0, y(i)=1;end;

if x(i)< 0, y(i)=-1;end;

end;

end;

CM3106 Chapter 7: Digital Audio Effects Distortion 74

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/symclip.m

MATLAB Overdrive Example (Cont.)

An overdriven signal looks and sounds like this :

overdrive eg.m:

% read the sample waveform

filename='acoustic.wav';
[x,Fs] = audioread(filename);

% call symmetrical soft clipping

% function

y = symclip(x);

% write output

audiowrite('out_overdrive.wav', y,Fs);

figure(1); hold on;

plot(y,'r');
plot(x,'b');
title('Overdriven Signal');

0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Overdriven Signal

Click image or here to hear: original audio, overdriven audio.

CM3106 Chapter 7: Digital Audio Effects Distortion 75

out_overdrive.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/overdrive_eg.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_overdrive.wav

Distortion/Fuzz

Distortion/Fuzz implementation:

Apply non-linear amplification function.

A non-linear function commonly used to simulate
distortion/fuzz is given by:

f (x) =
x

|x |(1− eαx
2/|x |)

This a non-linear exponential function:
The gain, α, controls level of distortion/fuzz.
Common to mix part of the distorted signal with
original signal for output.

CM3106 Chapter 7: Digital Audio Effects Distortion 76

MATLAB Fuzz Example

fuzzexp.m:

function y=fuzzexp(x, gain, mix)

% y=fuzzexp(x, gain, mix)

% Distortion based on an exponential function

% x - input

% gain - amount of distortion, >0->

% mix - mix of original and distorted sound, 1=only distorted

q=x*gain/max(abs(x));

z=sign(-q).*(1-exp(sign(-q).*q));

y=mix*z*max(abs(x))/max(abs(z))+(1-mix)*x;

y=y*max(abs(x))/max(abs(y));

Note: function allows to mix input and fuzz signals at
output

CM3106 Chapter 7: Digital Audio Effects Distortion 77

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/fuzzexp.m

MATLAB Fuzz Example (Cont.)

An fuzzed up signal looks and sounds like this:

fuzz eg.m:

filename='acoustic.wav';

% read the sample waveform

[x,Fs] = audioread(filename);

% Call fuzzexp

gain = 11; % Spinal Tap it

mix = 1; % Hear only fuzz

y = fuzzexp(x,gain,mix);

% write output

audiowrite('out_fuzz.wav', y,Fs); 0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Fuzz Signal

Click image or here to hear: original audio, Fuzz audio.

CM3106 Chapter 7: Digital Audio Effects Distortion 78

out_fuzz.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/fuzz_eg.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_fuzz.wav

Exciter and Enhancers

Exciter:

A signal processor that emphasises or de-emphasises certain
frequencies in order to change a signal’s timbre. It can bring
extra brightness without necessarily adding in equalisation.

Frequently used Fourier domain.

Enhancers:

Combine equalisation with non-linear processing.

introduce a small amount (‘just noticeable’) of distortion.

CM3106 Chapter 7: Digital Audio Effects Exciter and Enhancers 79

Exciters

Achieving Excitation:

Basic signal processing is achieved by subtle amounts of
high frequency distortion and possible phase shifting.

Performed using the Short-Time (Windowed) Fourier
Transform (STFM) (see Phase Vocoder)

Compression often employed to non-linear frequency
processed element before mixing with the original signal

Effect can bring more presence and clarity to a single
instrument in a mix

Can add natural brightness to a stereo signal

Can aid intelligibility to speech and vocals.

Best applied to signals which lack high frequency content
unless some odd special effects are required.

CM3106 Chapter 7: Digital Audio Effects Exciter and Enhancers 80

Enhancers

Achieving Enhancment:

Enhancers comprise of a filter network and harmonic
generator.

At least a three band filter is used and an equaliser will
boost or cut the frequencies in these bands —
independently therefore non-linearly.

Input signal usually mixed with enhanced signal to form
output.

Used in place of equalisers on some mixing consoles.

Stereo enhancement for radio broadcast and sound
reinforcement are also common applications.

CM3106 Chapter 7: Digital Audio Effects Exciter and Enhancers 81

Reverb/Spatial Effects

Spatial Effects

The final set of effects we look at are effects that change to
spatial localisation of sound.

There a many examples of this type of processing we will
study two briefly:

Panning: in stereo audio

Reverb: a small selection of reverb algorithms

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 82

Panning

What is Panning?

Mapping a monophonic sound source across a stereo audio image such
that the sound starts in one speaker (R) and is moved to the other
speaker (L) in n time steps.

We assume that we listening in a central position so that the angle
between two speakers is the same, i.e. we subtend an angle 2θl
between 2 speakers.
We assume for simplicity, in this case that θl = 45◦.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 83

Panning Geometry

Simple applications of basic rotation geometry:

We seek to obtain to signals one for each Left (L) and
Right (R) channel, the gains of which, gL and gR , are
applied to steer the sound across the stereo audio image.

This can be achieved by simple 2D rotation, where the
angle we sweep is θ:

Aθ =

[
cos θ sin θ
− sin θ cos θ

]
and

[
gL
gR

]
= Aθ.x

where x is a segment of mono audio

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 84

MATLAB Panning Example

matpan.m:

% read the sample waveform

filename='acoustic.wav';
[monox,Fs] = audioread(filename);

initial_angle = -40; %in degrees

final_angle = 40; %in degrees

segments = 32;

angle_increment = (initial_angle - final_angle)/segments * pi / 180;

lenseg = floor(length(monox)/segments) - 1;

pointer = 1;

angle = initial_angle * pi / 180; %in radians

y=[[];[]]; % Preallocate

for i=1:segments

A =[cos(angle), sin(angle); -sin(angle), cos(angle)];

stereox =

[monox(pointer:pointer+lenseg)'; monox(pointer:pointer+lenseg)'];
y = [y, A * stereox];

angle = angle + angle_increment; pointer = pointer + lenseg;

end;

% write output

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 85

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/matpan.m

MATLAB Panning Example Output

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Stereo Panned Signal Channel 1 (L)

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1

1.5
Stereo Panned Signal Channel 2 (R)

Click image or here to hear: original audio,
stereo panned audio.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 86

out_stereopan.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/out_stereopan.wav

Reverb

Reverberation

Reverb (for short) is probably one of the most heavily used effects in
audio.

Reverberation is the result of the many reflections of a sound that

occur in a room.

From any sound source, say a speaker of your stereo, there is

a direct path that the sounds covers to reach our ears.

Sound waves can also take a slightly longer path by reflecting

off a wall or the ceiling, before arriving at your ears.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 87

The Spaciousness of a Room

A reflected sound wave like this will arrive a little later than the
direct sound, since it travels a longer distance, and is generally a
little weaker, as the walls and other surfaces in the room will absorb
some of the sound energy.

Reflected waves can again bounce off another wall before arriving at
your ears, and so on.

This series of delayed and attenuated sound waves is what we call
reverb, and this is what creates the spaciousness sound of a room.

Clearly large rooms such as concert halls/cathedrals will have a
much more spaciousness reverb than a living room or bathroom.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 88

Reverb v. Echo

Is reverb just a series of echoes?

Echo — implies a distinct, delayed version of a sound,

E.g. as you would hear with a delay more
than one or two-tenths of a second.

Reverb — each delayed sound wave arrives in such a
short period of time that we do not perceive each
reflection as a copy of the original sound.

Even though we can’t discern every
reflection, we still hear the effect that the
entire series of reflections has.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 89

Reverb v. Delay

Can a simple delay device with feedback produce
reverberation?

Delay: can produce a similar effect but there is one very important feature
that a simple delay unit will not produce:

The rate of arriving reflections changes over time.
Delay can only simulate reflections with a fixed time interval.

Reverb: for a short period after the direct sound, there is generally a set of
well defined directional reflections that are directly related to the
shape and size of the room, and the position of the source and
listener in the room.

These are the early reflections
After the early reflections, the rate of the arriving reflections
increases greatly are more random and difficult to relate to
the physical characteristics of the room.
This is called the diffuse reverberation, or the late reflections.
Diffuse reverberation is the primary factor establishing a
room’s ’spaciousness’ — it decays exponentially in good
concert halls.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 90

Reverb Simulation

There are many ways to simulate reverb.

Two Broad classes of approach studied here (there are others):

Filter Bank/Delay Line methods

Convolution/Impulse Response methods

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 91

Schroeder’s Reverberator

Schroeder’s model of Reverb (1961)

Early digital reverberation algorithms tried to mimic the a
rooms reverberation by using primarily consisted of two
types of infinite impulse response (IIR) filters with the
aim to make the output gradually decay.

Comb filter: usually in parallel banks
Allpass filter: usually sequentially after comb filter banks

Much of the early work on digital reverb was performed
by Schroeder.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 92

Schroeder’s Reverberator (Cont.)

Schroeder’s reverberator example (one of a few variations):

This particular design uses four comb filters and two allpass
filters:

Note:This design does not create the increasing arrival rate of
reflections, and is rather primitive when compared to current
algorithms.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 93

MATLAB Schroeder Reverb Example

Simple Schroeder: schroeder1.m:

n allpass filters in series. (No Comb Filters yet)

function [y,b,a]=schroeder1(x,n,g,d,k)

% This is a reverberator based on Schroeder's design which consists of n

% allpass filters in series.

%

% The structure is: [y,b,a] = schroeder1(x,n,g,d,k)

%

% where x = the input signal

% n = the number of allpass filters

% g = the gain of the allpass filters

% (should be less than 1 for stability)

% d = a vector which contains the delay length of each allpass filter

% k = the gain factor of the direct signal

% y = the output signal

% b = the numerator coefficients of the transfer function

% a = the denominator coefficients of the transfer function

%

% note: Make sure that d is the same length as n.

%

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 94

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/schroeder1.m

MATLAB Schroeder Reverb Example (Cont.)

schroeder1.m (Cont.):

% send the input signal through the first allpass filter

[y,b,a] = allpass(x,g,d(1));

% send the output of each allpass filter to the input of

% the next allpass filter

for i = 2:n,

[y,b1,a1] = allpass(y,g,d(i));

[b,a] = seriescoefficients(b1,a1,b,a);

end

% add the scaled direct signal

y = y + k*x;

% normalize the output signal

y = y/max(y);

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 95

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/schroeder1.m

MATLAB Schroeder Reverb Example (Cont.)

The support files to do the filtering (for following reverb
methods also) are here:

delay.m,

seriescoefficients.m,

parallelcoefficients.m,

fbcomb.m,

ffcomb.m,

allpass.m

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 96

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/delay.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/seriescoefficients.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/parallelcoefficients.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/fbcomb.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/ffcomb.m
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/allpass.m

MATLAB Schroeder Reverb (Cont.)

Example call, reverb schroeder eg.m:

filename='acoustic.wav'; % Read the waveform

[x,Fs] = audioread(filename);

% Set the number of allpass filters

n = 6;

% Set the gain of the allpass filters

g = 0.9;

% Set delay of each allpass filter in number of samples

% Compute a random set of milliseconds and use sample rate

rand('state',sum(100*clock))
d = floor(0.05*rand([1,n])*Fs);

%set gain of direct signal

k= 0.2;

[y b a] = schroeder1(x,n,g,d,k);

% write output

audiowrite('out_schroederreverb.wav', y,Fs);

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 97

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/reverb_schroeder_eg.m

MATLAB Schroeder Reverb (Cont.)

The input signal (blue) and reverberated signal (red):

0 5 10 15

x 104

−1.5

−1

−0.5

0

0.5

1
Schroeder Reverberated Signal

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click images or here to hear: original audio, reverberated audio.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 98

out_schroederreverb.mov
Media File (video/quicktime)

acoustic9.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/out_schroederreverb.wav

MATLAB Classic Schroeder Reverb Example

Classic Schroeder Reverb, schroeder2.m:

4 comb and 2 allpass filters.

function [y,b,a]=schroeder2(x,cg,cd,ag,ad,k)

% This is a reverberator based on Schroeder's design which consists of 4

% parallel feedback comb filters in series with 2 allpass filters.

%

% The structure is: [y,b,a] = schroeder2(x,cg,cd,ag,ad,k)

% where x = the input signal

% cg = a vector of length 4 which contains the gain of each of the

% comb filters (should be less than 1)

% cd = a vector of length 4 which contains the delay of each of the

% comb filters

% ag = the gain of the allpass filters (should be less than 1)

% ad = a vector of length 2 which contains the delay of each of the

% allpass filters

% k = the gain factor of the direct signal

% y = the output signal

% b = the numerator coefficients of the transfer function

% a = the denominator coefficients of the transfer function

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 99

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/schroeder2.m

MATLAB Classic Schroeder Reverb Example

(Cont.)

Classic Schroeder Reverb, schroeder2.m (Cont.):

% send the input to each of the 4 comb filters separately

[outcomb1,b1,a1] = fbcomb(x,cg(1),cd(1));

[outcomb2,b2,a2] = fbcomb(x,cg(2),cd(2));

[outcomb3,b3,a3] = fbcomb(x,cg(3),cd(3));

[outcomb4,b4,a4] = fbcomb(x,cg(4),cd(4));

% sum the ouptut of the 4 comb filters

apinput = outcomb1 + outcomb2 + outcomb3 + outcomb4;

%find the combined filter coefficients of the the comb filters

[b,a]=parallelcoefficients(b1,a1,b2,a2);

[b,a]=parallelcoefficients(b,a,b3,a3);

[b,a]=parallelcoefficients(b,a,b4,a4);

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 100

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/schroeder2.m

MATLAB Classic Schroeder Reverb Example

(Cont.)

Classic Schroeder Reverb, schroeder2.m (Cont.):

% send the output of the comb filters to the allpass filters

[y,b5,a5] = allpass(apinput,ag,ad(1));

[y,b6,a6] = allpass(y,ag,ad(2));

%find the combined filter coefficients of the the comb filters in

% series with the allpass filters

[b,a]=seriescoefficients(b,a,b5,a5);

[b,a]=seriescoefficients(b,a,b6,a6);

% add the scaled direct signal

y = y + k*x;

% normalize the output signal

y = y/max(y);

See forthcoming Lab Class for examples of this effect and

extensions.
CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 101

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/schroeder2.m

Moorer’s Reverberator

Moorer’s reverberator (1976): Build’s on Schroeder

Parallel comb filters with different delay lengths are
used to simulate modes of a room, and sound reflecting
between parallel walls
Allpass filters to increase the reflection density
(diffusion).
Lowpass filters inserted in the feedback loops to alter
the reverberation time as a function of frequency

Shorter reverberation time at higher frequencies is
caused by air absorption and reflectivity characteristics
of wall).
Implement a DC-attenuation, and a frequency
dependent attenuation.
Encode a difference in each comb filter because their
coefficients depend on the delay line length.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 102

Moorer’s Reverberator

(a) Tapped delay lines simulate early reflections — forwarded to (b)

(b) Parallel comb filters which are then allpass filtered and delayed

before being added back to early reflections — simulates diffuse

reverberation

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 103

MATLAB Moorer Reverb

moorer.m:

function [y,b,a]=moorer(x,cg,cg1,cd,ag,ad,k)

% This is a reverberator based on Moorer's design which consists of 6

% parallel feedback comb filters (each with a low pass filter in the

% feedback loop) in series with an all pass filter.

%

% The structure is: [y,b,a] = moorer(x,cg,cg1,cd,ag,ad,k)

%

% where x = the input signal

% cg = a vector of length 6 which contains g2/(1-g1) (this should be less

% than 1 for stability), where g2 is the feedback gain of each of the

% comb filters and g1 is from the following parameter

% cg1 = a vector of length 6 which contains the gain of the low pass

% filters in the feedback loop of each of the comb filters (should be

% less than 1 for stability)

% cd = a vector of length 6 which contains the delay of each of comb filter

% ag = the gain of the allpass filter (should be less than 1 for stability)

% ad = the delay of the allpass filter

% k = the gain factor of the direct signal

% y = the output signal

% b = the numerator coefficients of the transfer function

% a = the denominator coefficients of the transfer function

%

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 104

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/moorer.m

MATLAB Moorer Reverb (Cont.)

moorer.m (Cont.):

% send the input to each of the 6 comb filters separately

[outcomb1,b1,a1] = lpcomb(x,cg(1),cg1(1),cd(1));

[outcomb2,b2,a2] = lpcomb(x,cg(2),cg1(2),cd(2));

[outcomb3,b3,a3] = lpcomb(x,cg(3),cg1(3),cd(3));

[outcomb4,b4,a4] = lpcomb(x,cg(4),cg1(4),cd(4));

[outcomb5,b5,a5] = lpcomb(x,cg(5),cg1(5),cd(5));

[outcomb6,b6,a6] = lpcomb(x,cg(6),cg1(6),cd(6));

% sum the ouptut of the 6 comb filters

apinput = outcomb1 + outcomb2 + outcomb3 + outcomb4 + outcomb5 + outcomb6;

%find the combined filter coefficients of the the comb filters

[b,a]=parallelcoefficients(b1,a1,b2,a2);

[b,a]=parallelcoefficients(b,a,b3,a3);

[b,a]=parallelcoefficients(b,a,b4,a4);

[b,a]=parallelcoefficients(b,a,b5,a5);

[b,a]=parallelcoefficients(b,a,b6,a6);

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 105

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/moorer.m

MATLAB Moorer Reverb (Cont.)

moorer.m (Cont.):

% send the output of the comb filters to the allpass filter

[y,b7,a7] = allpass(apinput,ag,ad);

%find the combined filter coefficients of the the comb filters in series

% with the allpass filters

[b,a]=seriescoefficients(b,a,b7,a7);

% add the scaled direct signal

y = y + k*x;

% normalize the output signal

y = y/max(y);

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 106

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/moorer.m

MATLAB Moorer Reverb (Cont.)

Example call, reverb moorer eg.m:

% reverb_moorer_eg.m

% Script to call the Moorer Reverb Algoritm

% read the sample waveform

filename='../acoustic.wav';
[x,Fs] = audioread(filename);

% Call moorer reverb

%set delay of each comb filter

%set delay of each allpass filter in number of samples

%Compute a random set of milliseconds and use sample rate

rand('state',sum(100*clock))
cd = floor(0.05*rand([1,6])*Fs);

% set gains of 6 comb pass filters

g1 = 0.5*ones(1,6);

%set feedback of each comb filter

g2 = 0.5*ones(1,6);

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 107

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/reverb_moorer_eg.m

MATLAB Moorer Reverb (Cont.)

reverb moorer eg.m:

% set input cg and cg1 for moorer function see help moorer

cg = g2./(1-g1);

cg1 = g1;

%set gain of allpass filter

ag = 0.7;

%set delay of allpass filter

ad = 0.08*Fs;

%set direct signal gain

k = 0.5;

[y b a] = moorer(x,cg,cg1,cd,ag,ad,k);

% write output

audiowrite('out_moorerreverb.wav', y,Fs);

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 108

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/reverb_moorer_eg.m

MATLAB Moorer Reverb (Cont.)

The input signal (blue) and reverberated signal (red):

0 5 10 15

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Moorer Reverberated Signal

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click here to hear: original audio, Moorer reverberated audio.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 109

out_moorerreverb.mov
Media File (video/quicktime)

acoustic10.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/out_moorerreverb.wav

Convolution Reverb

Convolution Reverb: Basic Idea
If the impulse response of the room is known then the most faithful
reverberation method would be to convolve it with the input signal.

Due to the usual length of the target response it is not feasible to
implement this with filters — several hundreds of taps in the filters
would be required.
However, convolution readily implemented using FFT:

Recall: The discrete convolution formula:

y(n) =
∞∑

k=−∞

x(k).h(n − k) = x(n) ∗ h(n)

Recall: The convolution theorem which states that:

If f (x) and g(x) are two functions with Fourier transforms

F (u) and G (u), then the Fourier transform of the

convolution f (x) ∗ g(x) is simply the product of the Fourier

transforms of the two functions, F (u)G (u).

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 110

Commercial Convolution Reverbs

Commercial Convolution Reverbs

Altiverb — one of the first
mainstream convolution reverb
effects units

Most sample based synthesisers
(E.g. Kontakt, Intakt) provide
some convolution reverb effect

Dedicated sample-based software
instruments such as Garritan Violin
and PianoTeq Piano use
convolution not only for reverb
simulation but also to simulate key
responses of the instruments body
vibration.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 111

http://www.audioease.com/Pages/Altiverb/AltiverbMain.html
http://www.garritan.com/stradivari.html
http://www.pianoteq.com/

Room Impulse Responses

Record a Room Impulse

Apart from providing a high (professional) quality recording of a room’s
impulse response, the process of using an impulse response is quite
straightforward:

Record a short impulse (gun shot,drum hit, hand clap) in the room.

Room impulse responses can be simulated in software also.

The impulse encodes the rooms reverb characteristics:

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 112

MATLAB Convolution Reverb (1)

Let’s develop a fast convolution routine: fconv.m

function [y]=fconv(x, h)

% FCONV Fast Convolution

% [y] = FCONV(x, h) convolves x and h,

% and normalizes the output to +-1.

% x = input vector

% h = input vector

%

Ly=length(x)+length(h)-1; %

Ly2=pow2(nextpow2(Ly)); % Find smallest power of 2

% that is > Ly

X=fft(x, Ly2); % Fast Fourier transform

H=fft(h, Ly2); % Fast Fourier transform

Y=X.*H; % DO CONVOLUTION

y=real(ifft(Y, Ly2)); % Inverse fast Fourier transform

y=y(1:1:Ly); % Take just the first N elements

y=y/max(abs(y)); % Normalize the output

See also: MATLAB built in function conv()
CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 113

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/fconv.m

MATLAB Convolution Reverb (2)

reverb convolution eg.m

% reverb_convolution_eg.m

% Script to call implement Convolution Reverb

% read the sample waveform

filename='../acoustic.wav';
[x,Fs] = audioread(filename);

% read the impulse response waveform

filename='impulse_room.wav';
[imp,Fsimp] = audioread(filename);

% Do convolution with FFT

y = fconv(x,imp);

% write output

audiowrite('out_IRreverb.wav', y,Fs);

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 114

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/reverb_convolution_eg.m

MATLAB Convolution Reverb (3)

Some example results:

Living Room Impulse Response Convolution Reverb:

0 500 1000 1500 2000 2500
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Impulse Response

0 2 4 6 8 10 12 14 16

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Reverberated Signal

0 5 10 15
x 104

−1

−0.5

0

0.5

1

Original Audio

Click on above images or here to hear: original audio,
room impulse response audio,
room impulse reverberated audio.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 115

impulse_room.mov
Media File (video/quicktime)

out_IRreverb_room.mov
Media File (video/quicktime)

acoustic11.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/impulse_room.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/out_IRreverb_room.wav

MATLAB Convolution Reverb (4)

Cathedral Impulse Response Convolution Reverb:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Reverberated Signal

Click on above images or here to hear: original audio,
cathedral impulse response audio,
cathedral reverberated audio.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 116

impulse_cathedral.mov
Media File (video/quicktime)

out_IRreverb_cathedral.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/impulse_cathedral.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/out_IRreverb_cathedral.wav

MATLAB Convolution Reverb (5)

It is easy to implement some other (odd?) effects also

Reverse Cathedral Impulse Response Convolution Reverb:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Reverberated Signal

Click on above images or here to hear: original audio,
reverse cathedral impulse response audio,
reverse cathedral reverberated audio.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 117

impulse_revcathedral.mov
Media File (video/quicktime)

out_IRreverb_revcathedral.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/impulse_revcathedral.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/out_IRreverb_revcathedral.wav

MATLAB Convolution Reverb (6)

You can basically convolve with anything.

Speech Impulse Response Convolution Reverb!:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Impulse Response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse Response Reverberated Signal

Click on above images or here to hear: original audio,
speech ‘impulse response’ audio,
speech impulse reverberated audio.

CM3106 Chapter 7: Digital Audio Effects Reverb/Spatial Effects 118

impulse_MM.mov
Media File (video/quicktime)

out_IRreverb_MM.mov
Media File (video/quicktime)

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/acoustic.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/impulse_MM.wav
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/Lecture_Examples/Digital_Audio_FX/Reverb/Fourier_Transform/out_IRreverb_MM.wav

	Intro
	FX Pipeline
	Classification

	Equalisation
	Shelving Filter
	Peak Filter
	1st Order Shelving Filter
	2nd-order Peak Filter
	Shelving Filter EQ e.g.

	Time-varying Filters
	Wah-wah
	State Variable Filter
	State Variable Filter
	Wah-wah.m

	Delay Based Effects
	Basic Delay Structure
	FIR Comb Filter
	IIR Comb Filter
	Universal Comb Filter
	Vibrato
	Comb Filter Delay Effects
	Flanger

	Modulation based Effects
	Ring Modulation
	Amplitude Modulation
	Tremolo

	Non-linear Effect Processing
	Limiter
	Compressor

	Distortion
	Overdrive
	Fuzz

	Exciter and Enhancers
	Exciters
	Enhancers

	Reverb/Spatial Effects
	Panning
	Reverb
	Reverb Simulation
	Schroeder's Reverberator
	Moorer's Reverberator
	Convolution Reverb
	MATLAB Convolution Reverb

