"All sound is an integration of grains, of elementary sonic particles, of sonic quanta." -Iannis Xenakis, Greek Composer (1971).

Granular Synthesis

- Sound synthesis method that operates on the microsound time scale.
- Based on the same principles as sampling/wavetable synthesis but often includes analog technology as well.
- **Difference** Samples are not used directly to make usual sounds:
 - Split in small pieces of around 1 to 50 ms (milliseconds) in length, the grains.
 - Multiple grains may be layered on top of each other all playing at different speed, phase and volume.

Result is no single tone, but a soundscape!

- Often a cloud, that is subject to manipulation
- Unlike any natural sound and also unlike the sounds produced by most other synthesis techniques.
- By varying the waveform, envelope, duration, spatial position, and density of the grains many different sounds can be produced.

- Usable as music or soundscapes (ambient)
- Usable as Sound effects
- MUSICAL: Usable to alter sample speed while preserving the original pitch/tempo information —pitch/tempo synchronous granular synthesis
- Usable as Raw material for further processing by other synthesis or DSP effects.
- The range of effects that can be produced include amplitude modulation, time stretching, stereo or multichannel scattering, random reordering, disintegration and morphing.

Strong Physics Background:

- Quantum physics has shown that sound can be atomically reduced to physical particles
- Physical form of sound was first envisioned by the Dutch scientist Isaac Beeckman (1618):
 "Sound travels through the air as globules of sonic data.
- Denis Gabor (1947) proposed the idea of a grain as the quantum of sound and more recently
- Xenakis (1971) first musical use of granular synthesis a reel to reel tape recorder, a razor blade, sticky tape, and a lot of time.
- Curtis Roads (1988), digital granular synthesis
- Barry Truax (1990) real-time granular synthesis composition <u>Riverrun</u>, Buy the CD!

Granular Synthesis: Implementations

Software: Many implementations nowadays: Programmable: Csound, MATLAB, MAX/MSP routines: Standalone: Supercollider, Granulab, RTGS X DAW plug-ins standalone: VSTis etc. Modern Music Samplers: Native Instruments' Kontakt. Intakt...., others

Hardware: Korg Kaos Pad.

Cubase Padshop Granular Synthesiser

Web Audio Granular Synthesisers

https://zya.github.io/granular/

Granite Granular Syntehiser

http://www.newsonicarts.com/html/granite.php

Note: Commercial application but demo available) Plenty of other example — just search

Granular Synthesis: What is a grain?

A Grain:

- A grain is a small piece of sonic data
- Usually have a duration \approx 10 to 50 ms.
- The grain can be broken down into smaller components

GRAIN ENVELOPES

Granular Synthesis: What is a grain?

Grain components:

Envelope: used so no distortion and crunching noises at the beginning and end of the sample. The shape of the envelope has a significant effect on the grain sound.

- For a sampled sound, a short linear attack and decay prevents clicks being added to the sound.
- Changing the slope of the grain envelope changes the resulting grain spectrum,

E.g. Sharper attacks producing broader bandwidths, just as with very short grain durations.

Contents: The audio: derived from any source: basic waveforms or samples

Sounds made by the generation of thousands of short sonic grains:

- Combined linearly to form large scale audio events,
- 3 Possible combinations:

Quasi-synchronous granular synthesis Asynchronous granular synthesis Pitch/Tempo-synchronous granular synthesis

The grains' characteristics are also definable and when combined affect the overall sound.

Granular Synthesis: Making Sounds (Cont.)

Quasi-synchronous granular synthesis:

• A grain stream of equal duration grains, produces amplitude modulation (see later) with grain durations less than 50 ms.

• Grain streams with variable delay time between grains: the sum of which resembles asynchronous granular synthesis.

Asynchronous granular synthesis:

Grains are distributed stochastically with no quasi regularity.

Pitch/Tempo-synchronous granular synthesis:

- Preserve Pitch/Tempo whilst altering sample playback speed E.g. Intakt, Kontakt.
- Overlapping grain envelopes designed to be synchronous with the frequency of the grain waveform, thereby producing fewer audio artifacts.

Granular Synthesis MATLAB Example

Simple MATLAB Example: granulation.m

```
[filename,path] = uigetfile({'*.wav;*.waV;','Wav Files'; ...
            '*.*', 'All files (*.*)'}, ...
            'Select a sound file'):
if isequal(filename,0) | isequal(path,0)
                cd(savedir):
                return;
end
filenamepath = [path filename];
[x, fs] = audioread(filenamepath);
figure(1)
plot(x);
doit = input('\nPlay Original Wav file? Y/[N:]\n\n', 's');
if doit == 'y',
 sound(x,fs);
end
```

MATLAB Granular Synthesis Example (Cont.)

granulation.m (cont.):

```
Ly=length(x); y=zeros(Ly,1);
                                           %output signal
timex = Ly/fs;
% Constants
nEv=400; maxL=fs*0.02; minL=fs*0.01; Lw=fs*0.01;
% Initializations
L = round((maxL-minL)*rand(nEv,1))+minL; %grain length
initIn = ceil((Ly-maxL)*rand(nEv,1));
                                         %init grain
initOut= ceil((Ly-maxL)*rand(nEv,1));
                                           %init out grain
a = rand(nEv, 1);
                                           %ampl. grain
endOut=initOut+L-1;
% Do Granular Synthesis
for k=1:nEv,
  grain=grainLn(x,initIn(k),L(k),Lw);
  figure(2)
  plot(grain);
  y(initOut(k):endOut(k))=y(initOut(k):endOut(k))+ grain;
end
```

% Plot figure and play sound

grainLn.m

Above is quite simple and general and can be employed to obtain very different sounds and sound effects.

More control over the sound:

- The above sonds is greatly influenced by the criterion used to choose the instants.
- If these points are regularly spaced in time and the grain waveform does not change too much,
 - the technique can be interpreted as a filtered pulse train, i.e. it produces a periodic sound whose spectral envelope is determined by the grain waveform interpreted as impulse response.

The above is an example is the **PSOLA based**

Pitch/Tempo-synchronous granular synthesis (more soon), where:

- When the distance between two subsequent grains is much greater than L_k, the sound will result in grains separated by interruptions or silences with a specific character.
- When many short grains overlap (i.e. the distance is less than L_k), a sound texture effect is obtained.

See accompanying lab exercise

Short Grains

- The above code, for simplicity of illustration, only uses long grains.
- experiment by mixing or swapping in short grains via the grainSh.m function — See accompanying lab exercise

Overlapping Grains

It is quite simple to extend the code above to account for overlapping grains:

• To overlap a grain g_k at instant $n_k = \text{iniOLA}$ with amplitude a_k , See accompanying lab exercise.

endOLA = iniOLA+length(grain)-1; y(iniOLA:endOLA) = y(iniOLA:endOLA) + ak * grain;

PSOLA based Pitch/Tempo-synchronous granular synthesis

PSOLA exists as common means of pitch and tempo shifting outside of any synthesis method.

- Historically, predates the phase vocoder but still common approach.
- Historically important to the development of Granular synthesis.
- PSOLA originated for speech processing, paarticularly speech synthesis,
 - It also applicable to musical applications.

PSOLA in action

Not unlike the phase vocoder:

- Used to modify the pitch (scaling) and duration (time stretching) of a speech signal.
- PSOLA works by dividing the speech waveform in small overlapping segments.
 - To change the pitch of the signal, the segments are moved further apart (to decrease the pitch) or closer together (to increase the pitch).
 - To change the duration of the signal, the segments are then repeated multiple times (to increase the duration) or some are eliminated (to decrease the duration).
 - The segments are then combined using the overlap add technique.

The difference between PSOLA and the phase vocoder is there is no STFT in PSOLA.

See Live Scripts for more details and code examples: Ch5_6_Granular_Synthesis.mlx