CM3106 Chapter 4: Introduction to Digital Audio

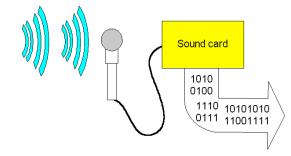
Prof David Marshall dave.marshall@cs.cardiff.ac.uk and Dr Kirill Sidorov K.Sidorov@cs.cf.ac.uk www.facebook.com/kirill.sidorov

School of Computer Science & Informatics Cardiff University, UK

What is Sound? (Recap from CM2202)

Sound Generation

Source — Generates Sound


- Air Pressure changes
- Electrical Loud Speaker
- Acoustic Direct Pressure Variations

Sound Reception

Destination — Receives Sound

- Electrical Microphone produces electric signal
- Ears Responds to pressure hear sound (MPEG Audio — exploits this fact)

Digitising Sound

- Microphone:
 - Receives sound
 - Converts to analog signal.
- Computer like discrete entities

Need to convert Analog-to-Digital — Dedicated Hardware (*e.g.* Soundcard)

Also known as Digital Sampling

Bit Size — Quantisation

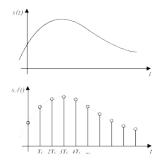
How do we store each sample value (Quantisation)?

8 Bit Value (0-255) 16 Bit Value (Integer) (0-65535)

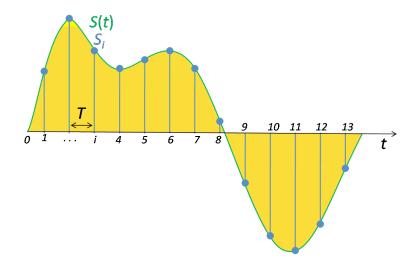
Sample Rate

```
How many Samples to take?

11.025 KHz — Speech (Telephone 8 KHz)


22.05 KHz — Low Grade Audio

(WWW Audio, AM Radio)

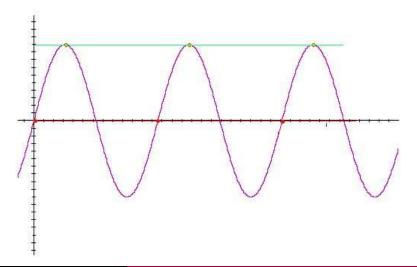

44.1 KHz — CD Quality
```

Sampling process basically involves:

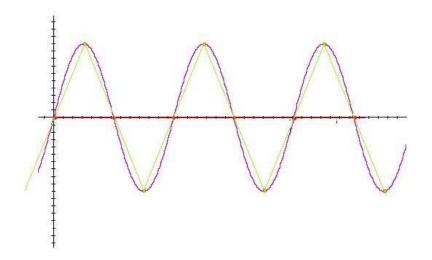
- Measuring the analog signal at regular discrete intervals
- Recording the value at these points

Digital Sampling (2)

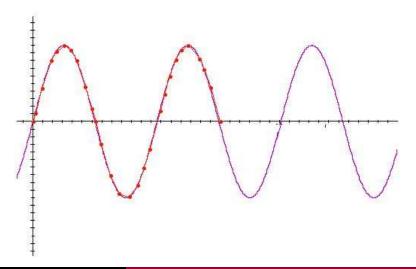
Nyquist's Sampling Theorem

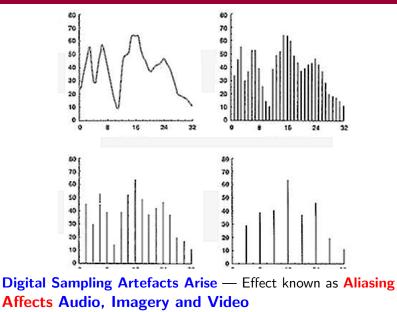


The **Sampling Frequency** is **critical** to the **accurate reproduction** of a **digital version** of an analog waveform

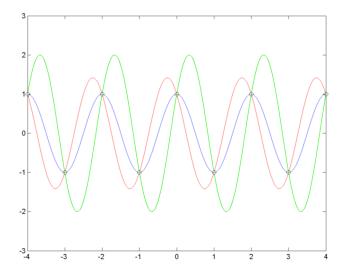

Nyquist's Sampling Theorem

The Sampling frequency for a signal must be **at least twice** the **highest frequency component** in the signal.


Sampling at Signal Frequency

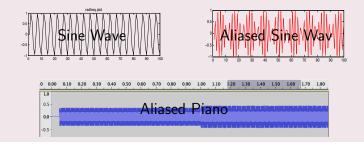

Sampling at Twice Nyquist Frequency

Sampling at above Nyquist Frequency


If you get Nyquist Sampling Wrong? (1)

CM3106 Chapter 4: Digital Audio

Digital Sampling


If you get Nyquist Sampling Wrong? (2)

If you get Nyquist Sampling Wrong? (3)

What does aliasing sound like?

(Click on Images to play sounds)

MATLAB Code for Sine Demos above: <u>Plot Version</u>, <u>Audio Version</u>

More on image and video sampling artefacts later.

Implications of Sample Rate and Bit Size (1)

Affects Quality of Audio

- Ears do not respond to sound in a linear fashion
- Decibel (dB) a logarithmic measurement of sound
- 16-Bit has a signal-to-noise ratio of 98 dB virtually inaudible
- 8-bit has a signal-to-noise ratio of 50 dB
- Therefore, 8-bit is roughly 8 times as noisy
 - 6 dB increment is twice as loud

Implications of Sample Rate and Bit Size (2)

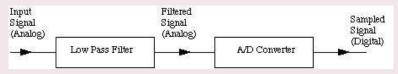
Audio Sample Rate and Bit Size Examples

File Type	Audio File (all mono)
44Hz 16 bit	(()))
44KHz 8-bit	(()))
22 KHz 16-bit	(()))
22KHz 8-Bit	(()))
11KHz 8-bit	(()))

Web Link: Click Here to Hear Sound Examples

Implications of Sample Rate and Bit Size (2)

Affects Size of Data


File Type	44.1 KHz	22.05 KHz	11.025 KHz
16 Bit Stereo	10.1 Mb	5.05 Mb	2.52 Mb
16 Bit Mono	5.05 Mb	2.52 Mb	1.26 Mb
8 Bit Mono	2.52 Mb	1.26 Mb	630 Kb

Memory Required for 1 Minute of Digital Audio

Practical Implications of Nyquist Sampling Theory

Filtering of Signal

Must (low pass) filter signal before sampling:

 Otherwise strange artefacts from high frequency (above Nyquist Limit) signals would appear in the sampled signal.

Why are CD Sample Rates 44.1 KHz?

Upper range of human hearing is around 20-22 KHz — Apply Nyquist Theorem

Common Digital Audio Formats

Popular audio file formats include

- .au (Origin: Unix, Sun),
- .aiff (*MAC, SGI*),
- .wav (*PC*, *DEC*)
- Compression can be utilised in some of the above but is not Mandatory
- A simple and widely used (by above) audio compression method is Adaptive Delta Pulse Code Modulation (ADPCM).
 - Based on past samples, it predicts the next sample and encodes the difference between the actual value and the predicted value.
 - More on this later (Audio Compression)

Common Audio Formats (Cont.)

- Many formats linked to audio applications
- Most use some compression
- Common ones:
 - Sounblaster .voc (Can use Silence Deletion (More on this later (Audio Compression))
 - Protools/Sound Designer .sd2
 - Realaudio .ra.
 - Ogg Vorbis .ogg
 - AAC , Apple, mp4 More Later
 - Flac .flac, More Later
 - Dolby AC coding More Later

MPEG AUDIO — More Later (MP3 and MPEG-4)

Synthetic Sounds — reducing bandwidth?

Synthesis Pipeline

- Synthesise sounds hardware or software (more later)
- Client produces sound only send parameters to control sound (MIDI/MP4/HTML5 later)

Synthesis Methods (More Later)

- FM (Frequency Modulation) Synthesis used in low-end Sound Blaster cards, OPL-4 chip, Yamaha DX Synthesiser range popular in Early 1980's.
- Wavetable synthesis wavetable generated from sampled sound waves of real instruments
- Additive synthesis make up signal from smaller simpler waveforms
- Subtractive synthesis modify a (complex) waveform but taking out (Filtering) elements
- Granular Synthesis use small fragments of existing samples to make new sounds
- Physical Modelling model how acoustic sound in generated in software
- Sample-based synthesis record and play back recorded audio, often small fragments and audio processed.

Most modern Synthesisers use a mixture of sample and synthesis

Synthetic Sounds — Analogies with Vector Graphics

- Use more high-level descriptions to represent signals.
- Recorded sounds and digital images: regular sampling; large data size; difficult to modify
- Synthetic sounds and vector graphics: high level descriptions; small data size; easier to edit. Conversion is needed before display – synthesis or rasterisation
- Difference: 1D vs 2D

MULTIMEDIA

Module No: CM3106 © David Marshall

More on how sound synthesis works soon