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Stripification of Free-Form Surfaces with Global
Error Bounds for Developable Approximation

Yong-Jin Liu, Yu-Kun Lai, Shi-Min Hu

Abstract—Developable surfaces have many desired properties
in manufacturing process. Since most existing CAD systems
utilize tensor-product parametric surfaces including B-splines as
design primitives, there is a great demand in industry to convert
a general free-form parametric surface within a prescribed
global error bound into developable patches. In this work we
propose a practical and efficient solution to approximate a
rectangular parametric surface with a small set of C0-joint
developable strips. The key contribution of the proposed
algorithm is that, several optimization problems are elegantly
solved in a sequence that offers a controllable global error
bound on the developable surface approximation. Experimental
results are presented to demonstrate the effectiveness and
stability of the proposed algorithm.

Note to Practitioners—This paper was motivated by a joint
industrial project which uses CATIA V5R16 as the design
platform. The shape of product was modeled by free-form
parametric patches including NURBS in the CATIA system. For
efficient manufacturing, the parametric surfaces are required to
convert into developable patches with controllable global error
bounds. Given a small tolerance, if this cannot be achieved, then
cut the surface into pieces, each of which is developable. However,
the CATIA system does not provide such a functionality. With
the development of this project, we design an efficient algorithm
which is presented in the paper to achieve this goal. We also
build the algorithm into a plugin module in CATIA using CAA
V5.

Index Terms—Developable surface approximation, free-form
parametric surfaces, geometric optimization, triangle strip.

I. INTRODUCTION

DEVELOPABLE surfaces, which can be unfolded into
plane without stretch, are widely used in engineering.

While developable surfaces can be directly used to model
some simple shapes such as cones and cylinders, most existing
CAD/CAM systems use general parametric surfaces including
B-splines as design primitives to model complicated free-
form shapes. Therefore, there is a great demand in industries
to convert a general parametric surface within a prescribed
global error bound into a small set of developable pieces.
These pieces are afterwards cut from planar material, bent back
without stretch, moved into their final positions and stitched
together to form the final product.

If sufficient differentiability is assumed, developable sur-
faces can only be part of plane, cone, cylinder, tangent surface
of a curve or a composition of them. Surface approximation
using conical and cylindrical patches are studied in [10], [14],
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[22], [25]. Tangent surfaces of B-spline curves in dual space
based on projective geometry are studied in [1], [2], [9],
[21], [23]. Cone spline surfaces that can be used as transition
of smooth joining developables are studied in [12]. If the
free-form surface is nearly developable, a spherical curve
segmentation and fitting technique is presented in [3] that
approximates such a surface by a G1 developable surface. If
the surface is far from developables, Elber [5] proposes an
approximation method that trims the surface using isolines
and interpolates each trimmed piece by a ruled patch. This
method is extended by Subag and Elber [26] in which a semi-
automatic algorithm is proposed.

Recent advances in both CAD and production automation
have revealed that the developable surfaces can be in effect
approximated by triangle strips [5], [6], [7], [13], [17], [27].
Two closely related topics in CAD and computer graphics
are triangulation of free-form surfaces [18], [19], [20] and
stripification of mesh models [8], [11], [16], [29]. Triangu-
lation of a free-form surface usually satisfies a global error
bound; but the resulting triangulation cannot be used for
developability. The strips from graphics model stripification
are mainly used for fast graphical rendering since each triangle
in the strip (except for the first one) can be encoded by
an integer in OpenGL; however, if these strips are directly
developed into plane, the shape may be self-intersected and
very winded with arbitrary width everywhere. The strips are
more desired for developability if they have almost uniform
width after developing into plane. Besides triangles, strips of
planar quadrilaterals are also good candidates for developable
approximation [10], [28].

In this paper a practical and efficient algorithm is proposed
to achieve developable strip approximation by trimming a rect-
angular parametric surface into a small set of strips; each strip
consists of a chain of triangles that have almost uniform width
after development. The novelty of the presented algorithm is
that we introduce a controllable global error bound into the
trimming process. In the method geodesics are used as the
basic primitive to trim the surface. An application scenario
is presented in Section VI, showing several advantages that
could be achieved by geodesic cutting.

II. ALGORITHM OVERVIEW

The basic idea of the presented algorithm is simple. Given a
rectangular parametric surface (e.g., a tensor-product B-Spline
surface) with boundaries e1, e2, e3, e4 in counter clockwise
order, from two pairs of opposite edges (e1, e3) and (e2, e4),
an optimal pair is identified. Two strategies are presented in
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(a) Optimal polyline approximation of parametric curve 

 

(b) Trim the parametric surface by geodesics which connect 
corresponding vertices in opposite boundary polylines 

 

 
(c) Optimally discretize the geodesics and construct an  

initial triangle approximation for each strip 

 
(d) If the approximate error is larger than a prescribed 

tolerance, split the strip into two and repeat the process 
 

Fig. 1. Overview of the algorithm.

Sec.III-D for this identification. Without loss of generality,
assume the optimal pair is (e1, e3). The curves e1 and e3

are discretized by polylines with a prescribed tolerance: the
number of vertices on each polyline is maintained to be the
same. Then the corresponding vertices between two polylines
are connected by geodesics on the surface. These geodesics
trim the surface into pieces which afterwards are optimally
approximated by developable triangle strips. Refer to Fig. 1.
The overall algorithm, called DevAppr, is summarized below:

1) (Sec. III) Optimally discretize curves (e1, e3) into two
polylines (p1, p3) with the same number n of vertices;
the discretization error satisfies max{‖e1 − p1‖, ‖e3 −
p3‖} < ε, where ε is a prescribed tolerance (ref. Fig. 1a).

2) (Section IV) Construct the geodesics by connecting
the corresponding vertices (v1

i , v3
i ), i = 2, · · · , n − 1,

in the polylines p1 = {v1
2 , v1

3 , · · · , v1
n−1} and p3 =

{v3
2 , v3

3 , · · · , v3
n−1}. These geodesic curves partition the

parametric surface into strips {S1, S2, · · · , Sn−1} (ref.
Fig. 1b).

3) Discretize curves e2, e4 and each geodesic gi into
polylines p2, p4 and li, with the minimum number of
vertices, respectively, such that ‖ej − pj‖ < ε, j = 2, 4
and ‖gi − li‖ < ε (ref. Fig. 1c).

4) (Section V) For every pair (li, li+1) of adjacent polylines
in the set {l1 = p2, l2, · · · , ln−1, ln = p4}, construct an
optimal strip of triangles Ti that minimizes an elabo-
rately designed energy functional (ref. Fig. 1c).

5) Given a trimmed strip Si and its associated counterpart
of triangles Ti, if the error ‖Si−Ti‖ > ε, then subdivide
the strip Si into two and repeat the process (ref. Fig. 1d).

6) Develop all triangle strips into the same plane.

III. POLYGONAL APPROXIMATION OF CURVES

The steps 1 and 3 in the Algorithm DevAppr require the
solutions to the following two optimization problems:
• Min-# problem: given a parametric curve c, approximate

it by a polyline p with the minimum number of segments,
such that the approximation error does not exceed a given
tolerance.

• Min-ε problem: given a parametric curve c, approximate
it by a polyline p with a given number of line segments
n, such that the approximation error is minimized.

Given the solutions to the above two problems, the step
1 in Algorithm DevAppr is performed first by optimally
discretizing e1 and e3 with a given tolerance ε; that solves
a Min-# problem. Denote the resulting numbers of vertices
on p1 and p3 by n1 and n3, respectively. Without loss of
generality, let n1 ≤ n3. To maintain the same vertex number
on p1 and p3, we need to re-sample e1 with a given number of
line segments n3, that solves a Min-ε problem. The solution
to Min-# problem is also used in step 3.

In the follows, unless otherwise specified, all the curves are
parameterized by the arc-length.

A. Solution to Min-# Problem

To find the minimum number of samples on a parametric
curve c such that the resulting polyline has error no larger than
a prescribed tolerance ε, the solution is as follows. Refer to
Fig. 2a. We start from one end of the curve and greedily add
samples one by one, till we reach the other end of the curve.
To add a new sample, we put a cylindrical surface with radius
ε/2 centered at the current position, and oriented along with
the tangent direction of the curve at the position. The nearest
intersection point of the curve with the cylindrical surface is
considered as the next sample.

The above greedy approach works almost fine. But the
samples near the approaching end are frequently observed to
be problematic: the last sample may (and usually appears to)
be very close to the end point (see the second row of Fig. 2a).
To remedy this situation, starting from the last sample, we
apply again the greedy method in the opposite direction with
decreasing order of parameter.

Denote the polyline obtained by the first round of
greedy approach by p with vertices (v1, v2, · · · , vn). Let ui

represents the parameter of vi, then u1 < u2 < · · · < un.
vn−1 may be very close to vn and so is un−1 to un. In
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(b) The fine tuning approach to (a) 

Fig. 2. Polyline approximation of a curve with a prescribed error ε.

the second round of greedy approach, starting from vn

we compute v′n−1 with decreasing parameters. It must
be satisfied that u′n−1 ≤ un−1. The new sample is then
defined as v′′n−1 with the parameter u′′n−1 = u′n−1+un−1

2 .
Since arc-length parameterization is used, v′′n−1 sits at
the mid-way between v′n−1 and vn−1 on curve. It can be
readily verified that v′′n−1 satisfies the error bounds from both
sides. Starting at v′′n−1, the fine tuning algorithm is as follows:

1. while i > 0
1.1 apply the greedy approach to v′′i in the reverse

direction to find v′i−1 with parameter u′i−1;
1.2 if u′i−1 < ui−1

1.2.1 u′′i−1 = max
{

u′i−1+ui−1

2 , 0
}

;
1.3 else break;
1.4 i−−;

The above fine tuning approach has a few advantages. First
it guarantees that the same number of samples are resulted
in and the same error bound still applies. Secondly, the
distribution of samples becomes much more uniform, as shown
in the second row of Fig. 2b.

B. Solution to Min-ε Problem

Given a fixed number n of sample points, to find the
minimum error of polygonal approximation p of a parametric
curve c, the objective is to optimize a n − 2 vector U =
(u2, · · · , un−1)T in the optimization function defined by

Opt(U) =
∑n−1

i=1

∫ ui+1

ui

‖c(u)− (ui+1−u)c(ui)+(u−ui)c(ui+1)
ui+1−ui

‖2du
(1)

where c(ui), i = 1, · · · , n are n optimal positions of samples
with u1 = 0, un = length(c). Minimization of function
Opt(U) is a typical multi-dimensional optimization problem
which can be solved by the classical gradient or simplex
methods. Note that given

{
f(t) =

∫ b

t
h(t, b, u)du

g(t) =
∫ t

a
h(a, t, u)du

we have {
df(t)

dt =
∫ b

t
∂h(t,b,u))

∂t du− h (t, b, t)
dg(t)

dt =
∫ t

a
∂h(a,t,u)

∂t du + h (a, t, t) .

So given any n − 2 dimensional point x, we can not only
evaluate Opt(x), but also easily evaluate ∇Opt(x). To mini-
mize objective Opt(x), we use the conjugate gradient method
in multidimensions [24]; this method requires only of order a
few times n storage and converges quickly in practice.

C. Finding Optimal Boundary Pair

The optimal pair determined from the boundary curves
e1, e2, e3, e4 of the parametric surface is used to locate the
endpoints of geodesics for trimming the surface. Two strategies
are used in Algorithm DevAppr to find the optimal pair.
The first strategy is fully automatic. Two pairs (e1, e3) and
(e2, e4) are respectively approximated by polylines (p1, p3)
and (p2, p4) with a prescribed tolerance ε. p1 and p3 have the
same minimum number n of samples. p2 and p4 has the same
minimum number m of samples. If m < n, then (e2, e4) is
the optimal pair; otherwise it is (e1, e3).

The first strategy is optimal in the geometric sense. How-
ever, in many CAD models, different boundary pairs have
different functionalities. To take the semantics of physical
functionalities into account, we set the second strategy that
allows the user to interactively select the optimal pair.

IV. COMPUTE GEODESICS ON PARAMETRIC SURFACES

Given two points P , Q on a surface, we use an adaptive
solution based on the Maekawa’s method [15] to compute the
geodesic passing P and Q.

Denote the parametric surface by S(u, v). Let the pre-
scribed source points P , Q be specified by parameters
(up, vp), (uq, vq) and any curve on the surface connecting
them be specified by function (u(s), v(s)). The geodesic
differential equations [4] are:

{
d2(u)
ds2 + Γ1

11

(
du
ds

)2
+ 2Γ1

12
du
ds

dv
ds + Γ1

22

(
dv
ds

)2
= 0

d2(v)
ds2 + Γ2

11

(
du
ds

)2
+ 2Γ2

12
du
ds

dv
ds + Γ2

22

(
dv
ds

)2
= 0

(2)

where Γk
ij is the Christoffel symbol. Let y = (u, v, p, q)T , g =

(p, q,−Γ1
11p

2−2Γ1
12pq−Γ1

22q
2,−Γ2

11p
2−2Γ2

12pq−Γ2
22q

2)T .
Then the second order equations (2) can be reduced to a system
of first order differential equations (ODEs)

dy
ds

= g(s,y) (3)

Relaxation method [24] is used for numerical solution. First
the parameter domain (u, v) is discretized into a set of mesh
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Fig. 3. Test examples on different B-spline surfaces with different source
points (P,Q): the initial guess is shown in red and the solution is in blue.
Both parametric domain in R2 and image surface in R3 are given in the
figure.

points (ui, vi). The system of ODEs (3) is then replaced by a
system of finite difference equations (FDEs)

yk−yk−1− 1
2
(sk−sk−1)(gk +gk−1) = 0, k = 1, 2, · · · (4)

A line joining P and Q on parameter domain is employed
as the initial guess of the solution. If the surface is near
developable, this guess is pretty good. The initial guess usually
only satisfies the required boundary conditions. Then the
iteration process, called relaxation, is invoked to adjust the
values on the grid.

Let the line
−−→PQ be sampled by m mesh points ui = ui−1+

i∆ui, vi = vi−1 + i∆vi. The boundary condition of FDEs (4)
is

(u0, v0) = (up, vp), (um−1, vm−1) = (uq, vq) (5)

Let x(s) be a monotonically increasing function of s that
satisfies x = i at the mesh points (ui, vi), i = 0, 1, · · · ,m−1.
Between any two successive points, ∆x = 1. Since dx/ds is
proportional to the density of mesh points, we define a density
function as

φ(s) = c
dx

ds
,

where φ > 0 and c is an overall scale constant. Given two
mesh points (uk, vk), (uk−1, vk−1), we use the length of
vector S(uk, vk)−S(uk−1, vk−1) to approximate (sk−sk−1)
in FDEs (4). For a better approximation of arc length, we want
to put more points in the place of high curvature and less in
planar regions. So φ is chosen to be the curvature function:

φ(s) =
u′(s)v′′(s)− u′′(s)v′(s)√

(u′2 + v′2)3
=

pdq
ds − dp

ds q√
(p2 + q2)3

,

 

 

 

 

 
 

 

 

 
Fig. 4. A case that trimming geodesic intersects a boundary of a sperhical
region (surrounding in blue color).

Newton-Raphson method [24] is used to solve a system of
nonlinear equations, which converges quadratically when the
initial guess is near the root. Examples of geodesic computa-
tion on different B-spline surfaces, using different parametric
line segments as the initial guesses, are illustrated in Fig. 3.

A. Handle non-geodesic boundaries
Consider a trimming geodesic g close to the boundary

r(v) = S(0, v). If r itself is a geodesic of S, then g and
r will not cross each other. In appendix it is shown that for
r is a geodesic, the necessary and sufficient condition is that
∂S(u,v)

∂u

∣∣∣
u=0

lies in the rectifying plane of r(v). If Bezier or B-
spline surface is used, a convenient way to construct a surface
with geodesic boundary is as follows. Let r be specified by
the first row of control points P0,i, i = 1, 2, · · · , which lie in a
plane b. Construct the second row of control points such that
P1,i − P0,i, i = 1, 2, · · · , are all perpendicular to b.

If r is not a geodesic, it may intersect the closest trimming
geodesic. An extreme case is illustrated in Fig. 4. If this
case happens, we disturb the intersection segment a bit and
symbolically separate the strip.

B. A computational issue
We use geodesic paths to trim the surface into pieces.

Although the samples on the opposite boundary curves e1, e3

are ordered in the same direction, two adjacent geodesic paths
may still touch each other in some extreme cases. In industrial
design, the surfaces approximated by developable patches are
usually close to developable. In this case, our method works
pretty well. If touching is detected, we start a desperate mode
in our algorithm: similar to the case shown in Fig. 4, the two
segments between the touching points are replaced by the one
whose length is shorter.

V. DEVELOPABLE STRIP GENERATION

Refer to Fig. 5. The computed shortest paths trim the para-
metric surface into strips (S1, S2, · · · , Sn−1). Each strip Si is
bounded by two parametric curves ci, ci+1 (either geodesics
or boundary curves e2, e4) and two line segments. Any ruled
surface interpolating ci, ci+1 can be characterized by

Si(u, v) = (1− v)ci(u) + vci+1(f(u)) (6)

where f(u) is a monotone function mapping from [0,
length(ci)] to [0, length(ci+1)]. If at any ruling the tan-
gent plane to the surface is the same, then the surface is
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Fig. 5. Surface trimming by geodesic paths.

Fig. 6. Triangulation with the minimal length criterion: both the greedy
approach [27] and the proposed dynamic programming approach have the
same result in this case.

developable. However, finding such an exact solution to the
mapping f(u) is an extremely difficult problem. Inspired by
the recent work [6], [27], our practical solution is presented
as follows.

A. Initial Strip Generation

The trimming geodesics, as well as boundary curves e2, e4,
are approximated by polylines with a given tolerance ε.
Consider the strip Si bounded by curves ci and ci+1. Denote
the two approximate polylines of ci and ci+1 by Pi =
{p1, · · · , pn} and Qi = {q1, · · · , qm}. The triangle strip Ti

is defined to be a constrained triangulation which satisfies the
following conditions:
• Ti interpolates polylines Pi, Qi and line segments p1q1,

pnqm (refer to the first row of Fig. 1c);
• All the vertices of Ti belong to the set of

(p1, · · · , pn, q1, · · · , qm).
If any edge in Ti connecting a pi and a qj , it is called a

bridge edge. Similar to [27], to build an objective function
for optimization, either the minimal length of the sum of
bridge edges (refer to as MinDist) or the minimal bending
energy on all bridge edges (refer to as MinBend) can be used.
The length of a bridge piqj is Dist(piqj) = ‖pi − qj‖. The
bending energy related to piqj is calculated by the dihedral
angle between two triangles adjacent to piqj ; here we denote
it by Bendxy(pi, qj), where x denotes the sample which forms
the preceding triangle with pi, qj and y forms the succeeding

Fig. 7. Triangulation with the minimal bending energy criterion using the
greedy approach [27].

Fig. 8. Triangulation with the minimal bending energy criterion using the
proposed dynamic programming approach.

triangle. E.g., Bendpq(pi, qj) means the two adjacent triangles
being (pi−1, pi, qj) and (pi, qj , qj+1).

A greedy approach is proposed in [27] to find a locally
optimal solution to both the minimal length and the minimal
bending energy problems. Contrasting with this local optimal
solution, in the Algorithm DevAppr, we propose a dynamic-
programming-based approach that guarantees output a globally
optimal solution with the same constraints as in [27]. We test
both greedy and dynamic programming approaches on many
examples: the minimal length criterion usually leads to close
or even the same results by these two approaches (as shown
in Fig. 6); while the greedy approach with minimal bending
energy, however, produces suboptimal results much worse than
the dynamic programming approach (compare Fig. 7 to 8).
This is clearly revealed in the analytical data presented in Figs.
9 and Table I.

We use the following two strategies in the dynamic pro-
gramming approach.

Minimal distance strategy. Assume that MinDist(pi, qj) is
the minimal length of total bridge edges from p1, · · · , pi and
q1, · · · , qj . It is immediately seen that

MinDist(pi, qj) = min{MinDist(pi−1, qj),
MinDist(pi, qj−1)}+ Dist(pi, qj)

with the boundary conditions




MinDist(p1, q1) = ‖p1 − q1‖
MinDist(pi, q1) = MinDist(pi−1, q1)

+Dist(pi, q1), 1 < i ≤ n
MinDist(p1, qj) = MinDist(p1, qj−1)

+Dist(p1, qj), 1 < j ≤ m
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Fig. 9. The analytical data of the minimal length and bending energy of
both local and global approach in the model as shown in Figs. 6, 7, 8 (left)
and in another model (right). 
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(b) Optimization using the minimal length criterion 
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(c) Optimization using the minimal bending energy criterion 
 

 

 

 

Fig. 10. The comparison of our global optimization approach with the local
optimization in [27].

The global minimum solution is then derived from
MinDist(pn, qm) with back tracing.

Minimal bending energy strategy. Assume that
MinBendx(pi, qj) is the minimal bending energy for
sequences p1, · · · , pi and q1, . . . , qj , with the last triangle
having two samples on x side (x = p or q). The rule to
compute a particular MinBend is given as:

MinBendp(pi, qj) =
min{MinBendp(pi−1, qj) + Bendpp(pi−1, qj),

MinBendq(pi−1, qj) + Bendqp(pi−1, qj)}
MinBendq(pi, qj) =
min{MinBendp(pi, qj−1) + Bendpq(pi, qj−1),

MinBendq(pi, qj−1) + Bendqq(pi, qj−1)}
The global minimum solution is then derived from

min{MinBendp(pn, qm),MinBendq(pn, qm)} with back
tracing.

The global optimality of the above formulae can be readily
verified by induction. The improvement of our global opti-
mization over the local optimization is further demonstrated
in Fig. 10 with the analytical data shown in Table I. Exper-
imental results show that the proposed global optimization
approach works more robustly on the general data sets than
our implementation of the local greedy approach in [27]. Our
experiments were carried out on a Core2Duo 2GHz Laptop

method length bend. engy L∞ error L2 error time
lenth/local 240.333 39.8183 3.1940 0.5839 28ms

lenth/global 233.612 38.9149 1.9017 0.3844 29ms
bend/local 414.264 30.2529 4.0808 0.8843 40ms

bend/global 256.737 4.8431 3.1940 0.6660 42ms

TABLE I
THE ANALYTICAL DATA OF EXPERIMENT IN FIG. 10.

Fig. 11. Strip refinement: curve sampling (compare to Fig.5).

with 2GB memory, using CATIA as the supporting platform.
Timings are almost similar for both methods. This shows that
dynamic programming optimization takes almost negligible
time for the overall computation, especially considering nec-
essary interactions with CATIA interfaces.

B. Error-Driven Strip Refinement

Quite different from the motivations in [6], [27], our gen-
erated triangle strip Ti needs to further satisfy a prescribed
tolerance ε when compared to the original strip Si. In the
Algorithm DevAppr, adaptive triangle strip refinement is
designed as follows to produce output triangle strips within
the prescribed error bound ε.

Since the geodesics and boundary curves are sampled by
solving Min-# problems, it guarantees that the approximation
error between the polylines and their corresponding curves
on the surface is bounded by ε. Then it suffices to consider
the interior of each strip. Given the initial triangulation, for
a triangle t in a strip Ti, assume its three vertices are v1,
v2 and v3, with the parameters x1, x2, x3 respectively. For
any point t(λ1, λ2) in the triangle with barycentric coordinate
(λ1, λ2, 1−λ1−λ2), 0 ≤ λ1, λ2, λ1+λ2 ≤ 1, its corresponding
point s(λ1, λ2) on the surface is the one with parameter λ1 ·
x1 +λ2 ·x2 +(1−λ1−λ2) ·x3. The Lp error between triangle
t and its image s on the surface is defined as:

Ep(t, s) := p

√
1
At

∫∫

t(u,v)

‖s(u, v)− t(u, v)‖pdudv

and the Lp error between the triangle strip Ti and the para-
metric strip Si is defined as:

Ep(Ti, Si) := p

√
1

ATi

∑

t∈Ti

Ep
p(t, s)At,
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Fig. 12. Strip refinement: re-triangulation (compare to Fig.8).

Fig. 13. Stripification of the upper surface of a mouse model. The surface
is afterwards trimmed by surface intersection.

where At and ATi
are the area of the triangle t and Ti,

respectively. In particular, we are interested in L∞ error:

E∞(T, S) = max
t∈T

max
(λ1,λ2)

|t(λ1, λ2 − s(u(λ1, λ2), v(λ1, λ2))|

The overall L∞ error is computed for the initial triangu-
lation. If it is above ε, the strip with the largest L∞ error
is picked out and subdivided by a new added trimming line
connecting two points located at the midpoints of two bound-
ary line segments (ref. Fig.1d). The two subdivided strips are
then triangulated and checked again for the approximation
error. The process repeats until the error is within the given
tolerance ε. We select the trimming line to be the average of
two boundary geodesics in the parametric domain so that the
error is guaranteed to decrease.

For the data set shown in Figs.5-8, the cylinder radius r
used for point sampling is set to be 5mm, and the prescribed
approximation error in Fig. 8 is ε = 10mm. The size of the
illustrated shape is about 2000mm in its largest direction.
The resulting triangulation has the L∞ error E∞(T, S) =
21.85mm. After three iterations of strip refinement, E∞(T, S)
becomes 7.42mm and the algorithm terminates. The curve
sampling and re-triangulation after refinement are illustrated
in Figs. 11-12, respectively.

C. Triangle Strip Flattening

Given the triangle strips, flattening them is straightforward.
For each strip, the first triangle is flattened at some place in
the X −Y plane. Adjacent triangles are then flattened one by
one along the bridge edges, as long as the flattened triangles
do not overlap each other in the plane. If overlapping occurs,
we start a new flattening at the first overlapping triangle and
continue the process. Several flatten examples are shown in
Fig. 14.

Models ruled approx. original surf. decreasing ratio
Fig. 8 1.5474 3.1623 51.1%

Fig. 13 0.2538 3.0639 91.7%

TABLE II
COMPARISON OF THE VALUE OF INTEGRAL OF ABSOLUTE GAUSSIAN

CURVATURE BETWEEN THE ORIGINAL SURFACE AND ITS RULED
APPROXIMATION.

model input error ε final error #. strips #. triangles
Fig. 13 10mm 7.06mm 17 751

Fig. 14(top) 1mm 0.65mm 9 314
Fig. 14(handle) 4mm 3.91mm 7 227

TABLE III
PERFORMANCE DATA OF EXPERIMENTS WITH DIFFERENT ERROR BOUNDS.

VI. EXPERIMENTAL RESULTS

Increasing the developability. Our method trims a non-
developable surface into strips. Each strip is approximated
by a ruled patch (ref. eq(9)) which is further discretized
into a developable triangle strip. It is expected that the ruled
surface approximation could increase the developability of
the surface and thus the global error controlled triangulation
could be a good developable approximation. This expectation
is demonstrated by our experiments. Table II summarizes the
comparison of the value of integral of the absolute gaussian
curvature over the original surface and its ruled surface ap-
proximations. The triangle stripification also shows a good
behavior on surface developability.

Industrial experiments. Two typical industrial models are
presented and performance data is summarized. The first
example is the upper surface of a mouse model. The surface
is about 105mm× 46mm. The stripification result with error
7.06mm is shown in Fig. 13. All performance data as well as
other models is summarized in Table III.

The second example is a shaver model. Its top part has size
of 220.5mm× 148.4mm. Stripifications and flattening of the
top part, with error 0.65mm, are presented in the first and last
rows in Fig. 14. The handle part of the shaver model has size
of 43.9mm×200.9mm. Its Stripifications and flattening, with
error 3.91mm, are shown in the mid of Fig. 14.

Consideration of geometric continuity. Our method gener-
ates a C0-continuous developable stripification to an input
rectangular free-form surface. Experiments show that the
generated strips have almost uniform widths in their planar
versions (see Figs. 12-14). This is a distinct advantage of
our developable strips compared to the arbitrary triangle strips
used in computer graphics rendering. The C0 continuity also
has applications in industry. In some manufacturing process,
due to the impulse response in step-motor, the toolpath can
only be C0 and thus can be regarded as polyline approximation
of a smooth curve. Finally, since the physical surfaces have
some thickness, a polishing step is used to generate a smooth
thin-shell developable part; in this sense the function of global
error controlling is important.

The choices of cutting lines. To cut surface into pieces,
three types of cutting lines can be used: iso-parameter curves,
geodesics and geodesic offsets of boundary curves.
• Iso-parameter curves vs. geodesics. Iso-parameter curves
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A shaver model 

 
The flattening of the handle part 

 
The flattening of the top part 

 Fig. 14. Stripification of two component surfaces of a shaver product: the
top part and handle part are stripified and flattened with error 0.65mm and
3.91mm, respectively.

are parameterization-dependent, while geodesics are con-
sistent if the same surface with different parametrizations
is used. Since the cutting lines are also the welding
lines that sew the adjacent developable patches together
and whose lengths should be minimized, using geodesics
is better than iso-parameter curves. Another advantage
of using geodesics is that, it is known in differential

  

(a) Developable approximation using Hoschek’s method (1998) 

  

(b) Our method using upper and lower boundaries as the optimal pair 

 
 

(c) Our method using left and right boundaries as the optimal pair 

 
 

(d) Developable approximation using Elber’s method (1995) 
 

Fig. 15. Given a piece of surface of revolution (see the blue surrounding
area in Fig. 4), the comparison of our method with the Hoschek’s method
[10] and the Elber’s method [5].

geometry that if a curve on surface only subjects to the
internal surface forces, this curve can only be a geodesic;
so using geodesics as the welding lines would make the
overall product structure very stable.

• Geodesic offsets vs. geodesics. Uniform width of each
strip is a useful property in milling process. geodesic
offsets of boundary curves are better to achieve this
property. However, observe that most surfaces designed
in industry exhibit property of symmetries. So the surface
can be approximately decomposed into pieces of gener-
alized cylinder patches, in which the geodesic offsets of
geodesic are themselves geodesics. In this case, cutting
using the geodesics can also achieve almost uniform
widths, as demonstrated by examples shown in Figs.
12-14. Together with the advantages of minimal cut-
ting lengths and stable mechanical structures, we choose
geodesics.

Limitations of the method. Currently our method can only
handle the rectangular free-form surfaces, especially for the
tensor product surfaces. For arbitrary n-side surfaces with
trimmed boundaries, one way is to use our method on the
original untrimmed surface and then trim the developable
strips (ref. Fig. 13). However, this may not be as efficient as it
could be. We will consider extension of our method along this
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(a) Print the flattened pattern in a plate and cut the material: this step benefits 
from the minimal length of geodesics. 

 

 
(b) Bend and sew the pieces together: this step benefits from the stable 
mechanical property of geodesics and the minimal bending energy. 

  

(c) Fine polish the part to get a smooth surface: this step benefits from the 
global error control. 
 

 

 

 

 

 

Fig. 16. The illustration of an application scenario.

direction in the future. Another limitation is that, if the surface
of revolution is under consideration, the Elber’s method [5]
is superior to ours. In Fig. 15, we compare our method
with the Hoschek’s method [10] and the Elber’s method [5].
Our method generally has the similar performance with the
Hoschek’s method, while the Elber’s method outperforms both
our method and the Hoschek’s method.

An application scenario. By applying our method, first the
flattened pattern is printed in a planar material and then the
material is cut. Refer to Fig. 16(a). Since geodesic is used,
the lengths of cutting lines are minimized. Afterwards, the
pieces of material are bent in space and sewed together along
the geodesics. Since the geodesics are such curves that only
subjects to the internal surface forces, using them as sewing
lines can make the overall mechanical structure stable. Our
method also minimizes the bending energy in the triangle strip
generation, and thus, the bending step shown in the left of Fig.
16(b) is optimized. Finally, as shown in Fig. 16(c), the part
is machined (typically using non-contact methods) to make
the surface smooth. Since the global error of approximation
is controlled, a fine polishing with small material removal is
enough for this machining.

VII. CONCLUSION

In this paper, a simple and efficient algorithm is proposed
to approximate a free-form surface with rectangular parameter
domain using a small set of C0-joint triangle strips. Dif-
ferent from graphics rendering, the resulting triangle strips
are designed for developable approximation. We show by
examples the proposed method can achieve several advantages

in industrial manufacturing, including minimal cutting lengths,
stable structure of sewing lines, minimal bending energy
and global error control of the approximation. The proposed
method has been implemented as a plugin module in the
commercial CATIA CAD system.
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APPENDIX

Let S(u, v) be a tensor product surface with parameters
(u, v). Denote

r(v) = S(u0, v), r′(v) = a, r′′(v) = b,
∂S(u, v)

∂u

∣∣∣∣
u=u0

= c

If the iso-parameter curve r(v) is a geodesic on the surface
S, then the direction of the curvature vector κ(v)n(v) of r(v)
must be coincided with the direction of the surface normal
N(u0, v):

n×N = 0 ⇒
(a× b× a)× (a× c) = [(a× b× a) · c] a = 0 ⇒
(a× b× a) · c = 0

Then c(v) is on the rectifying plane of r(v). The above process
is invertable. So it is a necessary and sufficient condition of
r(v) being a geodesic on S.
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