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Figure 1: Steps in the algorithm. (a) shows a manually created texture, (b) is the texture converted to a geometry image, (c) shows the vector
field giving texture orientation, and (d) shows the synthesized result.

Abstract

In this paper, we present an automatic method which can trans-
fer geometric textures from one object to another, and can apply
a manually designed geometric texture to a model. Our method
is based on geometry images as introduced by Gu et al. The key
ideas in this method involve geometric texture extraction, boundary
consistent texture synthesis, discretized orientation and scaling, and
reconstruction of synthesized geometry. Compared to other meth-
ods, our approach is efficient and easy-to-implement, and produces
results of high quality.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; I.3.5 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: texture transfer, texture synthesis, geometry images

1 Introduction

Triangle meshes are widely used for modeling geometry. They
are easy to acquire, and can be used to represent surfaces of any

∗e-mail: laiyk@cg.cs.tsinghua.edu.cn
†e-mail:min@tsinghua.edu.cn
‡e-mail: gu@cs.sunysb.edu
§e-mail: ralph@cs.cf.ac.uk

complexity. However, it is more difficult to perform computations
on meshes of this type which often have complicated topological
domains compared to the relative simplicity of processing regu-
lar 2D images. Thus, in recent years, a variety of techniques has
been developed for manipulation of such models; these are gener-
ally referred to as digital geometry processing. Triangle meshes
are suitable for hardware rendering, but they are generally diffi-
cult to edit. There are different approaches to facilitate editing on
meshes. One is multi-resolution editing, which constructs a hier-
archy of mesh models using a wavelet-like structure. This allows
the results of manipulation of low-resolution versions of models to
be mapped back to the original high-resolution model. Another ap-
proach, called cutting-and-pasting, focuses on allowing the user to
cut part of a model and paste it somewhere else (on the same or a
different model). Our approach is different: we focus on geometric
details or textures which we extract and transfer to another model,
so that the new model has similar geometric details or patterns. By
a geometric texture, we mean a small scale deformation vector field
locally affecting a surface; we assume that the underlying geomet-
ric surface is smooth relative to the scale of details in the texture.
Our approach allows the process to be done automatically, or it can
be guided by the user to create interesting and visually pleasing re-
sults.

Our method processes an input model to give an output model: ge-
ometric details of interest are taken from a sample model and are
applied to the input model to produce the output model. The basic
steps are shown in Fig. 1.

If we use as a sample model an object with an existing interest-
ing texture, we can use our technique for texture transfer. If we
want simple regular patterns, it is also possible to manually design
a sample model with any 3D surface editing tool, and transfer such
patterns to other models in a stylization process. We could also use
some surface patch covered with a special finish (e.g. fish scales
or wood carving) as the sample model. In this case, the resulting
effects are similar to non-photorealistic rendering and we call this
artificial texturing.
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This paper gives an approach for extracting geometric textures from
sample models, and synthesizing similar textures on input models,
in a way which hides seams across boundary cuts which are made
when converting the input model to a geometry image. In order
to further improve the synthesis results, especially for anisotropic
textures, we have developed a discretized orientation and scaling
approach to allow synthesis of textures with a desired density and
orientation. Our method is based on the geometry images repre-
sentation proposed by Gu et al. in [Gu et al. 2002]. We briefly
summarize this idea and various related techniques in Section 2.
An overview of our algorithm is given in Section 3 and details are
provided in Section 4. Experimental results are presented in Sec-
tion 5, and conclusions and discussions of future work are given in
Section 6.

2 Related Work

Our method is based on the geometry images representation [Gu
et al. 2002], proposed by Gu et al.. It allows a regular grid repre-
sentation for meshes of arbitrary topology. Given a surface mesh,
this is accomplished by first making cuts in the mesh to make it
homeomorphic to a disk, then adding additional cuts to reduce dis-
tortion. This allows parameterization of the surface on a planar
domain; geometric information (e.g. positions, normals) as well
as other attributes are then sampled on a regular grid in this do-
main. Geometry images are useful in this work as they make oper-
ations on geometry efficient and easy to implement. However, they
still have certain problems in areas which are addressed in this pa-
per. Firstly, geometry images usually include cuts, and consistency
across such cuts is required in model editing. Secondly, geomet-
ric textures may be anisotropic, and so users may wish to define
an orientation field on the input model for more precise control.
Traditional texture synthesis methods on surfaces are complicated
and usually not very efficient, as they are usually based on some
kind of surface marching. On the other hand, our method utilizes
the regularity of geometry images, together with a preprocessing
step, to synthesize texture at a combination of different orientations
and scales, leading to very efficient generation of the output model.
After the preprocessing steps of geometry image generation and
texture preparation, the synthesis step is orders of magnitude faster
than traditional methods based on surface synthesis, providing the
possibility for interactive editing. Recently, geometry images have
been further studied in [no et al. 2003; Losasso et al. 2003; Praun
and Hoppe 2003; Sander et al. 2003].

Our work is also closely related to image texture synthesis methods,
although here we are dealing with geometric textures, the common
factor being the regular grid used to describe both 2D images, and
geometry represented as a geometry image. Research on image
textures and texture synthesis has a long history, and has received
much attention as textures bring realism to computer graphics. A
comprehensive survey of this field is outside the scope of this paper.
Here we only focus on a few neighborhood matching-based texture
synthesis approaches proposed recently which are most related to
our work. Texture synthesis based on neighborhood matching was
first introduced in [Efros and Leung 1999]; such methods can be
generally categorized into three types: pixel-based approaches as
in [Ashikmin 2001; Hertzmann et al. 2001; Wei and Levoy 2001a],
patch-based approaches as in [Efros and Freeman 2001; Kwatra
et al. 2003] and the combination of these two methods, e.g. [Nealen
and Alexa 2003].

Pixel-based methods generate synthetic image pixels one by one
usually in scan-line order. The basic idea of [Wei and Levoy 2001a]
is to consider similarity measures between neighborhoods of pixels

in the output image and the sample texture to decide what to synthe-
size next. A similar idea in [Ashikmin 2001] considers local con-
sistency, which is especially important when synthesizing natural
textures. A scheme which can be considered to be a combination of
these ideas is given in [Hertzmann et al. 2001]. In most methods ex-
cept those like the one in [Ashikmin 2001], searching through large
data sets of high dimensions needs to be done frequently. Thus, dif-
ferent techniques have been used to speed up the process, includ-
ing use of tree-structured vector quantization in [Wei and Levoy
2001a] and approximate nearest neighbors (ANN) in [Hertzmann
et al. 2001].

Patch-based methods copy consecutive patches from the sample
image, and stitch them together to generate the synthetic image.
A dynamic programming approach is used in [Efros and Freeman
2001] to compute the minimum error boundary cut in order to hide
the seam in the synthesized image. This method is limited in that
the seam is processed sequentially, considering each row of pixels
in turn. The Graphcut method proposed in [Kwatra et al. 2003], on
the other hand, removes this limitation by using a graph cut tech-
nique, computing the minimum cut using the maxflow algorithm to
find the least visible cutting path. This method can also be easily
extended to higher dimensions.

Hybrid methods, e.g. in [Nealen and Alexa 2003], firstly use patch-
based texture synthesis, possibly with an adaptive patch size, and
in those overlapping areas where the synthesized results are worse
than a specified threshold, pixel-based resynthesis is performed to
further improve results.

Our current implementation is based on a pixel-based approach, but
extending the principle to a patch-based or hybrid approach would
not be difficult.

Various research aims to synthesize image textures directly on sur-
faces. The approach in [Turk 2001; Wei and Levoy 2001b] densely
tessellates the surface with sample points and assigns synthesized
attributes (e.g. color) in a per-point manner. Such approaches often
require surface marching or similar operations, which are not very
efficient. These methods can be considered as direct extensions of
planar texture synthesis methods. A texture synthesis method based
on a texture atlas was proposed in [Ying et al. 2001]. Praun et al.
proposed a patch-based method that uses alpha-blending to hide
cross-boundary seams [Praun et al. 2000]. Soler et al. [Soler et al.
2002] give a patch-based approach that covers the surface with im-
age patches in a hierarchical way. Zelinka et al. [Zelinka and Gar-
land 2003] compute a jump map during a preprocessing phase; this
data structure allows rapid location of candidate matches, allowing
textures to be directly synthesized on the surface. Region growing
is used to decide the best vertex order for synthesis. This approach
can synthesize textures on quite large models at interactive rates.
The latter two methods do not synthesize new textures, but only
assign texture coordinates to vertices of the original mesh. While
they are suitable for stochastic image texture synthesis, they cannot
easily be extended to perform geometric texture synthesis.

Various recent work considers the transfer of geometric textures or
details. Sorkine et al. [Sorkine et al. 2004] propose an approach
based on the properties of Laplacian coordinates, establishing the
correspondence by parameterization and warping under a few spec-
ified constraints. Their approach deals with geometric detail trans-
fer, rather than statistical textures. The similarity-based image syn-
thesis method has been extended to geometric surfaces in [Zelinka
and Garland 2004] using a polar sampling pattern called geodesic
fans. This approach is similar to a generalized displacement map-
ping. Bhat et al. [Bhat et al. 2004] give an approach that synthe-
sizes similar geometric textures from examples, which is similar
to our method. Their method extends the idea of image analogies
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Figure 2: Algorithm overview

to surfaces; however, their approach is based on volume analogies
and thus requires representation conversion if the input model is a
mesh. As in the case of image analogies, their approach requires as
input a pair of example models with and without texture, whereas
our approach only needs a single model with the desired geometric
texture.

Using traditional image texture synthesis methods to add geometric
textures is often difficult because the topological structure of the
sample model and the input model may be quite different. Be-
cause we use the geometry image representation, our method is
much simpler as it works on a regular domain. It can efficiently
achieve high quality results while providing user control. If we use
an image as a texture source, we do not explicitly require texture
extraction and reconstruction step. On the other hand, the use of
regular, densely sampled geometry images allows us to efficiently
and compactly carry out texture transfer for surfaces and textures
with high-frequency geometric detail.

3 Algorithm Overview

Restating the problem, our aim is to take an input model and a tex-
tured sample model, and to transfer the texture from the sample
model to the input model to produce an output model. Our method
is outlined in Fig. 2.

For both the sample model and the input model, the first stage of
processing is to generate a geometry image representation. The
idea is basically the same as in [Gu et al. 2002], although we also
use a different method of seam computation. If the model is of
non-zero genus, we first cut it using a contraction scheme similar
to that used in [Gu et al. 2002]. If the model is highly curved,
containing some “extrema” or protrusions, we can use an iterative
method similar to [Gu et al. 2002]. Alternatively, we can instead use
a variation of the method in [Zhu et al. 2003] to add additional cuts.
The whole cutting process makes each model homeomorphic to a
disk. This disk is mapped topologically to a rectangular domain.
The skeleton-based seam computation from [Zhu et al. 2003] has
the advantage that it avoids the expensive iteration needed by [Gu
et al. 2002]; also the resulting seams are shorter given the same
extrema.

Next, we parameterize the model in a planar domain. We make
some slight modifications to the original approach described in [Gu
et al. 2002]. The parameterization method employed to generate
geometry images aims to prevent large stretching to avoid under-
sampling, but at the same time a quasi-conformal mapping is also
desirable. These two aims are contradictory for non-developable
surfaces, so a compromise is necessary. For a given sampling res-
olution, the stretch minimization method proposed in [Sander et al.
2003] represents the geometry well. Other parameterization meth-
ods with similar attributes are also possible. However, scaling fac-
tors always vary across the model, as do local rotations. We need
to devise some technique to efficiently compensate for such effects
when synthesizing textures. This technique can further be used to
advantage to provide user control of the alignment and scaling of
geometric textures. These techniques are explained in detail in Sec-
tion 4.

For sample models, although it is possible to use the full model as
input, in practice, it is most likely that we will wish to use a small
portion or patch of the model’s surface containing the desired geo-
metric texture. This is possible because textures often have a short
range stochastic structure, and so small patches suffice to be rep-
resentative. Furthermore, it is less satisfactory to extract textures
from highly curved surfaces, as distortion or other artifacts may re-
sult. For model stylization and artificial texturing applications, it
is possible to extract the desired geometric details from planar or
almost planar surfaces. Note also that sample models generally do
not need to be converted exactly to geometry image representation.
Instead, if we can map the texture to a planar domain, we can then
cut out a rectangular portion of the domain to use as a source for
texture synthesis. This can result in lower distortion than if we cor-
rectly compute a true geometry image for the sample patch; it also
simplifies later processing as we can then conveniently neglect the
distortion in the extracted texture for simplicity. We use a method
based on that in [Lévy et al. 2002], but other parameterization ap-
proaches with natural boundaries could also be applied.

We next need to extract the geometric texture from the param-
eterized sample model. Intuitively, geometric details are high-
frequency components of the corresponding geometry image. The
sample model itself can be considered as a combination of a base
mesh (representing the basic geometric shape) and geometric de-
tails which we call the geometric texture. Similar ideas are used
in image editing [Oh et al. 2001], where images can be treated
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as a combination of low-frequency lighting variation and high-
frequency image textures. We first use a smoothing process to
approximate the base mesh, after which, based on the parameter-
ization of the base mesh, we create a series of consistent local co-
ordinate systems, and encode the geometric texture in the regular
domain.

Using user defined orientation and scaling (if desired), as well as
scaling of the parameterization, for efficiency we next precompute
a set of texture samples with discretized orientation and scaling.

Using the extracted geometric textures, we then apply them to the
input geometry model to create a textured geometry model. In order
to keep the texture consistent across the cut boundary, we use a
two-pass approach. First we synthesize the texture ignoring the
boundary, after which we resynthesize the texture in regions near
cut boundaries in a way which tries to enforce consistency for a
local neighborhood, based on the already synthesized results in that
neighborhood. This process can be repeated several times to further
improve the synthesized results.

Finally, the synthesized textured geometry image is converted into
an output surface mesh model. This may be remeshed for rendering
efficiency if necessary.

Section 4 gives further details of the key steps above: texture ex-
traction, boundary-consistent texture synthesis, handling orienta-
tion and scaling, and reconstruction.

4 Algorithm Details

4.1 Texture Extraction

The purpose of texture extraction is to extract geometric details
from a sample model or patch, giving a representation suitable for
synthesis and transfer. Various previous work deals with separation
of details from a base mesh. For example, Biermann et al. [Bier-
mann et al. 2002] studied this in the context of cut-and-paste edit-
ing, using a method based on multi-resolution subdivision surfaces;
further such work can be found in the references in their paper.
Kobbelt et al. give a mesh smoothing approach for extracting a
base surface [Kobbelt et al. 1998]. Their method could be adapted
for use here. As geometric textures are statistical in nature, a small
patch would be sufficiently representative.

Depending on different application requirements, we suggest the
use of one of three alternative approaches to texture extraction:
namely, smoothing and differencing, planar parameter domain sam-
pling, and height field sampling. These are efficient and easy-to-
implement, as the computations are mostly based on a regular grid
and so traditional image processing techniques can be used.

In order to take advantage of geometry images, we encode the ex-
tracted texture at each grid point of a regular grid as a vector in a
well-defined local coordinate system. We call the resulting vector
at each grid point a geometry texel. Such a representation can be
considered to be a variant of a geometry image.

4.1.1 Smoothing and Differencing

This method extracts the texture as follows. Given a sample model
or patch already in geometry image representation, we need to de-
couple the shape of the base mesh from the geometric texture de-
tails. We perform a smoothing operation to estimate the shape of
the base mesh, filtering out the geometric textures, using a similar

idea to that in [Oh et al. 2001]. In order to prevent sharp features in
the base mesh from being filtered out as texture, we instead use bi-
lateral filters proposed in [Tomasi and Manduchi 1998]. Note that
because we have geometry images, we do not need to use bilateral
filters adapted to meshes (see e.g. [Fleishman et al. 2003]) whose
use can lead to topological problems.

Let us denote by pi, j the position of the grid point with coordinate
(i, j), where p = (x,y,z) is a vector in R3. For the particular grid
point at (i0, j0), we define the relative weight of any grid point at
(i, j) with respect to (i0, j0) as:

w(i0, j0)
i, j = α(i0, j0)

i, j β (i0, j0)
i, j , (1)

where
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i, j = exp
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Here α is a weight measuring nearness in the grid while β is a
weight measuring position vector similarity in 3D. w(i0, j0)

i, j com-
bines these two. σ1 controls how rapidly weights drop off as grid
points get farther apart, while σ2 has a similar effect for position
vectors.

Then, the smoothed position of pi, j , denoted by p̄i, j is computed as
follows (assuming a grid resolution of N ×N:

p̄i, j =
∑N−1

u=0 ∑N−1
v=0 w(i, j)

u,v p(i, j)
u,v

∑N−1
u=0 ∑N−1

v=0 w(i, j)
u,v

(4)

If the sample patch is not too highly curved, we assume that the
bending of the base mesh can be neglected when extracting the tex-
ture. This holds true in many real situations as small geometric
distortions are not very noticeable.

We construct a local coordinate system at each grid point. This
comprises the smoothed mesh normal direction n̄, a local x direction
x̄, and a third orthogonal vector ȳ. We can approximate the unit
normal vector n̄i, j at grid point (i, j) using a 1-ring neighborhood
of triangles. We next fix a local x direction, x̄i, j using

x̄i, j =
p̄i, j+1 − p̄i, j−1

2
(5)

(this should be made orthogonal to n̄i, j by subtracting its component
in the direction of n̄i, j , and then normalized). For j = 0, we simply
use x̄i, j = p̄i,1 − p̄i,0, and j = N−1 is similar. We then compute the
ȳ direction using

ȳi, j = n̄i, j × x̄i, j

.

To find the texture, the difference vector pi, j − p̄i, j is measured in
this local frame as a 3-tuple (dxi, j,dyi, j,dni, j). The encoded texture
is recorded as a regular grid of 3-tuples.

4.1.2 Planar Parameter Domain Sampling

For almost planar sample patches, which are common in applica-
tions, we may use other approaches to extract the geometric texture
to reduce possible distortions. We can fit a plane to the patch using
a robust regression method; we use the RANSAC approach [Fischler
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(a)                                (b)                              (c)  (d)                                    (e)

Figure 3: Geometric texture extraction using smoothing and differencing: (a) is the armadillo model, (b) gives a curved sample patch, (c)
shows the smoothed surface, (d) presents the extracted geometric texture image, and (e) shows the reconstructed texture on a plane.

and Bolles 1981]. A set S of a few points is randomly chosen, and
a plane HS is fitted using least-squares. We then count the number
I(S) of data points that are within a predefined threshold distance
δ of HS. This process is repeated for a sufficiently large number of
sets S, and we find the S with the largest number of I(S). Then, a
traditional least squares fit is done only using points in I(S) to find
the plane H. Note that we do not use vertices of the original mesh
for sampling the mesh, as such points are generally not evenly dis-
tributed. Rather, we generate sample data points randomly accord-
ing to the area.

Next we project the boundary of the sample model patch onto this
plane. Any point on H can be represented as v0 + xe1 + ye2, where
e1 and e2 are two normalized orthogonal vectors in the plane, and
v0 is a reference point in the plane. Each vertex v on the bound-
ary of the patch, having position pv, is projected onto the plane by
calculating:

(x,y)v = (pv · e1, pv · e2).

We then parameterize the patch with the boundary parameters fixed
as the projected coordinate values. Then, the largest square in
the parameter domain is detected, and we then regularly sample
the texture inside this square. The parameterization step deter-
mines a piecewise linear mapping from the parameter domain to
the patch. We use this mapping to find the corresponding point on
the patch. A local coordinate system is trivial to find: we always
use (e1,e2,e1 ×e2). A difference vector between the sample model
and the plane is measured in this coordinate system, thus giving a
similar representation to the previous approach.

4.1.3 Height Field Sampling

In some cases, the texture may be sufficiently simple that each point
above the base surface corresponds to a single point on the sample
model, in which case a height field suffices to describe the texture.
For example, it is reported in [Wang et al. 2003] that mesostruc-
tures on tree barks can be modelled as a height field. Height field
sampling is done in a similar way to the previous approach, except
that vertices can be projected directly on to the base plane without
the need to perform a parameterization.

4.1.4 Observation and Example

If the sample model also contains traditional image texture in-
formation, as well as geometric texture, we can sample the im-
age texture together with the geometric texture, giving a 6-tuple:

(dx,dy,dn,r,g,b) where r,g,b are the red, green and blue compo-
nents of the sample point respectively.

The whole process is illustrated in Fig. 3, which shows an example
where a patch cut from the leg of the armadillo model is taken as
the sample model.

4.2 Boundary-Consistent Texture Synthesis

If the input model is not homeomorphic to a disk, it is necessary to
introduce boundaries using one or more cuts. The geometry image
representation handles this issue and makes corresponding pairs of
boundaries exactly meet. After adding geometric details, we need
to again keep the boundary consistent. This is accomplished by
resynthesis of textures near cut boundaries to hide the seams.

4.2.1 Initial Geometric Texture Synthesis

As in [Wei and Levoy 2001a] and other image texture synthesis
methods, we need to synthesize a regular grid of geometric tex-
tures with a resolution equal to that of the geometry image of the
input model. Two steps are used. Firstly, we fill each grid point
with geometric texture samples randomly chosen from the sample
model grid, which ensures that the initial random textures have the
same statistics as the sample model. Next, we build Gaussian pyra-
mids of the sample and the destination geometric textures; these
pyramids do not go up to the highest level but just a few levels are
used. We synthesize starting at low resolution and ending at high
resolution. At the lowest resolution, we use a causal Γ-shaped tem-
plate to update the current texel, by finding the nearest match in
the sample to give the newly synthesized texel. At higher resolu-
tions, we take a combined template using a Γ-shaped template for
the current resolution together with full neighborhood information
for lower resolution texels. In our implementation, we use approx-
imate nearest neighbor matching [Mount 1998] to accelerate the
matching process.

The above synthesis approach gives a synthetic geometry image
without boundary consistency, which we address next.

4.2.2 Boundary Resynthesis

To get boundary consistency, the above method is modified slightly.
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(a) (b) (c)

Figure 4: Synthesis results across the cuts. (a) gives a simple genus-3 model with a few cuts, (b) shows the synthesized result and (c) is the
synthesized model with cuts highlighted.

We apply a resynthesis stage at each level of synthesis. To begin, we
construct a boundary fixing pyramid similar to the Gaussian pyra-
mid used in the previous texture synthesis stage. Such a hierarchy
can easily be constructed provided that we use an initial parameter-
ization for the input geometry image which fixes the cut-nodes at a
low resolution grid spacing equal to that of the highest level of the
pyramid. Subsequent sampling can then be done at a higher reso-
lution. For example, the parameterization may place the cut-nodes
on a 65 × 65 grid, while sampling may be done on a 257 × 257
grid. The boundary fixing pyramid is constructed by subsampling
the boundary grid points; the chosen geometry image representa-
tion makes sure that after this down-sampling the boundary values
still match.

Next, for each level of synthesis, to hide the seams across the
boundary, we use a relatively small full neighborhood template with
size e.g. 5×5. We resynthesize texture samples one by one in scan-
line order for those texture samples near the boundary of the grid, in
a boundary strip of size in accordance with the characteristic size of
the texture. We put the center of the template at each near-boundary
position, and collect information from both sides of the appropriate
boundary.

The resynthesis process can be repeatedly performed several times
for better results. After each iteration, to make identified boundary
texels have identical values, we randomly choose one and propagate
its value to the other(s).

For other problem cases, e.g. texels in the corner of geometry im-
ages, or where two cuts meet, we use a heuristic approach. In prac-
tice such cases are rare and do not cause problems in the result.

Fig. 4 shows that our texture transfer method generally works well
even across cuts in the surface of the input model; this is demon-
strated using texture from the armadillo’s leg shown in Fig. 3. The
left hand illustration shows the cut made in a simple genus-3 model
to convert it into a geometry image. The middle illustration shows
the synthesized model while the right hand illustration shows the lo-
cation of the cut. Occasionally, however, it may happen that there is
large anisotropic distortion of the parameterization near the bound-
ary, which is different on either side. Our approach cannot fully
compensate for this, resulting in small remaining visual discontinu-
ities, as can be seen in Fig. 4.

4.3 Handling Orientation and Scaling

The sampled texture often has an implicit orientation and scaling
which must be respected when the texture is applied to the input
model. To control the orientation, the user defines an orientation at
selected key points of the input surface, and from these an orienta-
tion field is interpolated across the surface. This controls the texture
orientation during synthesis. Secondly, the parameterization pro-
cess as well as the geometric shape of the input model cause local
variations in scaling of coordinates which must also be taken into
account when synthesis is performed. In this Section, we explain
how this is done.

We use a set of texture samples with different orientations and scal-
ing during the synthesis process. In practice, we use a set of 8
equally spaced orientations and 3 levels of scaling, which are found
to be sufficient. This set of samples is built in advance before
synthesis. For efficiency reasons, again for each orientation and
scaling, we also build in advance an approximate nearest neighbor
searching structure which is used to decide how to propagate the
texture, based on the texture synthesized so far.

We need to estimate the scaling factor at each grid point of the in-
put geometry image. For a grid point v0, assuming its 4-connected
neighbors are v1, v2, v3, v4, we can compute the local scaling factor
as:

S(v0) =
1
4

4

∑
i=1

||pv0 − pvi ||2 .

We can then compute the average scaling factor S̄ for the whole
input geometry image, and a relative scaling factor R for position
v0 as:

R(v0) =
S(v0)

S̄

During synthesis, we estimate the relative scaling factor near the
local position to be synthesized. In a similar way to the idea
in [Tonietto and Walter 2002], suppose the 3 scaled sample tex-
tures are Tk, k = 1,2,3, where T2 has the original size, T1 is a
scaled up version, and T3 is a scaled down version. We compute
level(v0) = logR(v0)+2. If the level is outside the range of 1 to 3,
we use a value of 1 or 3 as appropriate; otherwise if it falls between
two levels, say, s and s + 1, we then choose Ts with a probability
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(a) without flip avoidance      (b) with flip avoidance

Figure 5: Results with and without flip avoidance

s + 1− level(v0) and otherwise choose Ts+1. The idea can be gen-
eralized to use more levels of scaling, but at a greater computational
cost. We find 3 levels acceptable in practice.

To define orientations, the user needs to define a few key tangent
vectors on the mesh, and then a diffusion process is carried out
to interpolate an orientation vector field on the mesh using similar
ideas to those in [Turk 2001]. This is done as follows: vectors
except for the preset ones are initialized to zero. For each vertex v0
on the mesh, we consider its 1-ring neighborhood v1, . . . ,vk, map
the corresponding vectors to the tangent plane at v0—call them fi—
and iteratively update the vector field at v0 using

f ′0 = f0 + t
k

∑
i=1

Wi( fi − f0).

Here t is a step-size control; in practice, using a relatively small
t (e.g. 0.1) ensures stability. Wi is a weight, proportional to the
reciprocal of the edge length and normalized to have sum one. We
iterate until the vector field converges.

For faster convergence, we construct a pyramid and compute the
vector field from coarser to finer levels. The regular nature of ge-
ometry images greatly simplifies this process making it straightfor-
ward.

Next we map the vector field to the 2D parameter domain. Let
us denote the surface point by X(u,v) where (u,v) ∈ R2 is the pa-
rameter value. As described before, we can easily estimate ∂X/∂u
and ∂X/∂v by considering the 4-connected neighbors in the grid.
We can then project the specified vector v onto the parameter do-
main, which reduces to finding x and y satisfying xXu + yXv = v;
this vector then needs to be normalized. To get correct results at the
boundary, the vector fields for vertices on either side of it should be
identical when mapped to the parameter domain. On each iterative

vector field update, we thus average the vectors for corresponding
vertices. (Simply doing this at the end would cause the boundary
vectors to be inconsistent with their neighbors’ vectors.)

During the synthesis process, we apply a probability decision to
choose the sample orientation which gives the best match, in the
same way as for scaling.

4.4 Reconstruction

The last step is to add the synthesized geometric textures to the in-
put model to get the output model. We need to construct a series of
continuous local coordinate systems to apply the synthesized geo-
metric texture to generate the real positions for each grid point. The
local coordinate system is computed in the same way as for texture
extraction, and again we use a system of (x̂i, j, ŷi, j, n̂i, j), where x̂,
ŷ and n̂ represent the two iso-curves and normal direction, all nor-
malized.

For a grid point on the input mesh p̂i, j , we compute the new position
vector after addition of texture detail as:

p̂′i, j = p̂i, j + d̂xi, j x̂i, j + d̂yi, j ŷi, j + d̂ni, j n̂i, j

where d̂x, d̂y, d̂n are synthesized geometric texel values at each grid
point.

4.4.1 Flip Avoidance

In practice, if we simply modify the positions as above, in highly
curved areas, the vertices may be modified in an inconsistent man-
ner, resulting in flipped faces. This can happen if the surface is
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 (a)                                           (b)

Figure 6: Geometric texture transfer using an existing image as height field. (a) an image of a piece of leather (b) transferred to bunny model.

highly curved and the applied texture is relatively large. We can
avoid flipping by reducing the amount of modification of the sur-
face. Thus, in practice we add the texture in a series of increasing
steps, rather than all at once. If flipping is detected (the normal
change is larger than a threshold, e.g. 150◦), the last step is un-
wound for the related vertices, and further growing there is inhib-
ited. This works well in practice, as shown in Fig. 5.

5 Experimental Results

Geometric textures have a variety of different applications, as noted
in the introduction. We present here a few experimental results
which demonstrate the effectiveness of our methods in different cir-
cumstances.

The first example involves model stylization. We transfer a simple
manually designed geometric texture consisting of a few lines to
a destination model and cover it with such geometric details. See
Fig. 1.

The second example shows how an existing 2D image can be used
to produce a height field for model stylization: intensity in the im-
age is converted to height above a plane. We used an image of a
piece of leather to create a height field which was then applied to
the bunny model—see Fig. 6. Such an approach provides a plentiful
source of geometric textures for application to models.

The third set of examples shows the ability to transfer geometric
textures from one model to another. See Fig. 7. Two different tex-

tures have been taken from the lower and upper leg of the armadillo
model. The first has been applied to a tyrannosaur model and a gar-
goyle model; the second has also been applied to the tyrannosaur
model. This shows the effects of (a) applying the same texture to
different models, and (b) applying different textures to the same
model. Note that models which originally contain geometric de-
tails need to be smoothed before geometric texture synthesis. The
neck on Fig. 7(c) contains denser detail than other regions as there
is a large anisotropic distortion in this region which cannot be fully
compensated for by our current method. The blurring seen on the
nose in Fig. 7(e) is due to its representation by a relatively small
area in parameter space. The parameterization of geometry images
has isotropic scaling, and we use a scaled-up or scaled-down ver-
sion to synthesize regions with different scalings, leading to the
blurring seen.

The fourth set of examples in Fig. 8 shows the gargoyle model with
transferred geometric texture with globally modified density. We
achieve this by simply offsetting the scaling by a small amount, to
globally increase or decrease the geometric texture density. The
final set of examples in Fig. 9 shows the effect of different vec-
tor fields on the texture transfer process. Several key vectors were
manually selected for each example, and interpolation was used to
derive the vector field at each grid point. It can be seen that vector
field can be used to guide the synthesized texture as desired.

We implemented our algorithm on a PC with a Pentium IV 2.4GHz
CPU using C++. The models used for the tests described in this
paper were converted to 257×257 geometry images. A three-level
Gaussian pyramid was used, and the sample models were sampled
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(a)   (b) (c)

(d) (e) (f)

Figure 7: Geometric texture transfer. (a) shows two patches containing geometric textures cut from the armadillo’s leg, (b) shows a gargoyle
model, (c) shows the gargoyle model with synthesized texture added, (d) shows a tyrannosaur model, and (e) and (f) show tyrannosaur models
with two different geometric textures.

either at 64×64 or 128×128 resolution. For texture extraction, we
cut two patches from the armadillo model, each containing about
8,000 vertices. The extraction step took about 10 seconds, most of
which was used in parameterization. The time taken to reconstruct
the model was around 0.6 seconds. The synthesis time, including
training time for the approximate nearest neighbor structure (ANN)
was dominated by nearest neighbor queries. Using appropriate ap-
proximation error bounds for the ANN, this step took 2 to 10 sec-
onds, depending on the resolution of the sample patch, to produce
synthesized results without visible degradation of quality.

6 Conclusions

In this paper, we have presented an efficient algorithm to transfer
geometric textures from one model to another, which requires very
little user intervention while providing opportunities for user con-
trol, if desired. Our method is much faster than most previously
reported, especially after the preprocessing stage of constructing
query structures. The synthesis and reconstruction stages can be
done in a few seconds. The geometry image representation has

been found to be suitable for representing surfaces having geomet-
ric textures. However, there are still some limitations in our current
work. Geometry images usually have relatively large distortions,
which may include anisotropic scaling, and these cannot be fully
compensated for by our approach. Our method could be extended
to use a conformal geometry image representation, and we would
expect better results due to the avoidance of anisotropic scaling and
usually lower distortion; we intend to explore this in future. Our
method is based on use of parameterization of the mesh represen-
tation, and so the topology can not be changed after synthesizing
geometric texture on a surface.

Geometry images are discrete samples of a continuous surface, and
are limited by the resolution chosen. While higher resolution ge-
ometry images can be used, this is inefficient if only parts of the
final textured object have high levels of detail. Instead of using a
regular grid for the geometry image, it might be worth investigating
the use of a geometry quadtree to overcome this problem. Gaussian
pyramid synthesis algorithms are suitable for implementing this ap-
proach as the synthesis is actually done from coarse to fine levels.
Difficulties lie in organizing the quadtree so that it remains rela-
tively regular, and achieving continuity between different levels of
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Figure 8: Geometric texture transfer with different density.

detail. The disadvantage is that the fully regular structure of geom-
etry images will be lost.

Further issues remain to be explored. Firstly, the idea in this
paper could be implemented as an interactive geometric painting
tool for model editing—a cloning-like tool for geometric detailing
would be very useful. Secondly, it is possible to extend the idea
to different synthesis methods, especially patch-based approaches.
Thirdly, spherical geometry images [Praun and Hoppe 2003] con-
tain more regular boundary connectivity which will possibly pro-
vide smoother results across the boundary of an object. Follow-
ing the global conformal parameterization work of [Gu and Yau
2003; Gu et al. 2004], it is also possible to implement our algo-
rithm on conformal geometry images: a multiple-patch representa-
tion, in which each patch is a regularly sampled rectangular domain.
The distortion could be lower due to the introduction of multiple
patches, and the nature of conformality. These can be exploited in
future work.
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