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Abstract�Image retargeting techniques adjust images into different sizes and have attracted much attention recently. Objective quality

assessment (OQA) of image retargeting results is often desired to automatically select the best results. Existing OQA methods train a

model using some benchmarks (e.g., RetargetMe), in which subjective scores evaluated by users are provided. Observing that it is

challenging even for human subjects to give consistent scores for retargeting results of different source images (diff-source-results), in this

paper we propose a learning-based OQA method that trains a General Regression Neural Network (GRNN) model based on relative

scores � which preserve the ranking � of retargeting results of the same source image (same-source-results). In particular, we develop a

novel training scheme with provable convergence that learns a common base scalar for same-source-results. With this source speci�c

offset, our computed scores not only preserve the ranking of subjective scores for same-source-results, but also provide a reference to

compare the diff-source-results. We train and evaluate our GRNN model using human preference data collected in RetargetMe. We

further introduce a subjective benchmark to evaluate the generalizability of different OQA methods. Experimental results demonstrate

that our method outperforms ten representative OQA methods in ranking prediction and has better generalizability to different datasets.

Index Terms�Image retargeting, image quality assessment, learning to rank, general regression neural network.
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1 INTRODUCTION

IMAGE retargeting refers to techniques that adjust a source
image into different sizes, which has become an increas-

ingly demanded tool with the diversi�cation of display
devices. Although a large number of retargeting methods
have been developed, no single method works well on ar-
bitrary input images [9], [26], [27]. Subjective quality assess-
ment involving human judgment is usually time-consuming
and laborious, and thus unpractical in many situations. As
summarized in Section 2, despite recent progress, existing
objective quality assessment (OQA) methods are still far from
ideal in predicting human preference. Therefore, a good
OQA method correlating well with human judgements is
essential in automatically selecting the best retargeting re-
sults and helpful for developing new retargeting methods.

Existing OQA methods train a model using some bench-
marks (e.g., [18], [12]) � in which subjective scores evalu-
ated by users are provided � and the absolute subjective
scores of all retargeted results from different source images
are used indistinguishably for training. A key observation
that motivates the work presented in this paper is that
in most cases, the subjective scores of retargeted images
are only meaningful with the same source image. Even
for human subjects, it is often dif�cult to give consistent
scores for retargeting results of different sources (diff-source-
results). An example is shown in Figure 1, in which the two
retargeting results 1 and 2 have lower subjective scores, but
appear to be more plausible than the results 3 and 4 that
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Source image                       Retargeting Result 1              Result 2
(26, 0.99, 0.0006)       (18, 0.97, -0.0003)

Source image                      Retargeting Result 3               Result 4
(32, 0.72, 0.0011)        (30, 0.69, 0.0010)

Figure 1. Subjective scores are only comparable for retargeting results
of the same source image. In each row, two retargeting results are pre-
sented and their scores are shown in parentheses (the �rst numbers).
These subjective scores provided in the RetargetMe benchmark [18] are
numbers of votes that people cast when comparing this image against
other images with the same source image. Higher scores mean better
results. Although the scores of the two retargeting results 3 and 4 are
higher than the scores of results 1 and 2, we cannot conclude that the
results 3 and 4 are better than the results 1 and 2; instead, the opposite
appears to be true. The second numbers in parentheses are objective
scores output from the method proposed in this paper. The scores not
only preserve the ranking of retargeted images with the same source
image, but also provide a reference to compare retargeted images from
different sources. As a comparison, the third numbers in parentheses
are objective scores predicted by [3], which cannot compare retargeted
images from different sources.

have higher scores. Therefore, instead of training a model
using the absolute subjective scores indistinguishably for
different source images, in this paper we propose a learning-
based OQA method that trains a regression model based
on the relative scores of retargeting results of the same source
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image (same-source-results), which preserve the ranking and
are easy to obtain reliably.

Our method uses the General Regression Neural Net-
work (GRNN) [22] to model a combination of nine known
OQA metrics collected from [9], [27]. We train this GRNN
model using the human preference data collected in the
elaborate RetargetMe benchmark [18]. The GRNN model
is known to work effectively with relatively few training
samples, which suits our task well due to the limited avail-
ability of subjective data. For a source image I , we denote its
retargeted images as a set R(I). Our method is based on a
simple idea that if we add a common scalar to all subjective
scores of R(I), their ranking will not be changed. We
develop a novel training scheme with provable convergence
that learns a common base scalar ci for R(Ii), i = 1; 2; � � � .
The �nal score of a retargeted image Rij 2 R(Ii) is ci + fij ,
where fij is the relative score of Rij in R(Ii).

In our previous conference paper [3], we propose a
method for learning to rank retargeted images, which also
uses the GRNN model. In this method, the GRNN model
takes the features of a pair of retargeted images as input and
predicts their relative quality difference (RQD). By computing
RQDs of all pairs in each R(Ii), post-processing is needed
to transform RQDs into a global ranking. In this paper, we
substantially extend and improve upon [3] in four aspects
and make the following contributions:

� The GRNN model in [3] treats symmetry and non-
symmetry images separately, and in the test phase,
the user needs to specify whether the input pair of
images are symmetric or not, which requires extra
effort. Our new model removes this requirement;

� Unlike the model F 0(v(Rija
); v(Rijb

)) in [3], which
takes the features of a pair of retargeted images
as input1, our new model F(v(Rij)) only uses the
features of a single retargeted image as input, where
v(Rij) is a feature representation of Rij ;

� We propose a novel training scheme with prov-
able convergence, which directly predicts a global
score F(v(Rij)) for the input retargeted image Rij ,
whereas the model in [3] needs a post-process to
transform the relative scores F 0(v(Rija

); v(Rijb
)),

8Rija
; Rijb

2 R(Ii), jb 6= ja, into a global score
f(Rija

), which is only meaningful in a retargeted
image set R(Ii) of the same source image Ii;

� The output global scores F(v(Rij)) not only pre-
serve the ranking of same-source-results, but also
provide a reference to compare diff-source-results
i.e., F(v(Rij)) and F(v(Ri0j0)), i 6= i0, can be directly
compared; see Figure 1.

Experimental results demonstrate that our OQA method
correlates better with human judgements than ten rep-
resentative OQA methods (including [3]) and has better
generalizability. We also conduct a new user study using an
approach similar to RetargetMe benchmark [18] with better
quality control. The novel dataset obtained in this user study
will be made publicly available to provide a useful dataset
for evaluating generalizability of different OQA methods.

1. E.g., F 0(v(Rija ); v(Rijb
)) > 0 indicates that Rija is better than

Rijb
, where Rija and Rijb

must be retargeted images of the same
source image Ii.

2 RELATED WORK

Image retargeting has attracted considerable attention and
many content-aware methods have been developed [20].
To compare different retargeting algorithms, several quality
assessment methods have been proposed, which can be
divided into two types: subjective and objective methods.

Subjective quality assessment designs elaborate perceptual
studies and systematically analyzes user preferences. Retar-
getMe [18] is a well-established benchmark that contains a
decent number of source images and their retargeting results
produced by eight representative methods. A comprehen-
sive, comparative subjective study is also included in Retar-
getMe. It is the �rst in-depth perceptual study with a large
number of users for image retargeting quality assessment.
A different subjective study was proposed in [12], in which
the user evaluation was carried out by simultaneous double
stimulus for continuous evaluation that scored only one re-
targeted image each time rather than pairwise comparison.
Castillo et al. [2] developed an image retargeting survey
using eye tracking technology. All these subjective methods
can provide good evaluation, but they are laborious and
very time-consuming. Nevertheless, these studies provide
valuable benchmarks for developing OQA methods. Our
method proposed in this paper mainly depends on the
RetargetMe benchmark and we further perform an extended
user study for evaluating generalizability.

Objective quality assessment (OQA) de�nes metrics that
can be calculated from pixels of images. Edge Histogram
(EH) [14] and Color Layout (CL) [7] are two image content
based measures in the MPEG-7 standard. They are low-level
metrics that treat images as a whole and de�ne image dis-
tances based on similarity of edge or color distribution. Bidi-
rectional Similarity (BDS) [21] treats an image as a collection
of patches and calculates a bidirectional mapping of these
patches between two images as a measure. Bidirectional
Warping (BDW) [19] is similar to BDS, but the mapping in
BDW takes an asymmetric dynamic time warping, which
simultaneously minimizes the warping cost and preserves
the patch order. BDS and BDW are relatively easy to calcu-
late; however, they treat every patch as equally important
for the �nal distance and do not take salient regions or
aesthetic perspectives into account. Thus their results are not
always consistent with subjective ranking. OQA methods
based on SIFT �ow (SFlow) [10] and Earth-Mover’s Dis-
tance (EMD) [17] can capture the structural properties more
robustly. Liu et al. [11] proposed a top-down model to de�ne
a saliency-based image similarity metric in the CIE Lab color
space. Recently, an aspect ratio similarity (ARS) metric [26]
was proposed, which characterizes how the source image
is resized into the target image by geometric changes and
provides an ef�cient solution based on a Markov random
�eld. Noting that human judgment often involves multiple
factors, several state-of-the-art methods combine multiple
metrics that characterize different factors of image retarget-
ing quality [12], [13], [9], [27].

Our proposed method is inspired by the works in [9],
[27] that both elaborately design several novel metrics and
develop an OQA method by combining them. Liang et
al. [9] combine seven metrics and make use of a linear
combination of these metrics, with the weights learned from
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the RetargetMe benchmark. This method provides an all-
round characterization of retargeted images. However, the
linear combination is over-simpli�ed and does not always
produce a consistent prediction to human preference. Zhang
et al. [27] use three features covering multiple levels, i.e.,
aspect ratio similarity feature (low level), edge group sim-
ilarity feature (mid-level) and face block similarity feature
(high level). To fuse these three features and map feature
scores into quality indices, the Support Vector Regression
(SVR) is used for learning. However, in the training process,
Zhang’s method considers the absolute subjective scores
indistinguishably for different source images. In this paper,
rather than using the over-simpli�ed linear combination, we
propose to use a machine learning approach to provide the
necessary �exibility for feature fusion. We also develop a
novel training scheme with provable convergence that can
learn effective OQA values from relative scores of same-
source-results. Experimental results show that our method
has better prediction performance than [9], [27] and can
predict quality comparable across different source images.

3 A LEARNING-BASED OQA METHOD

The quality of image retargeting depends on multiple fac-
tors and composite metrics are needed. In recent work [9],
[27], several elaborately designed metrics were proposed.
We brie�y summarize nine selected metrics fQ1; � � � ; Q9g in
Section 3.1. Given a source image I and a retargeted image
R, each metric Qi(I; R) computes a scalar in [0; 1] to re�ect
the retargeting quality in one factor.

To construct an objective function F (Q1; � � � ; Qn) from
a set of selected metrics fQig

n
i=1, an additive value function

F =
nX

i=1

wiQi (1)

is used in [9]. The value of F is in [0; 1] and a lower value
of F means better quality. We argue that the linear form in
Eq. (1) is over-simpli�ed and we propose to �nd a better
(possibly nonlinear) form for F by machine learning from
human preference.

In our study, we pay attention to arti�cial neural net-
works (ANNs), which have been well studied and widely
used in image processing. The universal approximation
theorem [6] states that simple neural networks can represent
a wide range of useful functions when given appropriate
parameters. Among many types of ANNs, the RBF network
is a universal approximator2 and is a popular alternative
to the multi-layer perceptrons, due to its simpler structure
and faster training process. Our work in this paper uses the
general regression neural network (GRNN) [22], which is
a representative RBF network and can obtain good results
even with sparse data in a multidimensional measurement
space, particularly suitable for our problem.

Zhang et al. [27] also propose a machine learning method
that fuses a selected set of metrics fQig

3
i=1 using SVR.

Their method directly maps the consolidation of metric
values to the subjective scores for all retargeted images from
different source images in the training phase. We argue that

2. That is, the RBF network is not restricted to any particular form
and does not require any prior knowledge of the appropriate form.

it is challenging even for human subjects to give consistent
scores for retargeting results of different source images, and
therefore, only the relative scores among retargeted images
R(I) with the same source I are meaningful. If we add a
common scalar to the subjective scores in R(I), their relative
scores and ranking in R(I) will not be changed.

In Section 3.2, we propose to train a model that learns
a common scalar ci for each retargeting set R(Ii) with the
source image Ii. In particular, we represent each retargeted
image Rij 2 R(Ii) as a nine-dimensional vector

v(Rij) = (Q1(Ii; Rij); Q2(Ii; Rij); � � � ; Q9(Ii; Rij)) (2)

and learn an objective function F which aims to achieve

F(v(Rij)) = ci + f(Rij) (3)

where f(Rij) is the subjective score of Rij in the benchmark
dataset. The objective function F automatically preserves
the ranking of retargeting results R(Ii) and the scalar ci

provides a reference to compare retargeting results from
different sources Ii, i = 1; 2; � � � . Accordingly, we call our
method ranking-preserving cross-source (RPCS) learning.

Thanks to a property of probability estimator in
GRNN [22], in Section 3.2 we propose a simple yet novel
GRNN training scheme with provable convergence to obtain
the objective function F in Eq. (3).

3.1 Nine metrics

By carefully analyzing existing retargeting methods and
their outcomes, we select nine metrics in four categories of
critical factors that determine image quality for a retargeting
result. These factors and their related metrics are summa-
rized below.

Preservation of global structure. This factor is measured
by three metrics Q1, Q2 and Q3.

Both Q1 and Q2 evaluate the global structure similarity
by a weighted sum of local similarity windows from every
pair of pixel correspondence [9]. Q1 considers the structural
similarity between two images by analyzing the degrada-
tion of structural information between corresponding win-
dows in I and R using the SSIM metric [23]:

Q1 =
ntX

i=1

(1 � SSIM(pi; p0

i)); (4)

and Q2 applies a VDP2 model [15] of human perception to
predict the overall quality of R, when compared to I :

Q2 =
ntX

i=1

(1 �
V DP 2(pi; p0

i)

100
); (5)

where nt is the number of pixels in I , p0

i is the ith pixel of I
and pi is the corresponding pixel in R.

Since humans can easily perceive structure information
from edges or contours of objects, Q3 uses sparse edge
groups [28] to measure structure-related distortion [27]. Let
Ek = feig and E0

k = fe0

jg be the kth pair of edge groups in
source and retargeted images, respectively.

Q3 = e
��

q
1

ne

Pne
k=1

dc(Ek;E0

k
)
; (6)

where � = 0:2, ne is the number of edge group pairs and
dc(Ek; E0

k) is the Chamfer distance between Ek and E0

k [1].
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Preservation of salient regions. This factor is measured
by three metrics Q4, Q5 and Q6: the �rst two deal with
general salient regions [25] and the last one is specially
designed for facial regions.

Q4 considers the area change of general salient regions
between the source image I and retargeted image R [9]:

Q4 = jAI � ARj= max(AI ; AR); (7)

where AI and AR represent the areas of the salient regions
in I and R, respectively.

Q5 considers variations in content as changes in the color
histogram of salient regions [16], [9]:

Q5 =
1

2

vuut
255X

i=0

(h0

I � h0

R)2; (8)

where h0

I and h0

R represent the normalized color histograms
in the source and retargeted salient regions, respectively.

Q6 detects human faces in the source image using the
Face++ toolkit3 and establishes the retargeted faces using
the bounding box based on the estimated pixel correspon-
dence [27]:

Q6 =

(
1

nf

Pnf

i=1 sar(i); nf > 0

1 nf = 0
(9)

where nf is the number of detected faces and sar(i) is the
aspect ratio change of the ith face block pair, de�ned as

sar(i) =

�
2rw(i)rh(i) + ĉ

r2w(i) + r2h(i) + ĉ

�
� e�~c(rm(i)�1)2 (10)

where rw(i) and rh(i) are the width and height change
ratios of bounding boxes in the ith block pair, rm(i) =
rw(i)+rh(i)

2 , ĉ and ~c are small constants [26].
In�uence of visual distortion and introduced artifacts.

This factor is characterized by two metrics Q7 and Q8.
Q7 is a bidirectional similarity metric that takes into

account the in�uence of saliency [21]:

Q7 = 0:5
1

NI

P
U�I SU minV �R D(U;V )

maxU�I(SU minV �R D(U;V )) +

0:5
1

NI

P
V �R SV minU�I D(U;V )

maxV �R(SV minU�I D(U;V )) ;
(11)

where U and V are 3 � 3 patches from the source and
retargeted images respectively, NI and NR are the numbers
of patches in the source image I and retargeted image R,
D is the distance measure between two patches as de�ned
in [21], and SU and SV are saliency weights given by the
average of the salience values of all pixels contained in
patches U and V .

Q8 measures pixel-level aspect ratio similarity [26],
which partitions the source image into dense regular blocks
and maps blocks into the retargeted image based on pixel
correspondence. Q8 uses the bounding box of retargeted
blocks to estimate the local block deformation:

Q8 =
nbX

i=1

wisar(i) (12)

where nb is the number of blocks, wi is the weight measured
by visual importance and sar(i) measures the change of
aspect ratio for the ith block, as de�ned in Eq. (10).

3. Available at https://www.faceplusplus.com

Aesthetics. This factor is measured by two rules in
computational aesthetics [4], i.e., the rule of thirds Tthird

and visual balance Vbal:

Q9 = 0:5Tthird(I; R) + 0:5Vbal(I; R) (13)

See [9] for detailed computation for the rules of Q9.

3.2 Training GRNN for F with RPCS Learning

3.2.1 Training dataset

We use all the 37 groups of images in RetargetMe dataset
[18] � a well-known benchmark in image retargeting � to
train and evaluate our OQA model. In this dataset, each
group has one source image Ii and eight retargeted images
Rij 2 R(Ii), i = 1; 2; � � � ; 37, j = 1; 2; � � � ; 8. We partition
the 37 groups into two classes: one for training and the other
for testing (Section 4). Hereafter, we denote the training set
as 
T and the groups in it as (Ii;R(Ii)) � 
T .

In RetargetMe, a comparative user study based on linked-
paired comparison design [5] was performed to ensure bal-
anced voting. Three complete sets were collected for each
retargeted image to guarantee statistical robustness. Each
time a participant was shown two retargeted images side
by side, and was asked to simply choose the one he/she
liked better. Each retargeted image appeared 3 times for
a participant and judged by 21 participants, meaning that
a retargeted image received a maximum of 21 � 3 = 63
votes. The number of votes for a retargeted image shows the
subjective quality by human observers. As demonstrated in
Figure 1, such subjective scores cannot be used to effectively
compare human preference with different source images, but
work reasonably well for retargeted images with the same
source image. In Section 3.2.2, we use normalized subjective
scores which are the numbers of votes divided by 63.

3.2.2 Ranking-preserving cross-source learning

Unlike the multi-level feature fusion method [27], which
uses SVR to train an objective function F (v(Rij)) � f(Rij),
we target on training an objective function aiming to satisfy
Eq. (3), in which f(Rij) is updated to the normalized
subjective score of Rij , Rij 2 
T .

To achieve this goal, we extract one retargeted image Ri�

from each image group (Ii;R(Ii)) � 
T and denote the

remaining retargeted images of Ii as eR(Ii) = R(Ii) n fRi�g.

Let 
T � =
S

i(Ii; eR(Ii)) and R� =
S

ifRi�g.
Our training process is iterative and each iteration con-

tains two steps. At iteration k (k > 0), in the �rst step, we
train the GRNN model using 
T �, aiming to achieve

Fk(v(Rij)) = fk(Rij) (14)

where Rij 2 
T � and fk(Rij) is the kth training score of
Rij , initialized by f1(Rij) = f(Rij), i.e., the normalized
subjective score in the RetargetMe dataset.

We model Fk using GRNN, due to its approximation
capability with relatively few training samples. The input to
this model is a feature vector v of a retargeted image Rij ,
which is a concatenation of nine metric values in Eq. (2).
We use the standard con�guration for our GRNN model
with the output layer being a scalar corresponding to the
predicted score Fk(v(Rij)). The spread parameter � in

https://www.faceplusplus.com
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Figure 2. Two image groups in the RetargetMe benchmark [18]: each group has a source image and eight retargeted images. For each retargeted
image, the numbers in parentheses are its subjective score (red), normalized subjective score (black) and the objective score computed by our
method (blue). For each group, the difference between normalized subjective score and the objective score is a constant, and therefore, the
objective scores predicted by our method preserve the ranking of subjective scores. Subjective scores are only comparable for retargeting results of
the same source image. For example, although the subjective score of result 1-2 is higher than the subjective score of result 2-2, result 2-2 appears
to be better than result 1-2. The objective scores computed by our method reveal this fact.

GRNN controls the in�uence range of radial basis functions
and is set to 1.4 in our experiments.

In the second step, we evaluate the trained GRNN model
F k using R � and update the training scores of Rij 2 
 T � .
In more details, for each Ri � 2 R � , we compute F k (v(Ri � ))
and update the training scores for all Rij 2 eR (I i ):

f k+1 (Rij ) = f (Rij ) +
1
2

(F k (v(Ri � )) � f (Ri � )) (15)

In Section 3.2.3, we prove that this simple two-step iter-
ation scheme converges quickly at the cth iteration, which
satis�es

f c(Rij ) � f (Rij ) = F c(v(Ri � )) � f (Ri � );
8Rij 2 eR (I i ); eR (I i ) 2 
 T �

(16)

Then ci = F c(v(Ri � )) � f (Ri � ) is the learned common
base scalar for the i th image group in 
 T , which provides
a reference to compare the retargeting results of different
source images.

Two examples are illustrated in Figure 2. The pseudo-
code is summarized in Algorithm 1.

3.2.3 Proof of convergence

Let ng be the number of image groups in the training set 
 t .
Without loss of generality, we assume 8i , Ri � = Ri 8.

Given the training data (v(Rij ); f k (Rij )) , i =
1; 2; � � � ; ng, j = 1 ; 2; � � � ; 7, where v(Rij ) is an instance of
an independent variable v and f k (Rij ) is the corresponding
instance of a dependent variable F k (v), the learned GRNN
model F k can be represented by [22]

F k (v) =

P n g
i =1

P 7
j =1 f k (Rij )e�

D 2
ij

2 � 2

P n g
i =1

P 7
j =1 e�

D 2
ij

2 � 2

(17)

where

D 2
ij = ( v � v(Rij ))T (v � v(Rij )) (18)

In the second step of the kth iteration, we predict the
scoreF k (v(Ri � )) of each Ri � 2 R � using the learned model

Algorithm 1 Ranking-preserving cross-source learning

Input: A training set 
 t with ng image groups in Regar-
getMe dataset.

Output: A trained GRNN model F satisfying Eq. (16).
1: for each image group (I i ; R (I i )) in 
 t do
2: Compute the mean subjective score m of eight retar-

geted images in R (I i ) and select the retargeted image
whose subjective score is closest tom as Ri � .

3: Re-index the setR (I i ) such that Ri � = Ri 8.
4: Set eR (I i ) = R (I i ) n f Ri � g.
5: end for
6: Set 
 T � =

S
i (I i ; eR (I i )) and R � =

S
i f Ri � g.

7: for each retargeted imageR in 
 t do
8: Set f (R) = normalized subjective score of R.
9: end for

10: Initialize " = 1
11: while " > 10� 3 do
12: " = 0 .
13: Train the GRNN model F using 
 T � (ref. Eq. (14)).
14: for each retargeted imageRi � in R � do
15: Evaluate the trained GRNN model F by computing

" i = F (v(Ri � )) � f (Ri � ).
16: Update " = " + j" i j.
17: for each retargeted imageRij in eR (I i ) do
18: Update f (Rij ) = f (Rij ) + " i

2
19: end for
20: end for
21: end while
22: Output F

in Eq. (17). To express this prediction in a matrix form, we
pack all predicted scores of R � into an ng � 1 vector B k :

B k =
�
F k (v(R1� )) � � � F k (v(Ri � )) � � � F k (v(Rn g � ))

� T

(19)
and all kth training scores of eR (I i ) into a 7ng � 1 vector A k :

A k =
�
A1 � � � A i � � � An g

� T
(20)

where A i =
�
f k (Ri 1) f k (Ri 2) � � � f k (Ri 7)

� T
is a 7 � 1
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