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Abstract Surface triangle meshes and volume data are two commonly used representations of digital geometry. Converting
from triangle meshes to volume data is challenging, since triangle meshes often contain defects such as small holes, internal
structures, or self-intersections. In the extreme case, we may be simply presented with a set of arbitrarily connected triangles,
a “triangle soup”. This paper presents a novel method to generate volume data represented as an octree from a general
3D triangle soup. Our motivation is the Faraday cage from electrostatics. We consider the input triangles as forming an
approximately closed Faraday cage, and set its potential to zero. We then introduce a second conductor surrounding it, and
give it a higher constant potential. Due to the electrostatic shielding effect, the resulting electric field approximately lies in
that part of space outside the shape implicitly determined by the triangle soup. Unlike previous approaches, our method
is insensitive to small holes and internal structures, and is observed to generate volumes with low topological complexity.
While our approach is somewhat limited in accuracy by the requirement of filling holes, it is still useful, for example, as a
preprocessing step for applications such as mesh repair and skeleton extraction.

Keywords volume model, triangle soup, harmonic field, representation conversion, mesh repair

1 Introduction

In computer graphics, geometric models can be re-
presented in various ways, such as subdivision surfaces,
spline surfaces, triangle meshes, volumetric represen-
tation etc. Triangle meshes are the most widely used
surface representation, and are typically produced by
3D range scans or designed using computer-aided de-
sign software. Volumetric representation is another
commonly used representation, especially in important
applications such as medical imaging (e.g., CT and
MRI data), scientific visualization, virtual reality and
simulation. Converting between these two representa-
tions is an essential step in various geometry processing
processes. The volumetric representation also has the
advantage that it always corresponds to some valid
configuration in space, unlike a triangle mesh, which
may represent a self-intersecting surface. Indeed, var-
ious methods of producing triangle meshes lead to
invalid models, containing defects such as small holes,
unwanted internal structures, or self-intersections. In

an extreme case, connectivity information may be lack-
ing, and we may just be presented with a “triangle
soup” (see Fig.1(a)). Well-known algorithms[1-2] have
been proposed to robustly convert volumetric represen-
tations to triangle meshes. However, the inverse prob-
lem, i.e., converting mesh models to volumetric repre-
sentation, is challenging due to the potential presence
of defects. We present here a novel method for doing

Fig.1. Kitten model. (a) “Triangle soup”. (b) Volume data pro-

duced by our method.
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this, which can be a beneficial preprocessing step for
various geometry processing applications.

The process of converting triangle meshes to a volu-
metric representation is referred to as scan-conversion
or voxelization. Clearly, the problem of producing an
octree is closely related to that. The key issue is to de-
termine which voxels in 3D space lie inside or outside
the model. However, for imperfect triangle meshes, de-
fects like missing triangles (holes), self-intersecting tri-
angles, and internal disconnected triangles prevent this
from being a straightforward decision. In the extreme
case, we may simply have a triangle soup, and the lack
of connectivity information makes it yet harder to de-
cide what is inside and what is outside. Presented with
such an input, many current volume construction meth-
ods such as [3-5] fail to produce satisfactory results.
Such defective meshes may be restored by mesh repair
methods[6] and a well-known method which can cope
with triangle soups is given in [7], but the output may
be of undesirably high genus if there are internal struc-
tures inside the mesh.

This paper presents a conversion method which takes
a triangle soup as input, and outputs a volumetric rep-
resentation in the form of an octree. Our method is
based on the properties of harmonic fields. The motiva-
tion for our method is the Faraday cage, a construction
used in electrostatics to shield a region from voltages.
If a closed conducting shell is placed in an electric field,
it provides a shielding effect: there is no field inside the
shell. Even if there are small gaps, the interior is still
well shielded. Thus, to generate a volumetric model, we
consider the input triangles as forming a more-or-less
closed Faraday cage, with potential zero. Outside and
surrounding it, we then construct a second conductor
having a higher constant potential. By considering the
electric field magnitude at each point of space, which
should be zero inside the cage, we have a method for
determining whether each point is inside or outside the
input triangle model.

Because of its robustness in the presence of inter-
nal structures and small holes, our method has var-
ious potential applications as a beneficial preprocess-
ing step in geometry processing. For example, mesh
repair methods like [7] are sensitive to internal struc-
tures, which may output results of unnecessarily high
genus due to topological redundancy. The results can
be substantially improved if we selectively pass to the
mesh repair pipeline only those triangles from the input
triangle mesh close to the boundary of the volume gene-
rated by our method. Another use of our approach is in
skeleton extraction. Skeletons are important shape de-
scriptors for object representation and recognition, but
they cannot be robustly extracted from mesh models

with defects such as internal structures. In this case,
we can convert the imperfect mesh to volumetric rep-
resentation first, and then adopt existing robust and
efficient methods of extracting skeletons from volume
models like [8].

Thus, the main contribution of our work is a novel
approach to generating a volumetric representation
from a triangle soup, which may serve as a beneficial
preprocessing step for various geometry processing ap-
plications. Although other volume construction meth-
ods like [4-5, 9] have been proposed, our method differs
from them in having the following two main advantages:
(i) our method is insensitive to small holes and internal
structures, and (ii) our method produces a volume with
low topological complexity.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review the related work. In Section 3,
we overview our method; details are in Section 4. Expe-
rimental results are given in Section 5 and concluding
remarks are given in Section 6.

2 Related Work

The key problem during volume model construction
is to determine whether a given voxel in 3D space lies
inside or outside the model. We thus briefly review and
classify existing techniques in terms of how they make
this decision.

To classify the interior and exterior of a polygonal
model, approaches like [10-11] are used to assess the vi-
sibility of the surface from a surrounding sphere of cam-
eras. However, simple viewpoint-visibility tests may fail
for imperfect meshes, since some interior points may be
visible through small holes in the surface, as for the Kit-
ten model shown in Fig.1(a).

In [3, 12], triangle meshes are voxelized using those
grid cells that intersect the model surface, which there-
fore only generates a thin-shelled volumetric represen-
tation. There is thus no explicit representation of inside
and outside, only the boundary, which is unsuitable for
many applications. To fill the interior of the model, a
boundary filling algorithm is used in [4] after voxelizing
triangles in a similar way. Similarly, in [13], an octree
is constructed and the inside/outside property of cells
is determined using a robust seed algorithm. However,
these two methods fail if the input contains defects in
the form of gaps in the input triangle mesh.

In [5], a signed volume is generated using a signed
distance field, computed as the minimum signed dis-
tance from each cell to the input triangles. The au-
thors also use an octree structure to adaptively sample
the field. Fast computation of this field using graphics
hardware is presented in [14]. However, these methods
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assume that the input triangle mesh is consistently ori-
ented, which is not true for all input meshes, and is not
assumed by our method.

In [15], an implicit representation of the object’s sur-
face is constructed from oriented points using radial
basis functions. This allows holes to be smoothly filled
by extrapolation. Alternatively, surface reconstruction
from oriented points can be formulated as a Poisson
problem[16], which yields a well-conditioned sparse li-
near system similar to ours. Yet another approach is
given in [17], where a moving least-squares method is
used to interpolate gaps between the input polygons.
However, these methods again require consistent ori-
entation of the input data, and furthermore, any un-
wanted internal triangles are retained.

Nooruddin and Turk[9] give two methods of voxeliza-
tion based on different principles, parity-counting and
ray-stabbing. The former method simply generalizes to
3D the well-known method of determining whether a
point is interior to a polygon in 2D. The ray-stabbing
method involves casting rays from each grid cell and
voting based on intersections on the ray with the model.
Neither method is robust as small gaps in the surface
may cause a large portion of the cells at a distant loca-
tion to be misclassified. They may also be confused by
extra unwanted internal triangles.

A robust method which can guarantee to produce a
closed model from a triangle soup is given in [7]. How-
ever, as noted by the author, if the input model contains
internal structures, the output may be of high genus,
which is undesirable in most applications. Our method
does not suffer from this problem, and is observed to
generate volumes with low topological complexity.

3 Overview

Our volume construction method is motivated by
the Faraday cage from physics[18], and uses the ap-
proach illustrated in Fig.2. Suppose our input object
is an approximately closed electrical conductor, whose

potential is set to zero. A second conductor is placed
outside it and surrounding it, and given a higher poten-
tial, generating an electric field. Due to the shielding
effect of the inner conductor, the electric field magni-
tude should be approximately zero inside it. By com-
paring the electric field magnitude to a small threshold,
we get a method for determining whether a given point
lies inside or outside the input model. Obviously, there
maybe places outside the model that could possibly
have zero gradient magnitude. For highly non-convex
objects, if the external conductor has a rather different
shape to the inner conductor, the electric field may also
be quite small in some places outside. To ensure that
the method works well for such objects, we first com-
pute a coarse object contour using an enclosing cube
as the external conductor. Then we dilate the coarse
object contour (i.e., offset it outwards) to get a new
external conductor with a similar shape to the original
object, and fairly close to it. We then use the method
again with this new outer conductor to get a more ac-
curate location for the object boundary.

Thus, our volume construction method is composed
of three steps, which are detailed in Section 4:
• Discretization. During discretization, we embed

the input triangle model in a tight (but not contacting)
bounding cube and an initial octree representation of
the input triangle model is computed by marking vo-
xels that intersect with the triangles as boundary vox-
els. The depth of the octree is specified by the user or
a default value is calculated from the triangle size, as
explained later.
• Coarse Contour Generation. To get a contour for

the outer conductor that is a similar shape and close
to the input model, a harmonic field is coarsely con-
structed inside the bounding cube with potential value
zero on boundary voxels (those containing triangles)
and a constant higher potential value on the boundary
of the cube. We make use of the octree structure to per-
form fast computation. We extract those voxels whose

Fig.2. Steps in our method (illustrated in 2D for simplicity). (a) Input model. (b) Discretization and coarse field computation on

a non-uniform grid. (c) Offset contour and more accurate field generation. (d) Extracted voxels for which field gradient is below a

threshold.
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field value is below a threshold as an initial estimation
of the volume to be voxelized. We next apply a morpho-
logical dilation operation to this volume, to get a new
coarse contour which has a similar shape to the object.
Using this in place of the cube as the outer conductor
allows us to get an almost uniform field between inner
and outer conductors, even for highly non-convex ob-
jects, allowing us to straightforwardly use thresholding
later to determine a more accurate boundary for the
object.
• Volume Extraction. We now construct a more ac-

curate harmonic field inside the new coarse contour.
The potential value of the boundary voxels (containing
triangles) is again set to zero, and a higher potential is
applied to the new coarse contour. We use a uniform
grid between the conductors to compute the harmonic
field in this case, which gives more accurate results.
Voxels whose field gradient is below a given threshold
are extracted as the final volumetric representation of
the input triangle soup.

4 Harmonic Field Model for Volume
Construction

We now describe our harmonic field based volume
construction method. We first define and give pro-
perties of harmonic fields. We then show how such a
field can be used to construct a volume model from the
triangle soup. We also elaborate on the details of our
method in this section.

4.1 Definition and Properties

A harmonic field on a domain Ω ⊂ R3 is a scalar
field that satisfies Laplace’s equation:

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0. (1)

If a scalar field is harmonic, locally the value of V at
a point r(x, y, z) is the average value of V over a sphe-
rical surface S of radius R centered at it, which yields
the following mean value formula:

V (r) =
1

4πR2

∮

S

V da. (2)

In physics, an electric potential field is a typical ex-
ample of such a field. Using electrostatics concepts to
motivate the construction of volumetric harmonic fields
also appeared in [19].

To solve Laplace’s equation, two kinds of boundary
conditions are typically used to determine the field. For
Dirichlet boundary conditions, the values of V are given
on certain boundaries, while for Neumann boundary

conditions, the gradient of V is specified on the bound-
aries.

A harmonic field has several useful properties. From
the mean value formula in (2), it turns out that V can
have no local maxima or minima inside the boundary.
Extremal values of V are sure to occur at the boun-
daries, which is called the min-max property[18].

For the purpose of volume construction, we set up
the following harmonic field model. We first consider
the continuous case, and then the solution to the model
in the discrete case in Subsection 4.2. For a given tri-
angle soup, let the set of triangles be {T1, . . . , Tn}. We
place them within some chosen coarse contour. A har-
monic field is then constructed inside the coarse contour
using the following Dirichlet boundary conditions:

V (p) =
{

0, p ∈ Ti,

C, p ∈ ∂B,
(3)

where V (p) is the field value at boundary point p, and
∂B denotes the coarse contour surrounding the model.
C is any positive potential value which we set to 1 for
simplicity. Values at points inside the coarse contour
are then determined by Laplace’s equation.

Ideally, if the input model was a closed manifold
mesh, the solution to Laplace’s equation would yield
V = 0 inside the mesh and the gradient ∇V would also
be zero inside the mesh. Furthermore, in the region be-
tween the model and the coarse contour, the min-max
property of harmonic fields tells us that there are no
local minima or maxima of the field within this region.

Now, during the second stage of the process, when
the gap D between the model and the coarse con-
tour is small, and approximately uniform (because the
coarse contour has been found by dilating the coarse
model), the gradient magnitude in the region between
the model and the coarse contour is almost constant,
i.e., ‖∇V ‖ ≈ C/D. Therefore, we can use the gradi-
ent magnitude as a criterion to decide whether a given
point is inside or outside the model by comparing it to
a threshold.

In practice, the input is a triangle soup, which may
contain gaps, holes and self-intersecting triangles. In
such cases, the gradient magnitude of the field is not
exactly zero inside the shape. However, such mesh de-
fects have little impact on the harmonic field inside the
model[18]. Therefore, inside/outside classification at a
given point can still be carried out by examining the
gradient magnitude there.

In an ideal case, the threshold could be set to 0.
But as the gradient magnitude is not exactly zero inside
the input model in practice, we set it to αC/D. This
more flexible criterion coincides with the physical model
(where electric field is almost shielded) and practically



566 J. Comput. Sci. & Technol., May 2010, Vol.25, No.3

allows us to fill small holes and internal structures, pro-
ducing a volume with low topological complexity in
most cases. We discuss the choice of α when presenting
our experimental results in Section 5.

We next give details of applying the above idea to
volume construction from triangle soup.

4.2 Volume Construction

4.2.1 Discretization

The first step of our method is discretization. We
first embed the input model into a bounding cube
of size S = 1.1M , where M is the model size. The
discretization step constructs an octree representation
within this cube corresponding to the input triangle
soup. The octree is built incrementally as triangles are
read in. Leaf node cells are those containing triangles,
and are referred to as boundary voxels. The depth of
the octree L may be selected by the user. Larger L re-
sults in lower distance error between the original mesh
and the volumetric representation, but smaller L allows
a more rapid computation. To capture fine details, the
depth of the octree can be set by default so that the
leaf cell size is equal to the average triangle size T ,
giving a default value of octree depth L = log2(S/T ).
If we choose an octree level deeper than this, a triangle
may be split across several voxels. Ideally, for perfect
meshes, α could be chosen to be almost zero, and the
distance error between the input mesh and the output
volume model should improve as L increases. In prac-
tice, to fill gaps for imperfect meshes, α must be chosen
at some finite non-zero values, which places an upper
limit on the accuracy of the volume model. Further in-
creases in L will not improve the distance between the
volume model and the input mesh. Nevertheless, this
limit to accuracy does not prevent the approach from
becoming a useful preprocessing step, and e.g., perfo-
rming internal structure removal for mesh repair. A

Fig.3. Converting an imperfect input model to quadtree repre-

sentation. The boundary voxels are marked red.

2D example of this process is shown in Fig.3; this figure
should be compared to Fig.2.

4.2.2 Coarse Contour Generation

The second step of our method is to generate a coarse
contour that is approximately a constant distance from
the input model surface. There could be some regions
outside the model that have almost zero gradient mag-
nitude, such as the saddle of the harmonic field. Di-
rectly thresholding the gradient magnitude may lead
to redundant components in result. However, it can be
alleviated if we can estimate useful components at first.
That is one of the reasons why we construct a coarse
contour in this step. For this purpose, we first construct
a harmonic field inside the bounding cube, using the oc-
tree grid to perform the computation. This is not at all
accurate, but is sufficient to generate a suitable outer
conductor. In detail, the potential value is set to 0 on
leaf (boundary) voxels, and to the value 1 on the sur-
face of the bounding cube. Voxels whose potential value
is below a threshold (set to 0.01 in our experiments)
are used as a coarse approximation to the volume of
the original model. Note that, in this case, we use the
potential instead of the field gradient to determine the
approximate volume, as it has continuous variation and
is sufficiently accurate for this purpose. Note that this
step closes gaps in the original voxelized boundary, and
discards any internal structure. We now apply a mor-
phological dilation operation to this approximate vo-
lume to provide a new coarse contour which is at an
almost constant distance from it. In the rest of this
section, we further consider how to compute the coarse
contour, then elaborate on the dilation operation.

Numerical solutions to Laplace’s equation can be
found using the finite difference method[20]. We use
a seven point finite difference on a uniform grid to ap-
proximate the second derivative:

∇2V (x, y, z) ≈V (x + h, y, z) + V (x− h, y, z)+

V (x, y + h, z) + V (x, y − h, z)+

V (x, y, z + h) + V (x, y, z − h)−
6V (x, y, z), (4)

where h is the voxel size.
A finite difference method on a uniform grid in 3D

is computationally expensive both in time and mem-
ory. However, as we only need a contour that ap-
proximates the input model, it is not necessary to
accurately compute the field. Therefore, we exploit the
octree based decomposition of the space found in Sub-
section 4.2.1 to efficiently compute the initial contour,
as done in [21]. Let the octree cells be {c1, . . . , cn}.
For each cell ci, let its neighbors be N(ci) = {cn

ij ,
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j = 1, 2, . . .}. Each leaf cell is associated with a po-
tential value V (ci) in the field. A discrete version of
the mean value formula (2) can now be written as fol-
lows, so that the potential at each non-boundary cell
satisfies Laplace’s equation:

V (ci)
|N(ci)|∑

j=1

ωij −
|N(ci)|∑

j=1

ωijV (cn
ij) = 0, (5)

where ωij is the contact area between two neighboring
cells ci and cj . Dirichlet boundary conditions are used:
the boundary voxels (containing triangles) are given a
potential of 0, while voxels at the boundary of the cube
are connected to a virtual cell with potential 1.

We can rewrite these equations in matrix form as
Ax = b, where x = {V (c1), . . . , V (cn)}T. A and b
can be deduced from (5) and the boundary conditions.
As shown in [22], the matrix A is positive semi-definite
and the solution to this linear system is uniquely deter-
mined. Note that the total number of cells in the octree
is O(N), where N is the number of input triangles.

After the coarse field has been computed, the cells
whose potential value lies below a threshold (set to 0.01
here) are extracted as the initial approximation of the
volume model.

We next use a morphological dilation operation (see
[9]) to expand the approximate volume outwards to ob-
tain the new coarse contour. Following [9], we first
compute a distance map from the approximate volume,
and mark any voxel with distance less than the dilation
distance D as being inside the new coarse contour. We
set D = 0.05S in our experiments, where S is the size
of the bounding cube. As we start from a non-uniform
grid, we must subdivide octree cells where necessary.

4.2.3 Volume Extraction

Once the new coarse contour has been computed, we
are ready to more accurately determine a voxelization of
the input model. We construct another harmonic field
with potential value 0 on the boundary voxels (those
containing triangles) and apply potential of 1 to the new
dilated coarse contour surrounding the triangle soup.

Again we must solve the Laplace’s equation. We now
need a more accurate solution, and a uniform grid must
be used inside the coarse contour. However, subdivid-
ing all octree cells inside the coarse contour is unnec-
essary. To reduce the time taken, we make use of the
fact that some cells with large size and small potential
value in the octree lie inside the model. We exclude
cells that lie inside the coarse contour, with level smaller
than a number K and potential value smaller than the
threshold used in Subsection 4.2.2. Larger K leads
to more rapid computation but may not be accurate

enough, while smaller K is more accurate but more
time-consuming. In practice, we find K = L − 1 (L is
the octree level described in Subsection 4.2.1) to gener-
ally be a good compromise. The number of cells whose
potential is to be determined depends on the size of the
gap between the model and the coarse contour, which
is still O(N): the gap size does not depend on the num-
ber of triangles. Again, using (4), we set up and solve
a linear system, using a uniform grid.

Finally, the voxels whose gradient magnitude is be-
low a given threshold are extracted as interior voxels
and included in the volumetric representation of the
input triangle soup (see Fig.2(d)). The choice of the
parameter α, which determines the threshold, is dis-
cussed in the next Section.

5 Experimental Results

We now present various experimental results pro-
duced by our harmonic field based volume construction
method, and discuss them.

5.1 Implementation Details

Our volume construction algorithm was imple-
mented in C++ on a Windows platform using an Intel
Core 2 Duo 3GHz computer with 4GB RAM. The main
steps of our method involve solving two linear system.
In our implementation, we solve the linear system us-
ing an iterative overrelaxation method. For a given
octree level, the number of cells in the cube is O(N),
where N is the number of input triangles. Therefore,
the time complexity of computing the initial contour
and volume extraction is O(kN), where k is the num-
ber of iterations. We applied our method to various
models; the times taken for a specified octree level are
shown in Table 2.

5.2 Effect of Parameters

We first tested the effect of varying the parameter
α. To compare the input triangle soup to the con-
structed volume, we place a large number of sample
points (50 000 were used in our experiments) on the in-
put triangle model, uniformly with respect to area, and
compute the distance from the center of each voxel on
the boundary of the volume to the closest sampled point
from the triangles. The largest such distance is used as
a measure of distance error, of how the volume model
deviates from the input model. Different values of α
and corresponding error measurements of some models
are listed in Table 1. In this table, the only models free
from defects are the Horse and Kitten models, and are
thus the only models where this distance is truly mean-
ingful. The errors reported are relative to the average
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Table 1. Variation with α of Model Error, Measured

Relative to Average Input Triangle Size

α Sofa Tank Horse Kitten Jar

0.01 0.465 0.698 0.958 1.117 0.718

0.05 0.465 0.698 0.958 1.117 3.986

0.10 0.465 0.698 0.958 1.117 7.688

1.00 6.635 3.011 3.450 3.176 10.751

10.00 10.362 8.345 7.309 11.198 10.165

triangle size of each input model. Note that, when α
is small, errors change little, which verifies our expec-
tation that there is a shielding effect produced by the
triangle model. When α exceeds 1.0 (a threshold almost
equal to the gradient magnitude of the field inside the
gap), larger errors are observed, as some voxels out-
side the model may now be included in it. As α gets
even larger, errors increase, as further voxels outside the
model are included. Since the errors change little when
α is small, we empirically determine that we may set
α = 0.05 for most of the models in this paper. For the
Jar model (Fig.8), which is highly non-convex, a smaller
α is preferred; we discuss this further in Subsection 5.4.
Note that the distance error is affected by both the oc-
tree level L and the parameter α. It is difficult to make
a universal choice of α, as in principle, the smaller the
α is, the more accurately we can approach the triangle
mesh, but we must take into account the need to fill
holes, and their size, and the nature of concavities of
the model. There is also a tradeoff between efficiency
and accuracy with respect to the octree level L, and
we suggest setting L to the default value described in
Subsection 4.2.1. This is sufficient in practice when our

method is used as a preprocessing step for tasks such as
internal structure removal for mesh repair, or skeleton
extraction from volumetric models[8], where robustness
is more important than accuracy.

5.3 Robustness and Comparison

We next show the results of applying our method
to some typical but imperfect models like Kitten
(Fig.1(a)), Horse (Fig.4(a)) and Fertility (Fig.5). To
test the robustness of our method, we synthetically dis-
torted the models by randomly perturbing positions of
vertices and removing some faces. Observe that the
constructed volumes exhibit a good appearance despite
these defects. The genus of each model is listed in Ta-
ble 2.

Fig.6 shows some models created using computer-
aided design software. Note that these models contain
self-intersections and internal structures, which is not
unusual when triangle models are output by commer-
cial CAD software. Fig.4(b) shows a Dragon model with
certain internal structures that are difficult to detect.
The method proposed in [7] is capable of handling these
models but the generated results are of unnecessarily
high genus due to topological redundancy in the form
of handles, cavities, and disconnected components, as
indicated in Table 2. Such complex topology can be
simplified by methods such as those in [23], but it is
more efficient to avoid producing them if possible when
converting to volumetric representation. Our method is
insensitive to such internal structures and is observed
to generate volumes with low topological complexity
(again, see Table 2). For imperfect meshes, there is no

Fig.4. Results produced. (a) Defective Horse model. (b) Dragon model with internal structures.
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Fig.5. A defective Fertility model and generated vol-

ume model.
Fig.6. Results of applying our method to various CAD models.

Table 2. Performance for Various Models with Specified Octree Level

Model Figure Input Octree Build Generate Extract Output Genus, Output

Triangles (k) Level Octree (s) Coarse Contour (s) Volume (s) Our Method Genus[7]

Sofa 6(a) 8 6 0.32 0.13 0.24 1 41

Tank 6(b) 4 7 0.46 0.78 0.86 4 54

Jar 8 19 7 1.08 2.06 3.01 0 0

Castle 6(c) 9 8 0.98 3.84 3.96 0 4

Kitten 1 30 8 1.80 10.85 11.64 1 1

Horse 4(a) 67 8 2.54 12.15 13.15 0 2

Dragon 4(b) 200 9 10.18 33.74 43.81 2 5

Fertility 5 480 9 19.63 45.23 55.41 4 4

ground truth of the correct genus, but the results of
our method are certainly lower, and preferable in gen-
eral. This makes our method suitable for severing as a
preprocessing step for mesh repair methods, in which
we feed only those triangles that are sufficiently close
to the boundary of the volume to the subsequent mesh
repair pipeline. Fig.7 shows an example. Before we ap-
ply the mesh repair method of [7], we selectively pass
the triangles whose closest distances to the boundary
of the volume are no larger than the distance error de-
scribed in Subsection 5.2. Note that directly applying
the method in [7] causes unnecessarily topological re-
dundancy (also see Table 2). By using our method as a
preprocessing step, we get a repaired model with lower

topological complexity.

5.4 Limitations and Discussion

As shown by the previous experiments, our method
is good at preserving global shape and is insensitive to
small holes and internal structures of models. There-
fore, in many cases, it produces a volume with low topo-
logical complexity. But it also has limitations. Due to
the properties of harmonic fields, if the input model
contains some parts that are very close to each other
(as in the Spiral model in Fig.9) or deep concavities (as
in the Jar model in Fig.8), the gradient magnitude is
small in such regions. This can be seen clearly in our

Fig.7. The result of repairing the Horse

model using our method as a preprocess-

ing step of [7].

Fig.8. Jar model with a deep concavity (a), and generated volume models with (b)

α = 0.01 and (c) α = 0.10.
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Fig.9. A mesh with some parts very close to each other, and the

volume model generated by our method.

2D illustration in Fig.2(b). Note that the field varies
slowly in concave regions, e.g., near the base of the two
ears of the Bunny model: the fixed zero value boundary
condition causes the potential to be almost constant in
such concave regions.

As a result, it may be difficult to choose parame-
ters to avoid such spaces being filled by our method.
For example, in the Jar model in Fig.8, the gradient
magnitude is small inside the Jar, with the result that
if α is not chosen small enough, some of the interior
space is filled by our method, resulting in the large er-
rors shown in Table 1. Volume models generated with
two different choices of α are shown in Fig.8. Notice
that larger α causes the volume model to expand a lit-
tle, particularly in the interior space. The application
of our method to a further somewhat extreme case, the
Spiral model, is shown in Fig.9. The field is almost
constant inside the gap. In this case, choosing α = 0.10
leads to our method filling the gap. (Of course, even
if we can find a suitable α, L, the octree depth, must
also be chosen large enough so that the voxel size is
suitable compared to the size of the gap.) If α is set
to a larger value, we can fill larger holes. However, the
result may deviate from the original model too much if
α is too large (see Table 1). Therefore, there is tradeoff
between filling holes and accuracy. We intend to in-
vestigate the relation between α and the size of largest
holes that can be filled in the future.

Actually, as these two examples are perfect meshes,
we can choose α to be very small to alleviate this phe-
nomenon. However, for real models, if we choose α
too small, small gaps in the mesh elsewhere may not
be satisfactorily filled. In fact, such a problem is al-
most impossible to overcome. If gaps in the mesh are
of a similar size to real features, it may not be possible
to distinguish an intentional feature from missing data.
Choosing α large enough to avoid this issue will cause
the generated volume to expand a little compared to
the original triangle soup. However, this has little im-
pact when our method is used as a preprocessing step.
For mesh repair, we can discard internal triangles by
keeping those triangles that are sufficiently close to the

boundary of the volume model, and then use a method
like [7], which is complementary in being excellent at
handling missing triangles, but has poor behavior in
the case of internal structures. For skeleton extraction
from volume models, methods like [8] only require an
approximate input to capture the nature of the shape
skeleton.

6 Conclusion and Future Work

In this paper, we present a novel method to construct
volume model from triangle soups, which has applica-
tions as a beneficial preprocessing step for various geo-
metry processing tasks like mesh repair and skeleton
extraction. In our method, we consider the input tri-
angles as forming a more-or-less closed Faraday cage,
with potential zero, and a second conductor, outside
it and surrounding it, is given a higher potential. We
may then determine whether a given point in space is
inside or outside the input model by considering the
resulting electric field. Our method is insensitive to
small holes and internal structures and is observed to
generate volumes with low topological complexity. In
the future, we intend to further develop the method.
One possible solution to the issue of accuracy may be
to adaptively vary α across the mesh, assuming we can
distinguish what is a concavity from an unwanted hole.
Apart from that, we think the gradient magnitude of
the harmonic field is related to the curvature and we
intend to investigate its usage in shape analysis.
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