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Abstract—Human action recognition from videos has wide ap-
plications and has attracted significant interests. In this work, to
better identify spatio-temporal characteristics, we propose a novel
3D extension of Gradient Location and Orientation Histograms,
which provides discriminative local features representing not
only the gradient orientation, but also their relative locations.
We further propose a human action recognition system based
on the Bag of Visual Words model, by combining the new 3D
GLOH local features with Histograms of Oriented Optical Flow
(HOOF) global features. Along with the idea from our recent
work to extract features only in salient regions, our overall
system outperforms existing feature descriptors for human action
recognition for challenging real-world video datasets.

I. INTRODUCTION

Human action recognition is one of the most important top-
ics in the video processing domain. Analysis of human actions
in videos is a crucial problem in computer vision because
many applications are dependent on it, e.g., human-computer
interaction, content-based video retrieval, visual surveillance,
analysis of sport events, video manipulation, etc. Recognising
human actions from video is also a very challenging problem
because of the fact that the physical body of a human subject
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Figure 1. Feature extraction using the S-GLHF (Saliency Guided 3D GLOH
and HOOF) descriptor in our action recognition system.

doing the same action can look very different depending on the
situation. For instance, similar actions of the same person with
different clothes or in different illumination and background
can result in large appearance variation. The same action
performed by two different people may look quite dissimilar
in many ways as well.

To cope with such variation, extracting features from video
frames is typically employed as an essential component in
an action recognition system. If the extracted features are
informative and selective, then accurate and efficient ac-
tion recognition can be achieved. Feature extraction can be
achieved either locally or globally, and a combination of
complementary features can often produce more robust and
informative features for encoding video information. Existing
feature extraction methods for human action recognition can
mainly be categorised into motion-based, shape-based and
texture-based methods, based on different image properties
being considered. In motion-based methods, the optical flow
features are used to represent the motion of action in the video
frames [1]. In shape-based approaches, an action is encoded as
a shape descriptor to preserve the action information [2], [3].
In texture-based methods, selective and robust local texture
information within some interest regions in the video frames
is extracted to encode the action [4], [5], [6]. As an alterna-
tive, recent work uses deep Convolutional Neural Networks
(CNNs) [7], [8] to learn features and perform classification,
which avoids handcrafted features. Such methods benefit from
a large number of training data and produce competitive
results, although the learnt features can be less intuitive to
interpret. This paper focuses on designed features which are
generally easier to implement, and do not require a large
training set.

2D descriptors have achieved notable success in object
detection and recognition. Considering videos as 3D spatio-
temporal volumes, efforts have been made to extend 2D
descriptors in the image domain to 3D volumes in the video
domain. Recent work has demonstrated that such descriptors
can represent the video information more effectively than those
with 2D features. Klaser et al. [4] described the video informa-
tion as a 3D histogram of gradients with different scales and
locations in the spatio-temporal domain. Willems et al. [9]
introduced ESURF by extending the SURF descriptor to 3D
patches. Zhang et al. [6] introduced a 3D descriptor to capture



video information, which is called simplex-based orientation
decomposition (SOD). This descriptor represents video data
based on decomposing the orientations of visual cues into
three angles, and then transforming the decomposed angles
into the simplex space. Scovanner et al. [5] extended the SIFT
descriptor to the spatio-temporal domain. Although features
such as 3D SIFT are effective in representing the local spatio-
temporal characteristics, they are essentially histograms of
(gradient) distribution in the local neighbourhood of selected
interest points. The spatial location of such distribution is
ignored. Such information, however, can be discriminative if
the video contains spatially varying details, which is common
for real-world videos.

In this paper, we propose a novel effective feature called 3D
GLOH (Gradient Location and Orientation Histogram), which
describes local spatially varying information for video data. It
detects interest points in the video and then describes them in
3D log-polar coordinates. This descriptor is an extension of
the 2D GLOH descriptor [10] and we will demonstrate that it
better captures the characteristics of local video information
than existing features. Moreover, we propose an action recog-
nition system, that uses 3D GLOH for extracting local features,
along with histograms of oriented optical flow (HOOF) [11]
for extracting global features. We further employ the idea
from our recent work [12] and extract features only in salient
regions for action recognition. We evaluate the new combined
descriptor using a variety of video datasets. The new descriptor
outperforms the state-of-the-art descriptors for challenging
real-world videos with uncontrolled complicated environment,
such as the UCF-Sports and TV-Human Interaction datasets.

The main contributions of the paper can be summarised as
follows:

1) We propose a novel 3D GLOH feature and demonstrate
its usefulness for human action recognition.

2) We develop a novel combination of local and global
descriptors, which outperforms existing descriptors in
action recognition with challenging real-world videos.

II. PROPOSED METHOD

The overall framework of our human action recognition
system encodes video sequences using a combined local and
global representation, along with the Bag of Visual Words
(BoVW) framework. The local features are represented by
our proposed 3D GLOH from only salient regions in the
video frames [12] and the global features are represented
using Histograms of Oriented Optical Flow (HOOF). Figure 1
illustrates the main steps of the proposed system for feature
extraction. We now describe the system with an emphasis on
the novel 3D GLOH descriptor as follows.

A. 3D Gradient Location and Orientation Histograms (3D
GLOH)

To capture the gradient distribution and localise it in the
neighbouring spatio-temporal domain, we extend the GLOH
descriptor proposed by Milkolajczky and Schmid [10] to 3D
in a log-polar location partitioning. More specifically, we first

Figure 2. The neighbourhood local region labelling at an interest point used
for computing the GLOH descriptor in a log-polar domain.

detect interest points using the standard 2D SIFT [13]. For
each detected interest point, we consider its neighbourhood
as a cylinder in the spatio-temporal volume, with a diameter
of 31 pixels in the spatial domain and a height of 8 pixels
(frames) along the temporal domain. The cylinder is further
divided in both the spatio- and temporal domains to provide
localised distribution. In the temporal domain, the cylinder is
split into two halves each with 4 frames. In the spatial domain,
following [10] a log-polar location grid is used with three bins
in the radial direction (with the radii set to 6, 11 and 15)
and 8 in the angular direction for each slice, which results
in 17 location bins (see Figure 2), where the central bin is
not divided in angular directions. Cartesian coordinate system
is transformed into the polar coordinate system through the
following equations:

ri =
√

(xi − xc)2 + (yi − yc)2, (1)

θi = tan−1((yi − yc)/(xi − xc)), (2)

where (xi, yi) is the coordinate of pixel in the Cartesian
coordinate system, (ri, θi) is the radius and the angle in
the polar coordinate system. (xc, yc) is the coordinate of the
interest point. This leads to 17 × 2 = 34 local regions in the
spatio-temporal domain.

For each pixel in a local region, 3D gradients are calculated,
similar to 3D SIFT [5]. The 3D gradient orientation for each
pixel are described using two angles θ and φ, which are defined
as follows:

θ(x, y, t) = tan−1(Ly/Lx), (3)

φ(x, y, t) = tan−1(Lt/
√
L2
x + L2

y), (4)

where L is the intensity of the video frame, Lx, Ly , and Lt

are the intensity gradients w.r.t. x, y and time, computed
respectively using finite difference approximations: L(x +
1, y, t) − L(x − 1, y, t), L(x, y + 1, t) − L(x, y − 1, t) and
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Figure 3. 3D GLOH representation: a) Neighbourhood of the interest point as a cylinder with a diameter of 31 and 8 frames in the spatio-temporal domain.
b) Histogram computation over local regions with spatial domain split into 17 log-polar location grid and temporal domain split into two halves. c) Histogram
of a local region.

L(x, y, t+ 1)− L(x, y, t− 1). θ and φ encode the angles for
the 3D gradient direction.

Each gradient orientation angle is quantised into N bins (by
default we use N = 16). As two angles are used to describe a
3D orientation, the descriptor is a vector of 2N×34 dimension
as shown in Figure 3.

The resulting descriptor is high dimensional, which makes
computation expensive. For example, when the default N =
16 is used, the histogram dimension is 2 × 16 × 34 = 1088.
We use Principal Component Analysis (PCA) to reduce the
dimensionality. The covariance matrix for PCA is estimated
using the training examples in the datasets, and 192 dominant
eigenvectors are used to reduce the dimension to the same
level as SIFT features.

B. Human Action Recognition using S-GLHF Descriptor

As we will show later, our proposed 3D GLOH descriptor is
particularly effective in describing local spatio-temporal distri-
bution at each interest point. Following our recent work [12],
we apply saliency detection [14] to identify salient (fore-
ground) objects from each video frame, and only consider
keypoints in the foreground. This helps suppress the impact of
spurious keypoints by incorporating some “semantic” informa-
tion. The 3D GLOH descriptor is then complemented with a
global descriptor namely Histograms of Oriented Optical Flow
(HOOF) [11], which produces a histogram representing each
frame of the video.

To summarise the characteristics of the whole video, we
employ a Bag-of-Visual-Words framework. We build a vo-
cabulary of visual words for each of the two descriptors

(3D GLOH and HOOF) using k-means clustering of features
extracted from all the training videos in the dataset. 2000
visual words are used for each descriptor as it gives a right
balance of efficiency and performance. Once this is done, each
feature vector is mapped to the closest visual word in the
vocabulary. For each video a feature vector is obtained by
concatenating two histograms measuring the distribution of
visual words in the video. This combined descriptor (which
we call GLHF) benefits from local and global representations
to describe the information of the video in an informative and
selective manner. For classification, we use multi-class kernel
SVM classifier using Radial Basis Function (RBF) kernels.
The SVM kernel parameters are automatically optimised using
grid search with 5-fold cross validation.

III. EXPERIMENTAL RESULTS

In this section we report results on several benchmark
datasets, and discuss how our method behaves with varying
key parameters.

A. Datasets

To investigate the effectiveness of our approach for ac-
tion recognition, experiments were conducted on three video
datasets, namely UCF Sports [15], TV-Human Interaction [16]
and KTH [17]. These datasets differ in several aspects such
as recording conditions, scenarios, number of actors in video.

The UCF-Sports dataset contains 10 different sport action
categories (Diving, Horse-Riding, Kicking, Swinging, Lifting,
Walking, Running, Skating, Golf, High-bar), recorded in real-
world environment.



Figure 4. Benchmark datasets used to evaluate our method. Top to bottom: images from videos in UCF-sports, TV-Human Interaction and the KTH datasets.
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Figure 5. The recognition rates of The UCF Sport dataset for each individual action and the total accuracy with saliency guidance (S-GLHF) and without
saliency guidance (NS-GLHF).

The TV-Human Interaction dataset has been collected from
different movies and includes 5 action classes (Handshake,
Highfive, Hug, Kiss, and Negative where Negative action does
not contain any interaction). It contains 300 videos, 50 for each
interaction action class and 100 for the negative class.

The KTH dataset includes 6 action classes (Boxing, Hand-
clapping, Handwaving, Jogging, Running, Walking). In total,
there are 600 videos in this dataset. Each action was performed
by 25 actors, and each person has 4 records for each action in

a controlled environment. Figure 4 shows some examples for
each dataset.

The standard test setup was used (training/test separation for
KTH and TV-Human Interaction, and leave-one-out testing for
UCF-Sports) to allow fair comparison with prior work.

B. Results and discussions

We performed extensive experiments using these standard
datasets to study the effectiveness of our proposed 3D GLOH
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Figure 6. Recognition rate using different numbers of bins for the 3D-GLOH
descriptor.

Di Go HB Ki Lf HR Rn Sk Sw Wa

Diving 0.85 0 0 0.15 0 0 0 0 0 0

Golf 0 0.94 0 0 0 0 0 0.06 0 0

HB 0 0 1.0 0 0 0 0 0 0 0

Kicking 0 0 0 0.90 0 0 0 0.05 0 0.05

Lifting 0 0 0 0 0.83 0 0 0 0.17 0

HR 0 0.09 0 0 0 0.91 0 0 0 0

Running 0 0 0 0 0 0 0.92 0 0 0.08

Skating 0.09 0 0 0 0 0 0 0.91 0 0

Swinging 0 0 0 0 0.06 0 0 0 0.94 0

Walking 0 0 0 0 0 0 0.05 0 0 0.95

Figure 7. Confusion matrix for The UCF-Sport dataset with our action
recognition system. HB (High bar), HR (Horse Riding).

descriptor and the human action recognition system.
For the UCF Sports dataset, Figure 5 shows the performance

of recognising each class of videos using 3D GLOH and
HOOF descriptors. The method works consistently well in all
categories, and in particular by using the saliency guidance,
the recognition rate increases for every class of videos (blue
bars with saliency vs. orange bars without saliency). A key
parameter in the 3D GLOH descriptor is the number of bins
N when histograms are built. To investigate the behaviour of
our method with changing N , results are reported in Figure 6,
and it can be seen that N = 16 achieves good results. Thus
unless for comparative purpose, we use this setting for all the
experiments in the paper. The confusion matrix of the results
obtained using our system is reported in Figure 7. We compare
our method with state-of-the-art methods which reported the
performance on the UCF Sport dataset (see Table I). Our
method (S-GLHF) outperforms state-of-the-art methods. The
improvement 0.6% is still quite significant as the performance
has already been over 90%.

The TV-Human Interaction dataset is more complicated as
it involves interactions between multiple subjects. Figure 8
shows the recognition rate of our approach for each individual
action. The performance is consistently good, especially with
saliency guidance. Compared with existing methods tested
on this dataset (see Table II), our method achieves 75.3%

accuracy, which improves the state-of-the-art method [18]
(66.1%) by a significant margin (9.2%). In fact, for each
action, our method achieves over 70% accuracy, which is better
than the average performance of [18].

Our 3D GLOH feature exploits the spatio-temporal distribu-
tion of gradients to provide a more discriminative descriptor.
As a result, our 3D GLOH feature may not be very effective if
the video data contains little texture. An example of such kind
of data is the KTH dataset (cf. Figure 4). This dataset is rela-
tively easy as it has a clean background and was captured in
a controlled environment. However, the images are relatively
low-resolution and do not contain much texture. Our method
achieves 94.9% accuracy, which is close to some of the recent
methods [6] (94.8%) but not as good as [12] which achieves
97.2%. Nevertheless, for more challenging real-world datasets,
we have shown that the proposed 3D GLOH descriptor is
effective and outperforms existing methods.
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Figure 8. The recognition rate of the TV-Human Interaction dataset for each
individual action with saliency (S GLHF) and without saliency (NS GLHF).

HF Hug HS KS Neg

HF 0.84 0.08 0.08 0 0

Hug 0 0.72 0.12 0.08 0.08

HS 0.08 0.12 0.72 0.08 0

KS 0 0.12 0.08 0.76 0.04

Neg 0.04 0.08 0.04 0.1 0.74

Figure 9. Confusion matrix for TV-Human Interaction dataset using our
method (with saliency guidance). HF (High Five), HS (Hand Shake), KS
(Kiss) and Neg (Negative).

IV. CONCLUSION

In this paper, we introduce a new local descriptor for
video data namely 3D GLOH and propose a human ac-
tion recognition system using the proposed local descriptor
along with a global descriptor. The 2D GLOH descriptor
is extended to video frames by partitioning the cylindrical



Table I
RECOGNITION ACCURACY COMPARISONS ON THE UCF SPORTS DATASET.

Methods on (UCF-Sports) Accuracy (%)

Raptis [19] 79.4
Ma [20] 81.7

Kalser [21] 85.0
Everts [22] 85.6

Le [23] 86.5
Zhang [6] 87.5
Wang [24] 88.0
Ma [25] 89.4

Abdulmunem [12] 90.9
Our Method (S-GLHF) 91.5

Table II
RECOGNITION ACCURACY COMPARISONS ON THE TV-HUMAN

INTERACTION DATASET.

Methods on (TV-Human Interaction) Accuracy (%)

Patron-Perez [16] 32.8
Yu [26] 56.0

Gaidon [27] 62.4
Yu [18] 66.1

Our Method (S-GLHF) 75.3

local neighbourhood of an interest point into spatio-temporal
bins and calculating 3D histograms of gradients in local
bins. The experimental results show that the proposed 3D
GLOH descriptor is effective in capturing localised spatio-
temporal information and the overall system outperforms the
state-of-the-art methods in terms of recognition accuracy for
challenging real-world datasets including UCF-Sport and TV-
Human Interaction datasets.

Feature descriptors are widely used for video analysis. The
proposed 3D GLOH descriptor can be useful for analysing
videos, especially for those with rich textures. We would
like to investigate its effectiveness in other video analysis
applications.
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