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Global 3D Non-Rigid Registration of Deformable
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Abstract—We present a novel global non-rigid registration
method for dynamic 3D objects. Our method allows objects to
undergo large non-rigid deformations, and achieves high quality
results even with substantial pose change or camera motion
between views. In addition, our method does not require a
template prior and uses less raw data than tracking based
methods since only a sparse set of scans is needed. We compute
the deformations of all the scans simultaneously by optimizing a
global alignment problem to avoid the well-known loop closure
problem, and use an as-rigid-as-possible constraint to eliminate
the shrinkage problem of the deformed shapes, especially near
open boundaries of scans. To cope with large-scale problems, we
design a coarse-to-fine multi-resolution scheme, which also avoids
the optimization being trapped into local minima. The proposed
method is evaluated on public datasets and real datasets captured
by an RGB-D sensor. Experimental results demonstrate that the
proposed method obtains better results than several state-of-the-
art methods.

Index Terms—3D scanning, global registration, non-rigid de-
formation, large deformation, depth camera, surface reconstruc-
tion.

I. INTRODUCTION

DYNAMIC 3D reconstruction, which aims to recover
dynamic scenes by capturing videos using a single or

multiple cameras, becomes increasingly popular in computer
graphics and computer vision [1]–[4]. With the availability
of commodity depth cameras, e.g., Microsoft Kinect, it is
easier and cheaper to reconstruct the shape and texture of
a 3D scene using a single RGB-D camera. This has many
applications [5], [6], such as 3D printing, gaming, and movie
production, to name a few. However, reconstruction results by
KinectFusion [7] for deformable objects have serious drifting
artifacts, because a static model is generally assumed. Besides,
the point clouds captured by depth cameras are usually pol-
luted by serious noise and outliers. Hence, it remains a huge
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challenge to reconstruct dynamic 3D scenes using a single
RGB-D camera.

To achieve dynamic 3D reconstruction, several research
groups have set up multi-camera systems [8], [9]. However,
practical applications of such systems are limited, due to high
cost, complex maintenance, and lack of portability. To reduce
system sizes, some methods use fewer cameras with depth cues
[10]–[12]. Using a single camera is cheaper but the problem
becomes more ill-posed. A template prior is usually used to
reduce the difficulty [3], [13], [14]. However, using a prior
template restricts the captured target as they can pre-scan e.g. a
deformable object, but cannot model deformations beyond the
prior template, such as facial expressions and loose clothing.
Some methods try to achieve dynamic 3D reconstruction using
a single camera without a template prior. Non-rigid structure
from motion methods [15]–[17] aim at recovering dynamic
3D shapes from multi-frame 2D images, but they cannot deal
with large scale cases. Alternative methods [18]–[20] based
on tracking and fusion of RGB-D sequences of non-rigidly
deforming objects are proposed, but small deformation be-
tween two neighboring viewpoints (time instances) is generally
assumed. To our knowledge, few work in the literature allows
large motions of the subject between different viewpoints
using a single camera, which happens commonly for snapshot
or high speed motion capture.

In this paper, we propose a method for global non-rigid
registration and reconstruction of deformable objects with a
single RGB-D camera without a template prior. The motion
of the object between different viewpoints can be very large.
Naive solutions of applying pairwise non-rigid registration in
succession lead to error accumulation and the well-known loop
closure problem. To address this, we compute the deformations
of all the scans simultaneously by optimizing a global align-
ment problem. We introduce an as-rigid-as-possible (ARAP)
constraint to the sparse non-rigid registration framework to
eliminate the shrinkage problem of the deformed models
when overlapping regions are small and the problem would
otherwise be underconstrained. We also design a coarse-to-fine
multi-resolution scheme to improve efficiency and robustness.
The proposed method is evaluated on public datasets and real
datasets captured by an RGB-D sensor. The results demon-
strate that the proposed method obtains better results than the
state-of-the-art methods.

The main contributions of this work are summarized as
follows:
• We propose a global optimization method for reconstruc-

tion of deformable objects with large motions, which is
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robust to noise and outliers, and avoids the loop closure
problem.

• We design a coarse-to-fine multi-resolution scheme to
avoid the optimization being trapped into local minima,
which also helps to attack large scale problems that
would otherwise be prohibitively expensive (in terms of
computation and storage costs).

• We introduce an ARAP constraint to the sparse non-rigid
registration framework, which eliminates the shrinkage
problem of the deformed models.

Preliminary results of this work were reported in a confer-
ence paper [21]. In addition to more thorough discussions and
literature review, the algorithm details are now provided and
experimental validation is substantially extended, including
quantitative evaluation, evaluation on more datasets, and com-
parison with more methods. We first summarize previous work
in Sec. II. Then, in Sec. III, we present our global registration
framework, including several constraint terms and the overall
optimization function. The solution to the optimization func-
tion is presented in Sec. IV. Finally, we provide experimental
results in Sec. V and conclude this paper in Sec. VI.

II. RELATED WORK

In this section, we review recent related work in 3D recon-
struction.

A. 3D Reconstruction With Multi-Cameras

Several groups have set up multi-camera systems, in which
drifting is not a concern because a relatively complete model
is captured at each frame. Starck et al. [8] design a system
to reconstruct a full human body using 16 cameras, which
requires careful positioning of cameras to obtain better raw
data. Aguiar et al. [9] build a sparsely sampled system of
eight cameras to capture the shape and motion of 3D objects
by effectively combining the power of surface-based and
volume-based shape deformation techniques. With multiple
high-speed cameras, Vlasic et al. [22] design a system for
high-resolution capture of moving 3D objects at high details
using a photometric stereo light stage. Gall et al. [23] propose
an approach based on a multi-view video sequence, which
captures the performance of a human or an animal from an
articulated template model and silhouettes, and the non-rigid
temporal deformation of the 3D surface is then recovered. Li et
al. [24] build a dome system with 20 cameras to synchronously
capture and recover the dynamic shape and texture of arbitrary
objects using a variational multi-view stereo method and a
volumetric deformation method. To reduce the number of
required cameras, some methods use depth cameras. Tong et
al. [10] scan a 3D full human body model using three Kinect
cameras, but the method assumes that the person keeps still.
Ye et al. [11] use three hand-held Kinects to reconstruct human
skeletal poses, deforming surface geometry and camera poses
by deforming template models, which generates relatively fine
results. Dou et al. [12] scan and track deforming objects using
fusion of dynamic input from an eight-Kinect rig, by deform-
ing a human template. Collet et al. [25] use over 30 RGB-D
cameras and a large studio setting with a green screen and

controlled lighting to produce extremely high quality results.
Lin et al. [26] optimize the placement of multiple Kinect
sensors to achieve the desired scanning accuracy, leading to
an effective configuration with 16 RGB-D cameras. Dou et
al. [27] design an approach for live performance capture from
eight RGB-D sequences, which is robust to large frame-to-
frame motion and topology changes, and generates compelling
reconstruction results in real-time.

B. 3D Reconstruction With a Single Camera

Considering the high cost and the difficult maintenance of
multi-camera systems, monocular approaches become more
and more popular. Some methods focus on scanning persons
with a fixed pose. Weiss et al. [28] propose to estimate
a parametric model of the human shape combining low-
resolution image silhouettes with coarse range data. Cui et
al. [29] capture a full 3D human body model using a single
depth camera, which presents fine results, but limits the user
to keep a ‘T’ pose. Li et al. [30] adopt a more general non-
rigid registration framework which allows a wider range of
poses, which demonstrates compelling results but still requires
users to keep the same pose. Dou et al. [31] develop a
3D scanning system which allows a considerable amount of
deformations during scanning and shows fine results. However,
large deformation between two neighboring viewpoints (time
instances) is not allowed.

To reconstruct a dynamic scene using a single camera,
non-rigid structure from motion methods are used to recover
dynamic 3D shapes from multi-frame 2D images [15]–[17].
However, these methods normally are not able to recover 3D
shapes with a large number of vertices. To handle this, some
methods capture a static pre-scan as a template prior [9],
[12], [23], [32]. Li et al. [33] reconstruct the geometry and
motion of complex deforming shapes by using a smooth
template that provides a crude approximation to the scanned
object and serves as a geometric and topological prior. Zhang
et al. [14] build a personalized parametric model using a
single depth sensor, which can produce dynamic models
with a generic human template. Zollhöfer et al. [13] use a
single self-contained stereo camera unit to generate spatio-
temporally coherent 3D models, which also starts by scanning
a smooth template model of the object using KinectFusion
and registers the template to the sequences. In particular, it is
able to produce compelling reconstruction models for palms
and faces. Guo et al. [3] reconstruct non-rigid geometry and
motions from a single-view depth input captured by a depth
sensor, which also uses a template prior and presents fine
results. However, scanning a template model in advance is
inconvenient and impractical for many applications.

Some methods try to achieve dynamic reconstruction using
a single camera without a template prior. Liao et al. [34]
reconstruct complete 3D deformable models over time by a
single depth camera, which is able to reconstruct visually
plausible 3D surface deformation results. However, it assumes
that the deformation is continuous and predictable in a short
temporal interval. Newcombe et al. [20] design a dense SLAM
system, which is able to reconstruct non-rigidly deforming
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scenes in real-time. Innmann et al. [19] use sparse RGB
feature matching to make the tracking system robust to small
geometric variation. Dou et al. [18] propose a 360◦ perfor-
mance capture system that can reconstruct arbitrary non-rigid
scenes in real-time. However, all the methods have the same
limitation that small deformation between the neighboring
views (frames) is assumed.

C. Shape Registration for 3D Reconstruction

In 3D reconstruction, registration methods are developed to
align scans from multiple views with substantial movement,
including rigid and non-rigid registration methods [35]. The
former assumes that the object only undergoes rigid body
transformation [36]–[38], whereas the latter considers more
general deformable models, and is thus more suitable for
reconstruction of deformable objects. Typical non-rigid reg-
istration methods [39] generalize the iterative closest point
(ICP) method from rigid registration, and follow a similar
paradigm that alternately optimizes correspondences based on
the closest point criterion and local transformations according
to the updated correspondences. Recent work introduces var-
ious effective data and regularization terms to the non-rigid
ICP framework [40]–[44] to improve accuracy and robustness
of registration. However, such existing non-rigid registration
methods are based on pairwise registration. Applying them to
multiple scans in succession leads to error accumulation and
the loop closure problem, i.e., when a sequence of scans forms
a loop, the last scan fails to align with the first scan due to
accumulated drifting.

In this paper, we propose a global non-rigid registration
framework based on sparse priors as they are robust to noise
and outliers. Multiple scans are aligned simultaneously, which
effectively handles error accumulation and avoids the loop
closure problem. We further introduce an ARAP constraint
to the global non-rigid registration framework to eliminate the
shrinking problem, which is more critical for partial scans with
limited overlaps, and design a coarse-to-fine multi-resolution
scheme to avoid the optimization being trapped into local
minima and help to attack large scale problems. Our method
only requires sparse views as input and allows large scale
deformations of the object during scanning.

III. THE PROPOSED METHOD

A. Iterative Framework

The aim of global non-rigid registration is to find a set
of non-rigid transformations X that transforms scans for
consistent alignment. To this end, an iterative procedure is
applied with the following two alternating steps:

Step 1) given the current transformations (and hence the
vertex positions after deformation), refine the correspondences
between each pair of scans as long as they overlap. In practice,
if the scans are circularly distributed, it is sufficient to consider
adjacent pairs. At the first iteration, we use a technique
based on local geometric similarity and diffusion pruning of
inconsistent correspondence [45] as it often provides reliable
correspondences. Alternative correspondence techniques or
manual specification of a few correspondences may instead be

used. At other iterations, we update the correspondences by
using the closest points between two shapes to find additional
correspondences similar to ICP.

Step 2) given pairwise corresponding mappings, find a set
of local affine transformations by minimizing a global energy
function (details given later). Compared with straightforward
successive pairwise registration, the benefit of global registra-
tion is to avoid the well-known loop closure problem where
the misalignment accumulates and the surfaces do not match
up when the last pair are to be registered.

B. Global Registration

Assume that we have M scans to be registered
U (1),U (2), . . . ,U (M). For each scan, U (m) ,{

u
(m)
1 ,u

(m)
2 , . . . ,u

(m)
Nm

}
, where Nm is the number of vertices

in the scan U (m). u
(m)
i , (x

(m)
i , y

(m)
i , z

(m)
i , 1) represents the

homogeneous coordinates of vertex u
(m)
i . For a neighboring

pair of scans U (m) and U (m+1) (assuming U (M+1) ≡ U (1)),
let fm→m+1 : {1, · · · , Nm} 7→ {1, · · · , Nm+1} be the
index mapping from the points on U (m) to the points
on U (m+1) established by correspondence computation:
u

(m+1)
fm(i) ∈ U

(m+1) is the corresponding point of u
(m)
i ∈ U (m).

For non-rigid registration, we allow an affine transformation
for each point to cover a wide range of non-rigid deformations.
Denote the set of non-rigid transformations for scan U (m)

by X(m) ,
{

X
(m)
1 , · · · ,X(m)

Nm

}
, where X

(m)
i is the 4 × 3

transformation matrix for point u
(m)
i . For convenience,

denote by X(m) ,
[
X

(m)
1 , · · · ,X(m)

Nm

]>
of size 4Nm × 3 the

ensemble matrix containing Nm transformation matrices to
be estimated.
Energy Function Formulation: The overall function to be
minimized in Step 2) is given as follows:

E (X; f) =Edata (X; f) + αEsmooth (X)

+ λErig (X) + βEarap (X) ,
(1)

where Edata (X) is the data term to measure the registration
accuracy, Esmooth (X) is the smoothness term to measure the
smoothness of local transformations, Erig (X) is the orthogo-
nality term to measure the rigidness of local transformations
and Earap (X) is the as-rigid-as-possible constraint to ensure
the length of each edge to be as close as possible before and
after transformation; α, λ and β are weights to balance the
relative importance of the terms. The four terms are defined
as follows.
Data Term: A similar strategy as the pairwise registration
is used to estimate the mapping, fm→m+1 (denoted by fm
hereafter for short), between a neighboring pair of overlapping
scans U (m) and U (m+1). As neighboring surfaces only have
partial overlaps, not every point has a corresponding point.
Let Km be the number of corresponding points between
U (m) and U (m+1), where Km ≤ min(Nm, Nm+1). For the
correspondence mapping fm, let fm(i, 1) and fm(i, 2) be
the indexes of corresponding points on U (m) and U (m+1),
respectively. The data term is defined by summing over each
neighboring pair of overlapping scans U (m) and U (m+1):
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Edata (X; f) ,
∑
m

∑
u

(m)

fm(i,1)
∈U(m)

∥∥em,i∥∥1
,

em,i = u
(m)
fm(i,1)X

(m)
fm(i,1) − u

(m+1)
fm(i,2)X

(m+1)
fm(i,2),

(2)

where ‖ · ‖1 denotes `1 norm of a matrix considered as a
long vector. The right hand side of the data term (2) can be
rewritten as∑

m

∥∥∥(U
(m)
fm,1

X(m) −U
(m+1)
fm,2

X(m+1)
)∥∥∥

1
,

where U
(m)
fm,1

and U
(m+1)
fm,2

are of sizes Km×4Nm and Km×
4Nm+1 respectively. The ith row of U

(m)
fm,1

and U
(m+1)
fm,2

is

associated with the ith correspondence, with elements u
(m)
fm(i,1)

and u
(m)
fm(i,2) in relevant columns. Using matrix notation X ,[

X(1), . . . ,X(M)
]>

, we have the following form of the data
term:

Edata (X; f) =
∥∥HX

∥∥
1
, (3)

where H is determined according to the overlapping relationship
between scans:

H =



U
(1)
f1,1

−U
(2)
f1,2

0
U

(2)
f2,1

−U
(3)
f2,2

. . .
. . .

0 U
(M−1)
fM−1,1

−U
(M)
fM−1,2

−U
(1)
fM,2

U
(M)
fM,1


. (4)

Smoothness Term: Similar to the pairwise registration, we
define the edge set with a neighboring system: For a 3D
mesh, the edges are simply defined by the edges of the
mesh; for a 3D point set, it can be transformed to a mesh,
or the edges can be defined by connecting each point with
its K-nearest neighbors (K is typically set to 6). For scan
U (m), denote by N (m)

i the neighborhood of vertex u
(m)
i ,

and by e
(m)
ij the edge defined between each pair of neigh-

boring vertices u
(m)
j and u

(m)
i . So, we have the edge set

E(m) =
{
e

(m)
ij | u

(m)
j ∈ N (m)

i ,u
(m)
i ∈ U (m)

}
. Smoothness is

regularized by the `1 norm of transformation differences on
the neighboring system over all the scans U (m) [44]:

Esmooth (X) =
∑
m

∑
e
(m)
ij ∈E(m)

∥∥∥u(m)
j X

(m)
i − u

(m)
j X

(m)
j

∥∥∥
1
,

(5)
which is rewritten into the matrix form:

Esmooth (X) =
∑
m

∥∥B(m)X(m)
∥∥

1
. (6)

In (6), B(m) is a sparse matrix, where each row contains only
two groups of nonzero entries. For example, assuming the
rth row is associated with edge e(m)

ij , then the entries linked
to the reference vertex u

(m)
i are set to (x

(m)
i , y

(m)
i , z

(m)
i , 1),

while the ones linked to the neighboring vertex u
(m)
j are set to

(−x(m)
j ,−y(m)

j ,−z(m)
j ,−1). Let B , diag

(
B(1), . . . ,B(M)

)
,

and we have the following form of the smoothness term:

Esmooth (X) =
∥∥BX

∥∥
1
. (7)

Orthogonality Term: In non-rigid registration, each vertex is
assigned an affine transformation, which provides sufficient
flexibility to capture non-rigidness of deformable objects.
However, even with smoothness regularization, the high de-
grees of freedom may still result in unreasonable deformation.
Since the deformation of usual objects such as human bodies
and animals are locally rigid, a local rigidness term is used to
reduce the flexibility of the transformations. Specifically, the
transformation X

(m)
i is assumed to be locally rigid, consisting

of a rotation and a translation where the rotation is represented
by an orthonormal matrix. To this end, the orthogonality term
is defined as follows [44]:

Erig (X) =
∑
m

∑
i

∥∥∥DX
(m)
i −R

(m)
i

∥∥∥2

F
,

s.t. R
(m)>

i R
(m)
i = I3,det(R

(m)
i ) > 0,

(8)

where D = [I3 03×1] is a constant 3 × 4 matrix used to
extract the rotation transformation from X

(m)
i . To eliminate

the case of reflection, we enforce a positive determinant of
R

(m)
i . If det(R

(m)
i ) < 0, we multiply R

(m)
i with −1.

As-rigid-as-possible (ARAP) Term: We observe that some
vertices of the registered surfaces may have inward shrinkage,
especially when neighboring scans have less overlap. To
avoid this artifact, we introduce an as-rigid-as-possible term
to the sparse non-rigid registration framework to maintain
the lengths of all the edges before and after transformations
as much as possible. In the following, we denote the edge
e

(m)
ij = p

(m)
i − p

(m)
j , and similarly the transformed edge

e
′(m)
ij = p

′(m)
i − p

′(m)
j for the deformed model, where

p
(m)
i , (x

(m)
i , y

(m)
i , z

(m)
i ) is the vertex position of U (m). We

define the ARAP term as follows, similar to [13], [46]:

Earap (X) = min
T

(m)
i

∑
m

∑
i

w
(m)
i

∑
j∈N (i)

w
(m)
ij

∥∥hm,i∥∥2
,

hm,i = e
′(m)
ij − e

(m)
ij Ti

(m),

(9)

where w
(m)
i = 1 for vertices with known correspondence

and w
(m)
i = 0 otherwise, and Ti

(m) ∈ R3×3 is a rotation
matrix. The cotangent weight w(m)

ij is is used to reduce mesh
discretization bias:

w
(m)
ij =

1

2
(cotαij + cotβij), (10)

where αij and βij are the angles opposite to the mesh edge
(i, j) (for a boundary edge, only one such angle exists). Given
the positions of deformed vertices, Ti

(m) can be explicitly
obtained using the singular value decomposition (SVD) of
S

(m)
i , where S

(m)
i is defined as

S
(m)
i =

∑
m

∑
j∈N (i)

w
(m)
ij e

(m)
ij e

′(m)>

ij . (11)

Using SVD, we can obtain S
(m)
i = Vm

i Σ
(m)
i U

(m)>

i , and
T

(m)
i is solved as:

T
(m)
i = Vm

i U
(m)>

i . (12)
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To minimize Earap w.r.t. X
(m)
i , similar to hm,i, we denote

hm,j = e
′(m)
ji − e

(m)
ji Tj

(m). Then, we first work out ∂Earap

∂p
′(m)
i

where p
′(m)
i = u

(m)
i X

(m)
i is the transformed vertex position

as

∂Earap

∂p
′(m)
i

=
∂

∂p
′(m)
i

 ∑
j∈N (i)

w
(m)
ij

∥∥hm,i

∥∥2 + ∑
j∈N (i)

w
(m)
ji

∥∥hm,j

∥∥2
=
∑

j∈N (i)

2w
(m)
ij hm,i +

∑
j∈N (i)

−2w
(m)
ji hm,j .

(13)
Using the fact that w(m)

ij = w
(m)
ji , we obtain

∂Earap

∂p
′(m)
i

=
∑

j∈N (i)

4w
(m)
ij

(
e
′(m)
ij − 1

2
e

(m)
ij (Ti

(m) + Tj
(m))

)
.

(14)

Setting the partial derivatives to zero leads to the following:

∑
j∈N (i)

w
(m)
ij e

′(m)
ij =

∑
j∈N (i)

w
(m)
ij

2
e

(m)
ij

(
T

(m)
i + T

(m)
j

)
.

(15)
Using matrix-vector notation, Earap can be rewritten as

Earap (X) =
∑
m

∥∥L(m)X(m) − b(m)
∥∥2

F
, (16)

where L(m) represents the linear combination on the left-hand
side of (15), which is the discrete Laplace-Beltrami operator.
b(m) is an n-vector whose ith row contains the right-hand side
of (15). The definition of Earap in Eq. (9) depends on both the
deformed edges e

′(m)
ij ’s and rotations T

(m)
i ’s. In our setting,

the former are determined by transformations X, which are
optimized in the overall energy along with other terms, so we
optimize T

(m)
i ’s dedicated to the energy term such that the

formulation (16) only depends on X.
Denote by L = diag

(
L(1), . . . ,L(M)

)
, and by b =

[b(1), . . . ,b(M)]>, we have the following form of ARAP term:

Earap (X) =
∥∥LX− b

∥∥2

F
. (17)

Boundary Conditions: For the optimization to have a unique
solution, some boundary conditions need to be set. One way is
to set a scan e.g. U (1) to be fixed, i.e. with X

(1)
i to be identity

transformation for each vertex of the scan.
With all these terms, we have the following minimization

problem:

min
X,C,A


∥∥C∥∥

1
+ α

∥∥A∥∥
1

+ β
∥∥LX− b

∥∥2

F

+λ
∑
m

∑
i

∥∥∥DX
(m)
i −R

(m)
i

∥∥∥2

F


s.t. C = HX,A = BX,

R
(m)>

i R
(m)
i = I3,

det(R
(m)
i ) > 0,

,m = 1, . . . ,M,

(18)

where A and C are auxiliary variables to facilitate opti-
mization. Then, we solve the constrained minimization (18)
using the augmented Lagrangian method (ALM) (see the next
subsection for details).

Multi-resolution Approach: Since the transformation Xi of
each vertex i has a rotation Ri ∈ R3×3 and a translation ti ∈
R3, there are 12 degrees of freedom (DoFs) in total for each
Xi. If a scan m has Nm vertices, there are Nm transformations
and 12Nm DoFs. However, even if each vertex has a positional
constraint (with 3 constraints), there are 3Nm constraints in
total, which are not enough to identify a unique solution. One
way of addressing this is to rely on regularization, but the high
complexity remains. We further use a coarse-to-fine approach,
which can not only provide a promising solution, but also deal
with large scale problems efficiently.

Suppose that we decompose the shapes up to S + 1
scales. For any shape U (m), denote by U (m,s) the sth scale
of the shape via standard downsampling [47]. We obtain
S multi-resolution shapes, U (m,S), U (m,S−1), · · · , U (m,0),
where U (m,S) is the shape at the coarsest resolution and
U (m,0) ≡ U (m) is at the full resolution. The optimization Eq.
(18) at scale s can be rewritten as:

min
X,C,A


∥∥C∥∥

1
+ α

∥∥A∥∥
1

+ β
∥∥LMX(s) − b

∥∥2

F

+λ
∑
m

∑
i

∥∥∥DX
(m,s)
i −R

(m,s)
i

∥∥∥2

F

 ,

s.t. C = HMX(s),A = BMX(s),

R
(m,s)>

i R
(m,s)
i = I3,

det(R
(m,s)
i ) > 0,

,m = 1, . . . ,M,

(19)

where M represents the mapping of transformations from
U (m,s) to U (m,s−1) for all the scans, and X(s) contains the
transformations on all U (m,s).

We start our multi-resolution method from the coarsest scale
S to solve the optimization problem (19), and use the solution
at previous scale as initialization to solve the transformation at
next scale until reaching the finest scale. Denote by u

(m,s−1)
i

a vertex at the (s − 1)th scale, and by Γ
(m,s)
i the index set

of vertices of u
(m,s−1)
i at the sth scale within the spherical

neighborhood. The corresponding deformation X
(m,s−1)
i is

estimated by a weighted average of the deformations of
vertices within a spherical neighborhood of radius r at the
sth scale [33]:

Xi
(m,s−1) =

∑
j∈Γ

(m,s)
i

mi,jX
(m,s)
j . (20)

The weight mi,j showing the contribution of the transforma-
tion of u

(m,s−1)
i to that of u

(m,s)
j is defined as

mi,j = max (0,di,j) ,

di,j = 1− d2
(
u

(m,s−1)
i ,u

(m,s)
j

)/
r2,

(21)

where r is the effective radius. In our experiment, the radius
is set to be twice of the average edge length of the coarser
mesh. d

(
u

(m,s−1)
i ,u

(m,s)
j

)
represents the Euclidean distance

between u
(m,s−1)
i and u

(m,s)
j . The weight drops steadily with

an increasing distance. Using the matrix notation, we can
rewrite Eq. (20) as:

X(m,s−1) = M(m)X(m,s), (22)
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where M(m) is constructed by collecting mi,j , and therefore
X(m,s−1) is obtained by a linear combination of relevant
transformations of X(m,s). Then, we have:

X(s−1) = MX(s), (23)

where M contains the mapping of transformations from
U (m,s) to U (m,s−1) for all the scans. Using Eq. (23) to replace
X in Eq. (18), we can get the optimization function Eq. (19).

By using the coarse-to-fine strategy, our method avoids the
optimization being trapped into local minima, and handles high
resolution shapes effectively. In our implementation, the global
registration is performed at two scales in which the coarser-
scale shapes have 500∼1000 vertices.

IV. THE PROPOSED ADM-ALM ALGORITHM

Our numerical algorithm is derived based on the ADM-
ALM framework due to the following three appealing merits:
1) convenient handling of equality constraints, 2) flexible
adaptability to large-scale problems with multiple sets of
variables, and 3) proven numerical convergence for various
minimization models across a wide range of applications.

The ALM method converts the original problem (18) to the
iterative minimization of its augmented Lagrangian function:

L(X,C,A,Y1,Y2, µ1, µ2) =
∥∥C∥∥

1
+ α

∥∥A∥∥
1

+ 〈Y1,C−HX〉+
µ1

2

∥∥C−HX
∥∥2

F

+ 〈Y2,A−BX〉+
µ2

2

∥∥A−BX
∥∥2

F

+ λ
∑
m

∑
i

∥∥∥DX
(m)
i −R

(m)
i

∥∥∥2

F
+ β

∥∥LX− b
∥∥2

F
,

s.t. R
(m)>

i R
(m)
i = I3,det(R

(m)
i ) > 0,

(24)

where (µ1, µ2) are positive constants, (Y1, Y2) are Lagrangian
multipliers, and 〈·, ·〉 denotes the inner product of two ma-
trices considered as long vectors. Under the standard ALM
framework, (Y1, Y2) and (µ1, µ2) can be efficiently updated.
However, each iteration has to solve X, C and A simulta-
neously, which is difficult and computationally demanding.
Hence, we resort to the alternate direction method (ADM) [48]
to optimize A, C and X separately at each iteration:



C(k+1) = arg minC ‖C‖1 +
〈
Y

(k)
1 ,C−HX(k)

〉
+
µ
(k)
1

2

∥∥∥C−HX(k)
∥∥∥2

F
,

A(k+1) = arg minA α‖A‖1 +
〈
Y

(k)
2 ,A−BX(k)

〉
+
µ
(k)
2

2

∥∥∥A−BX(k)
∥∥∥2

F
,

X(k+1) = arg minX

〈
Y

(k)
1 ,C−HX(k)

〉
+
µ
(k)
1

2

∥∥∥C−HX(k)
∥∥∥2

F
+
〈
Y

(k)
2 ,A−BX(k)

〉
+
µ
(k)
2

2

∥∥∥A−BX(k)
∥∥∥2

F
+ β

∥∥∥LX(k) − b
∥∥∥2

F

+λ
∑
m

∑
i

∥∥∥DX
(m)(k)

i −R
(m)(k)

i

∥∥∥2

F
,

R
(k+1)
i = arg minRi

λ
∥∥∥DX

(k)
i −Ri

∥∥∥2

F

s.t. R>i Ri = I3,det(Ri) > 0,

Y
(k+1)
1 = Y

(k)
1 + µ

(k)
1

(
C(k+1) −HX(k)

)
,

Y
(k+1)
2 = Y

(k)
2 + µ

(k)
2

(
A(k+1) −BX(k)

)
,

µ
(k+1)
1 = ρ1µ

(k)
1 , ρ1 > 1,

µ
(k+1)
2 = ρ2µ

(k)
2 , ρ2 > 1.

(25)
The C-subproblem has the following closed solution:

C(k+1) = shrink

(
HX(k) − 1

µ
(k)
1

Y
(k)
1 ,

1

µ
(k)
1

)
, (26)

where shrink(·, ·) is the shrinkage function applied to the
matrix element-wisely:

shrink (x, τ) = sign(x) max(|x| − τ, 0). (27)

The A-subproblem is solved in a similar way:

A(k+1) = shrink

(
BX(k) − 1

µ
(k)
2

Y
(k)
2 ,

α

µ
(k)
2

)
. (28)

The Ri-subproblem is solved as follows:

R
(k+1)
i = UI3V

>,

(U,D,V>) = svd
(
DX

(k+1)
i

)
.

(29)

Being quadratic, the X-subproblem is equivalent to solving
the following normal equations according to the first-order
optimality condition:

X(k+1) = M−1g,

M , µ
(k)
1 H>H + µ

(k)
2 B>B + βL>L + λ

∑
i

D>D,

g , B>
(
Y

(k)
2 + µ

(k)
2 A(k+1)

)
+ H>

(
Y

(k)
1 + µ

(k)
1 C(k+1)

)
+ βL>b + λ

∑
i

D>R
(k)
i .

(30)

Note that M is diagonally-dominant and sparse. We use the
sparse solver for linear equations in Matlab to solve the
above normal equation. Compared with existing ADM-ALM
approaches, our optimization solution has the following major



YANG et al.: GLOBAL 3D NON-RIGID REGISTRATION OF DEFORMABLE OBJECTS USING A SINGLE RGB-D CAMERA 7

differences: On the one hand, the proposed global registration
model incorporates an as-rigid-as-possible (ARAP) term to
avoid the collapse of the registered 3D model. Then the X-
subproblem involves the Laplace-Beltrami operator in the nor-
mal equations. On the other hand, although the compact form
of objective function is similar to [43], [44], the algorithm in
this work simultaneously optimizes all available partial scans
in a global manner. As a result, the construction of the matrix
H in the data term is different from those in [43] and [44].
Also, the proposed model has a large problem scale, and is
suitable to be solved by the ADM-ALM framework.

The global non-rigid registration algorithm is summarized
in Algorithm 1 (outer loop), and the algorithm for minimizing
Eq. (18) is summarized in Algorithm 2 (inner loop). L is the
number of outer iterations, K is the number of inner iterations,
and N is the number of vertices of all the scans. In our
experiments, we set L = 5 and K = 25. The convergence can
be determined by checking if the change of energy is below a
threshold. In practice, we find that the setting (5 iterations of
the outer loop each involving 25 iterations of the inner loop)
is often sufficient to converge to decent results.

Algorithm 1 Global Alignment

Input: {U (m)}Mm=1 and corresponding points.
for l = 1 to L do

Find correspondence mapping fm : U (m) 7→ U (m+1);
Update Ti according to Eq. (12);
Solve for transformations X(l) via Algorithm (2);

end for
Output: X.

Algorithm 2 ADM algorithm to solve Eq. (18)

Input: H ∈ RN×4N , B ∈ R|E|×4N , L ∈ R|E|×4N ;
Initialize: X(l) = X(l−1) (X(1) = I4N×3);
Y

(0)
1 ,Y

(0)
2 = 0, µ1, µ2 > 0, ρ1, ρ2 > 1;

for l = 1 to K do
Solve for C(l,k+1) by Eq. (26);
Solve for A(l,k+1) by Eq. (28);
Solve for R

(l,k+1)
i by Eq. (29);

Solve for X(l,k+1) by Eq. (30);
Update µ(k+1)

1 , and µ(k+1)
2 according to Eq. (25);

Update Y (k+1)
1 , and Y (k+1)

2 according to Eq. (25);
end for
Output: X(l).

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method on public complete datasets (Section V-A), partial
datasets (Section V-B) and real scans (Section V-C).

A. Results on Public Complete Datasets

Firstly, we evaluate the proposed method on the Jumping
and Swing datasets [22], which contain complete models with
dramatic deformations. They have known correspondences to

allow quantitative evaluation. Fig. 1 and Fig. 2 show the
alignment results, compared with four pairwise registration
methods [3], [43], [44]. Considering that these methods only
register two models, we apply them to register all the models in
sequence with the previous registration result used as the next
target model. Besides, we use the first model as the reference
pose model for all the methods. The original 10 complete
models with very different poses are shown in Fig. 1(a) and
Fig. 2(a). The registration errors between the deformed model
and the reference model are color-coded on the reference
model for visual inspection. Here, the corresponding distance
errors are computed using the standard Metro tool [49]. It can
be seen that the results of methods [3], [4], [43] have visible
misalignment due to error accumulation. Both the results of
method [44] and our method are visually well aligned, but our
method has smaller error. Table I gives quantitative evaluation
with average errors over all the frames. Our method has the
smallest errors which demonstrates that our global registration
method suppresses error accumulation and produces more
accurate registration results.

In order to evaluate the robustness of our method, we also
experiment on the dataset with added noise and outliers. For
the first test, each vertex is perturbed with Gaussian noise
along the normal directions, with the mean set to zero and
the deviation σ set as 0.1l in our experiments, where l is
the average length of triangle edges on all meshes. Fig. 3
demonstrates the alignment results compared with other three
methods. We also evaluate the methods on the dataset with
outliers in Fig. 4, in which 10% vertices are perturbed by
Gaussian noise. As shown in Fig. 3 and Fig. 4, our method is
more robust to noise and outliers than the other three methods.
The corresponding distance errors are also shown in Table I.

TABLE I
QUANTITATIVE EVALUATION FOR WHOLE-TO-WHOLE REGISTRATION

(CM).

Method Swingclean Jumpingclean Jumpingnoise Jumpingoutlier

L0 [3] 5.2758 1.0162 1.1011 1.1984

PR-GLS [4] 1.1154 1.8122 1.8646 1.9780

L21 [43] 0.5621 0.7878 0.8003 0.8160

L11 [44] 0.2181 0.1392 0.2033 0.2245

Ours 0.1224 0.1281 0.1466 0.1595

B. Results on Partial Datasets

We also evaluate our method on a clean partial dataset
extracted from the Bouncing dataset [22]. Since the original
models are complete, we extract the visible part of each
complete model with a virtual camera rotating around the
model. We select 37 partial models and allow large defor-
mations among the selected models. Sample partial models of
Bouncing are shown in Fig. 5(a). We use a multi-resolution
approach for improved robustness and efficiency. First, we
obtain low-resolution models from the original partial models
by downsampling them to 1/10 of the full resolution. Each
original partial model contains about 3,000-5,000 vertices
and therefore each low-resolution model has about 300-500
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(a) (c) (d) (e)(b) (f)

Fig. 1. Comparison results on the Jumping dataset: (a) original complete models, (b) the results of [3], (c) the results of PR-GLS [4], (d) the results of [43],
(e) the results of [44], and (f) our results.

0

7.5cm

1.2

(a) (c) (d) (e)(b)

    

(f)

Fig. 2. Comparison results on the Swing dataset: (a) original complete models, (b) the results of [3], (c) the results of PR-GLS [4], (d) the results of [43],
(e) the results of [44], and (f) our results.
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0.2
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Fig. 3. Comparison results on the Jumping dataset with noise (σ = 0.1l): (a) original complete models with noise, (b) the results of [3], (c) the results of
PR-GLS [4], (d) the results of [43], (e) the results of [44], and (f) our results.
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1.5cm

0.2

(a) (c) (d) (e)(b) (f)

Fig. 4. Comparison results on the Jumping dataset with 10% outliers: (a) original complete models with outliers, (b) the results of [3], (c) the results of
PR-GLS [4], (d) the results of [43], (e) the results of [44], and (f) our results.
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Fig. 5. Sample partial models of test datasets: (a) Bouncing, (b) Waving and (c) Flying.

(a) (b) (c) (d) (e) (f)

Fig. 6. Iterative results of our method. (a) initial 37 partial scans, (b) registration result after 1 iteration, (c) registration result after 10 iterations, (d) registration
result after 20 iterations, (e) registration result after 30 iterations, and (f) total energy vs. the number of iterations.

vertices. Then, we find the corresponding points between
neighboring scans using the approach [45]. The method is
intrinsic and works well even for partial scans with large
deformation. The iterative results of our method are shown
in Figs. 6(a-e). Fig. 6(f) demonstrates that the total energy
reduces steadily over iterations.

We apply our multi-resolution global registration to the set
of models from coarse to fine. In Fig. 7(A), we show four
partial scans and the deformed scans after registration using
our method and alternative methods. It can be seen that the
method [43] has a serious shrinkage problem and a similar
phenomenon happens to the method [44] although to a lesser
extent. Our method produces the best registration result. Fig. 8
and Fig. 9 illustrate the results when scans are accumulated
gradually, using the first 4 scans, the first 20 scans, and all
the scans for registration, compared with four state-of-the-art
methods. We also use standard Poisson reconstruction [50] to
obtain watertight meshes. Because the L0 method [3] requires

a template mesh for tracking, we choose a complete mesh
from the original dataset as the template mesh and register
this mesh to the partial meshes. We can see that the L0
method [3] has wrong estimation for the head and dress, and
the PR-GLS method [4] has misalignment for the back. The
shrinkage problem becomes more and more severe for L21
method [43] in arms and legs. The results of L11 method [44]
have clearly visible misalignment in the results of registration
and even after Poisson reconstruction, especially in the arms,
which are resulted from the accumulation of registration errors.
Compared with these methods, the results of our method are
smoother and better aligned. By using global registration, our
method does not suffer from error accumulation and the use of
ARAP constraint avoids shrinking. Our results are better than
alternative methods, even with only the first four views. The
quantitative evaluation is given in Table II. Our method has
the smallest error. The running times of L0 [3], PR-GLS [4],
L21 [43], L11 [44], and our method are 20min14s, 60min45s,
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Fig. 7. Comparison of results on datasets: (A) Bouncing, (B) Waving and (C) Flying: (a) original partial scans, (b) the results of [43], (c) the results of [44]
and (d) the results of our method.

7min56s, 19min30s, 180min55s, respectively. The experiments
were carried out on a desktop PC with an i7 3.4-GHz CPU
and 8-GB RAM. Our method is currently implemented using
unoptimized MATLAB code.

To evaluate the performance for correspondences with par-
tially incorrect matchings, we obtain two thirds of corre-
spondences using diffusion pruning [45] and the remaining
one third using local geometric feature matching based on
SHOT signatures [51]. The majority of correspondences from
the former are correct while many correspondences from the
latter are incorrect due to the ambiguity of local features. One
example of correspondences for two partial meshes is shown
in Fig. 10(a), and final reconstruction results are shown in
Figs. 10(b-d). Wrong correspondences are marked as red. It
can be seen that our method is robust with respect to incorrect
correspondences. Thanks to the regularization terms in our en-
ergy function, in particular the transformation smoothness term
and the as-rigid-as-possible term, incorrect correspondences
which are likely to be substantially different from their neigh-
boring correspondences, are substantially down-weighted, due
to large regularization costs if local transformations were to
follow them.

To evaluate the robustness of our method, we also experi-
ment on the dataset polluted by dense noise and sparse outliers
with the same approach as mentioned in Section V-A. Fig. 11
and Fig. 12 show our results compared with the other methods,
and the corresponding distance errors are shown in Table II.
The results show that our method is more robust to noise and
outliers than the alternative methods.

TABLE II
QUANTITATIVE EVALUATION FOR PARTIAL DATASETS (CM).

Method Sambaclean Bouncingclean Bouncingnoise Bouncingoutlier

L0 [3] 0.6318 1.0042 1.0437 1.0145

PR-GLS [4] 1.8008 1.6973 1.7556 2.1227

L21 [43] 1.2959 1.4986 1.5575 1.5417

L11 [44] 0.4910 0.9887 1.0158 1.0225

Ours 0.2508 0.7186 0.9849 0.9506

C. Results on Real Scans

We now test our method on real scans, which are very
challenging, because they have much noise and a large num-
ber of outliers. Here, we create two datasets scanned using
a Kinect: Waving and Flying datasets. The Waving dataset
involves large deformations which allows the hands and feet to
wave forward and backward. It contains 30 scans with about
9,000-14,000 vertices for each partial scan. Sample partial
models of Waving are shown in Fig. 5(b). We obtain the
low-resolution models by subsampling with 1/10 of vertices,
similar to the clean datasets, and compare our method with
the pairwise registration methods [43], [44] in Fig. 7(B).
Similarly, we can see that the method [43] produces highly
distorted results and the results of method [44] also contain
misalignment. Fig. 13 illustrates the results when scans are
accumulated gradually. Since no ground truth data is available,
it is not possible to measure the errors quantitatively. However,
from visual inspection, it is clear that our global registration
method produces superior results. The results of [43] (top
row) not only have serious shrinkage but also become more
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(a) (b) (c) (d) (e)
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Fig. 8. Comparative results using gradually accumulated scans on the partial dataset Bouncing. Top row: L0 [3], second row: PR-GLS [4], third row: L21 [43],
fourth row: L11 [44], and bottom row: our method. (a): the results of scans 1-4, (b) the results of scans 1-20, (c) the results of all the scans, (d) Poisson
reconstruction results based on (c) (the top row shows the template mesh), (e) corresponding color-coded error distributions.

and more flat. With the accumulation of registration errors,
the misalignment problem for method [44] also becomes
unacceptable, especially in the head and arms. Our method
generates significantly better results, including the head and
arms.

In order to show the robustness and effectiveness of our
method, for the Flying dataset, we just use 15 partial scans
with dramatic deformations between scans which allow the
arms to wave up and down. Sample partial models of Flying
are shown in Fig. 5(c). As shown in Fig. 7(C), there are serious
distortions in the results of method [43], and the transformed
scans become more flat. The misalignment of method [44]
is also apparent. On the contrary, the results of our method
have no such problems. Fig. 14 gives the results when scans

are accumulated gradually. The results of method [43] have
a serious shrinkage problem and the misalignment problem
for method [44] also becomes unacceptable. Our method
has better registration results and the reconstructed complete
model is accurate and watertight.

VI. CONCLUSION

This paper proposes a novel global sparse non-rigid align-
ment method which registers a sequence of scans with dra-
matic deformations simultaneously to reconstruct a complete
object with a single RGB-D camera. We formulate the energy
function with dual sparsity on both data term and smooth term,
along with the local rigidity constraint and the ARAP (as-rigid-
as-possible) constraint. It is solved by the alternating direction
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(a) (b) (c) (d) (e)
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Fig. 9. Comparative results using gradually accumulated scans on the partial dataset Samba. Top row: L0 [3], second row: PR-GLS [4], third row: L21 [43],
fourth row: L11 [44], and bottom row: our method. (a): the results of scans 1-4, (b) the results of scans 1-20, (c) the results of all the scans, (d) Poisson
reconstruction results based on (c) (the top row shows the template mesh), (e) corresponding color-coded error distributions.

(b) (c) (d)

0

6.6 cm

1.0

(a)

Fig. 10. Comparison results on Bouncing dataset with partially incorrect correspondences: (a) part of correspondences for two scans, (b) registration result
of all the scans, (c) Poisson reconstruction result, (d) corresponding color-coded error distributions.

method under the augmented Lagrangian multiplier (ADM-
ALM) framework which has exact solutions and guaranteed
convergence. Experimental results on public datasets and real
scanned datasets show that our method is effective and robust
for challenging deformations such as large-scale movement of

arms and legs, as well as noise and outliers. In addition, our
method allows fewer partial scans to reconstruct a full object.

Our method also has some limitations. First, although our
method can handle a wider range of deformations, it becomes
more difficult with very few scans, such as the example shown
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(a) (b) (c) (d) (e)
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Fig. 11. Comparative results using gradually accumulated scans on the partial dataset Bouncing with noise (σ = 0.1l). Top row: L0 [3], second row:
PR-GLS [4], third row: L21 [43], fourth row: L11 [44], and bottom row: our method. (a): the results of scans 1-4, (b) the results of scans 1-20, (c) the results
of all the scans, (d) Poisson reconstruction results based on (c) (the top row shows the template mesh), (e) corresponding color-coded error distributions.

in Fig. 14, since neighboring scans have less overlap. Not all
the partial scans are well aligned such as the arms, although the
reconstructed complete model removes most artifacts. Second,
our current formulation only considers the registration errors
of neighboring scans while other scans that have overlap with
the current scan will also help for accurate registration. Third,
the computation complexity is a little high due to the global
formulation. In the future, we will investigate more robust
schemes by exploiting potential overlaps between non-adjacent
scans and speed up the algorithm using GPU.
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