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Compared to 2D textures, solid textures can represent not only the bounding surfaces, but
also their interiors. Existing solid texture synthesis methods pay little attention to the gen-
eration of conforming textures that capture geometric structures or reflect the artists’
design intentions. In this paper, we propose a novel approach to synthesizing solid textures
using 2D exemplars. The generated textures locally agree with a tensor field derived from
user sketching curves. We use a deterministic approach and only a small portion of the
voxels needs to be synthesized on demand. Correction is fundamental in deterministic tex-
ture synthesis. We propose a history windows representation, which is general enough to
unifiedly represent various previous correction schemes, and a dual grid scheme based on
it to significantly reduce the dependent voxels while still producing high quality results.
Experiments demonstrate that our method produces significantly improved solid textures
with a small amount of user interaction.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Textures play an essential role in current rendering
techniques. Conceptually speaking, a texture is a function
represented by a regular array of discrete samples, which
defines some rendering attribute (e.g. color) on a surface.
In addition to the sampled data, there must also exist a
mapping between the texture’s sampling space and the
surface of the object which is to be textured. Most research
on texture synthesis to date has been based on two-dimen-
sional textures. However, 2D textures require complex
mapping and suffer nearly unavoidable distortion when
applied to objects in 3D space. Solid textures, which are
sampled in three dimensions, offer an attractive alternative
to 2D textures. Since the texture values are sampled on a
3D grid, they can be mapped to 3D geometry without the
. All rights reserved.
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need for extra parametrization. Based on the similarity
with physical solid objects, solid textures also allow the
objects to undergo physical operations. Consistent textures
are produced from the whole volume instead of only the
bounding surface.

Consistency with significant geometric structures or
features is crucial if textures are to reveal rather than ob-
scure the shape of the model [30]. It is also widely known
that texture synthesis over surfaces and texture mapping
can benefit from controllable, well designed vector fields
[23,28,31,5]. However, solid texture synthesis methods
developed so far have paid little attention to the alignment
of textures with the general tensor field or with the overall
shape of objects. This is not particularly noticeable if the
textures are isotropic, but for anisotropic textures, it is of-
ten desirable that textures follow natural or designed direc-
tion fields on the surface and in the interior. Furthermore,
many real objects contain their own internal 3D structures,
which should be reproduced if textures are synthesized on
such objects. For example, as shown in Fig. 1, a rattan fertil-
ity object typically follows its overall shape on the surface
and is consistently woven inside. To obtain realistic results
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Fig. 1. Sketch guided solid texture synthesis on the ‘fertility’ model. Compared with the results with a trivial field (b and e), using a few user sketched
curves (a), produced solid textures (c and f) are well aligned with the overall shape. Interior structures of (c and f) are revealed in (d and g) (h and i).
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in the virtual world, such structures should be reproduced
during solid texture synthesis process.

Similar to [10,2], our method synthesizes solid textures
from 2D exemplars, since they are much easier to obtain. In
order to synthesize solid textures that capture the overall
shape and internal structure of objects, we propose a novel
method with the following contributions.

First, we achieve significant improvement in appearance
and consistency by synthesizing solid textures from 2D
exemplars with non-trivial tensor fields. Synthesized solid
textures following significant features can often be more
impressive. To compactly reproduce real textured solids
by synthesis, exemplar images with particular orientation
(rather than canonical axes as previous methods do) of
the solid can often be much more representative. This flex-
ibility further allows artists to control the synthesized solid
textures and effectively express their design intentions.
Although automatic detection of guiding feature curves
are possible, we believe certain amount of user interaction
is in fact a more flexible solution as user controlled design
may follow other artistic consideration (see the example
in Fig. 14). Our method generates user-guided solid tex-
tures by constructing smooth 3D tensor fields based on
interactive user sketching and then synthesizing solid tex-
tures following the sketch derived tensor field.

Second, based on deterministic parallel synthesis para-
digm [2,14], we propose a novel algorithm to significantly
improve the efficiency through a general history windows
representation combined with a dual grid based correction
scheme. Compared to two-dimensional image textures, so-
lid textures can often be overwhelming to compute and
store. In contrast to traditional solid textures, those follow-
ing 3D tensor fields cannot be produced by synthesizing in
a cube and repeatedly translating the cube to cover the
whole space, as the tensor field will not usually be consis-
tent between translated cubes. To solve this problem, we
also use a synthesis-on-demand approach to synthesize
only the visible portion of overall voxels. This does require
that the synthesis process should be deterministic. How-
ever, compared to 2D texture synthesis, the determinism
will introduce much more computation and storage over-
head in 3D texture synthesis. Some common techniques
such as subpass will also introduce significantly more
overhead than its 2D counterpart. In addition, for more
structured, anisotropic exemplars as used in this work, a
larger neighborhood and/or more passes (subpasses) of
synthesis are needed to produce high quality results. Large
numbers of dependent voxels need to be synthesized
which makes it not only expensive to compute but also
prohibitive to store on commodity PCs using previous
methods. As demonstrated later by both complexity analy-
sis and experiments, our proposed approach significantly
reduces the number of voxels needed to be synthesized
while preserving the visual quality of the synthesized
results, leading to lower storage costs and much more
efficient computation.
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1.1. Related work

Texture synthesis has been an active research direction
in computer graphics for many years. A complete survey of
texture synthesis algorithms is beyond the scope of the pa-
per. Please refer to Wei et al. [26] for an excellent recent
survey of example based texture synthesis, and Pietroni
[20] for a thorough and up-to-date survey of solid texture
synthesis. Here we briefly review most relevant research
works.

1.1.1. Example based image texture synthesis
Most previous research work in texture synthesis fo-

cuses on image textures. Various example based methods
have been proposed using pixel-based synthesis
[4,27,1,9] or patch-based synthesis [3,13]. Further
improvements have been made in recent years, such as
iterative texture optimization in [12] for high quality syn-
thesis and parallel, deterministic synthesis [14] which al-
lows windows from an infinite texture image to be
synthesized deterministically. This idea is particularly use-
ful since computing and storing solid textures is much
more expensive. Structured textures are challenging to
fully reproduce. Improvements can be made by using fea-
ture matching and alignment based on structural similarity
[29] or converting the image to appearance space to cap-
ture more essential structures [15].

1.1.2. Image texture synthesis with guidance of direction fields
Direct texture synthesis over surfaces reduces the arti-

facts of texture mapping. Direction fields are often used
to guide the synthesis process, especially for anisotropic
textures. Praun et al. [21] texture surfaces by repeatedly
pasting patches and using alpha blending to hide the
seams. Various planar texture synthesis methods have
been extended to surfaces with appropriately constructed
neighborhoods [23,28,31,11]. Recently [30] further empha-
sizes aligning synthesized textures with surface features
and promotes feature-to-feature correspondence.

1.1.3. Solid texture synthesis
Early works of solid texture synthesis focus on proce-

dural approaches [18,19], i.e. using rules to simulate solid
textures. This requires very little storage to store the rules,
but is restricted in expressibility and unintuitive to control.
To address such issues, most recent methods use exem-
plars to guide the synthesis. Early work in [6,7] estimates
parametric models from 2D exemplar images. Wei [25]
first extends non-parametric 2D texture synthesis algo-
rithms to synthesize solid textures. An improved algorithm
is proposed in [10] using both texture optimization [12]
and histogram matching [8]. A more efficient GPU-based
implementation was proposed in [2] to synthesize and
store pixels when necessary, using a deterministic ap-
proach. All of the methods discussed so far assume that so-
lid textures are well aligned with world coordinate system,
which limits their ability to capture arbitrary geometric
structures and design intentions. The idea of vector repre-
sentation has been introduced recently [24], as a way to
improve storage compactness and provide nice features
such as resolution independence.
Lapped textures have been extended to synthesize 3D
volumetric textures [22], however, they require 3D volu-
metric exemplars instead of 2D image exemplars as input.
Although 3D exemplars can be first synthesized from 2D
exemplars, such precomputation leads to unnecessary
higher dimension in local neighborhood matching thus
slows down the computation. Seams between patches can-
not be fully hidden; this becomes more noticeable for
structured textures as used in the paper. Owada et al.
[17] propose a system for interactive volume painting,
which also utilizes user sketches and geometry to guide
the volume synthesis process. Their focus however, is on
the user interface, while the synthesis method is simple
and does not reproduce structured textures.

The work in [16] uses techniques similar to solid tex-
ture synthesis for motion synthesis. Due to the different
nature of the problem, their work focuses on synthesizing
motion vectors based on 3D vector fields and uses a much
coarse grid. To the best of our knowledge, this is the first
work to synthesize tensor field guided solid textures from
2D exemplars (in a Lazy manner). Novel algorithms are
proposed to address the practical difficulties in this more
flexible formulation.

The overall algorithm is presented in Section 2 followed
by detailed discussions of key technical components: 3D
tensor field generation in Section 3, solid texture synthesis
w.r.t. tensor fields in Section 4 and efficient deterministic
synthesis in Section 5. Experimental results are presented
in Section 6, and finally conclusions and future work are gi-
ven in Section 7.
2. Overview

The overall algorithm pipeline is presented in Fig. 2. We
first construct a smooth 3D tensor field both on the surface
and in the interior of the model. An intuitive sketching
interface is provided to allow users to incrementally draw
sketching curves and tensor fields agreeing with such
curves in the least-squares sense are computed using har-
monic interpolation of quaternions. This process is suffi-
ciently efficient to provide interactive feedback.

Following the well-known algorithm structure [14], our
synthesis process is carried out in a multi-resolution 3D
pyramid with L levels using a deterministic approach. We
start from a coarse grid in the base level which is first ini-
tialized. Two operations, namely upsampling and correc-
tion, are applied to obtain the synthesis results in the
next finer level.

We adapt the concept of ‘triple’ in [2] and briefly de-
scribe some notations. A coordinate triple for some voxel
refers to a triple of coordinates in three 2D exemplar
images Ixy, Iyz and Izx corresponding to the planes xy, yz,
zx where x, y, z agree with local tensor field. Assume N is
the template size in the current level, for an arbitrary coor-
dinate triple, three intersecting N � N neighborhoods are
determined. Pairwise intersections of such neighborhoods
result in three intersected crossbars. Not all the coordinate
triples are proper. Candidate triples refer to such ‘‘compat-
ible’’ coordinate triples with relatively consistent color
along the intersected crossbars (small matching errors)
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and spatially consistent with at least one neighboring pix-
el. For every pixel p in the input 2D exemplar, at most NT

best matched candidate triples are precomputed. NT = 12
is used for all the examples in the paper. For each pixel p
in the input 2D exemplar E, the first candidate triple of p
defines 3 interleaved N � N neighborhoods. One of the
intersected stick with length N is orthogonal with E, which
can be used to thicken E according to the stick to form a
candidate slab.

In the initialization stage, an initial coordinate triple is
assigned to each coarse level voxel. To compute from a
coarser level of the pyramid to a finer level, upsampling
interpolates for each voxel the coordinate triple in the finer
level from that of the coarser level. Correction is the key
step of the synthesis algorithm. The coordinate triple
(and color) at a voxel is updated, according to its local
neighborhood matched against the given exemplars. For
efficient implementation, the local coherence idea can be
utilized to obtain a relatively small set of possible candi-
dates, using the candidate triples from neighboring voxels.
To further improve the results, multiple correction passes
can be performed. A subpass correction scheme can also
be employed, which separates the whole volume into
blocks of s3 size, where s is the size in all the x, y and z
directions. s3 subpasses are performed in each correction
pass. In each subpass, 1

s3 of overall voxels with the same rel-
ative location in each block are updated. Later subpasses
can utilize newly corrected voxels from previous subpass-
es, accelerating the convergence. These techniques were
originally proposed in the settings of 2D texture synthesis
[14] and directly generalized for solid texture synthesis [2].
The correction output is locally deterministic; only those
voxels sufficiently close to the one being considered will
be relevant, making the algorithm highly parallel. This al-
lows synthesizing voxels on demand while keeping consis-
tency. In a departure from previous techniques, we employ
new strategies respecting the local tensor field in the major
steps of the synthesis process.

Correction is the most important step in the synthesis
process. High quality results can be obtained by perform-
ing multiple correction passes. Unlike the image texture
synthesis, a thin layer close to some given surface is often
requested for a solid texture to be synthesized. Therefore,
more correction passes or subpass scheme requires much
more voxels to be synthesized. We develop a new general
representation called history windows, by which different
correction schemes can be designed to better balance the
competing demands of computational complexity and out-
put quality. Based on the general representation, we design
a dual-grid correction scheme, which effectively restricts
the propagation of the dependent voxel set using ‘‘barri-
ers’’ and ensures synthesis quality using dual arrange-
ments of such barriers. A mask of dependent voxels
based on the correction scheme is computed and solid tex-
tures are synthesized only within the mask.
3. Smooth 3D tensor field generation

Our method allows synthesized solid textures to be
guided by a sparse set of user sketches. To control the syn-
thesis process in local regions, a smooth 3D tensor field is
first computed. The rotation component of the tensor field
at each point v contains three orthonormal vectors, form-
ing a right-hand local frame. Taking the trivial global frame
as a reference, the local tensor field at v can be denoted by
the rotation from the global frame to the local frame. The
rotation can be well represented by a unit quaternion
q(v). Unit quaternion q(w,x,y,z) has four components,
where w ¼ cosða2Þ. q represents the counterclockwise rota-
tion by angle a around the axis (x,y,z). Quaternion interpo-
lation has also been used in [32] for surface deformation
propagation.

We propose to use a sketch-based approach to interac-
tively design a smooth 3D tensor field for a given model.
The x, y and z directions of the local tensor field determines
the three sectional planes in space with consistent textures
as exemplar images.

In our interface, users are allowed to incrementally
draw a few guiding curves on the surface or in the interior
of the volume. Local frames on such curves are first deter-
mined. The 3D tensor field in the volume is then obtained
by interpolating the specified local frames in the least-
squares sense. This is very efficient since only a few sparse
linear systems need to be solved, allowing interactive feed-
back. An example is shown in Fig. 3. A smooth tensor field
is first computed based on a few sketch curves rendered in
yellow (a). The tensor field is then interactively updated
when new curves are drawn (rendered in red) (b). The field
is used in later synthesis stages to produce field aligned so-
lid textures (c and d).

For curves drawn on the surface, a local frame (without
orientation) can be obtained from the tangent direction,
outward normal and their cross product. If the curve is
drawn within the volume, a reference sectional surface
(e.g. a plane) is first specified and the curve is assumed
to lie on the reference surface whose normal is served in-
stead of the bounding surface normal. Various examples



Fig. 3. Sketch guided 3D tensor field generation. Smooth tensor fields are interactively obtained while users adding sketches (a and b). Solid textures are
consistently produced w.r.t. the field on the bounding surface (c) or in the interior on demand (d).

1 For interpretation of color in all figures, the reader is referred to the
web version of this article.
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are shown in Fig. 12 where user sketches and correspond-
ing smooth tensor fields are presented. Since texture
exemplars may be different in different section planes,
users are also allowed to assign labels x, y and z to different
principal directions of the tensor field at one point of each
sketch curve and this assignment is propagated to the
whole curve.

When a new curve is drawn, the tensor field is adjusted
to take into account its effect. Based on the sketching order,
all the curves form a sequence C={C1,C2, . . . ,Cn}. As de-
scribed above, when Ci is sketched, we first estimate the lo-
cal frames along the curve (represented as unit
quaternions for efficiency). To smoothly interpolate the
tensor field, we interpolate the quaternions by solving
the following harmonic equations

Dqðv iÞ ¼
X

v j2Nðv iÞ
xði; jÞðqðv iÞ � qðv jÞÞ ¼ 0: ð1Þ

D is the Laplacian operator defined on the volumetric grid.
N(vi) is the set of voxels in the 1-ring neighborhood of a
voxel vi. The weight x(i, j) for voxel vj and vi can be chosen
simply as 1

di
, where di = kN(vi)k is the degree of vertex vi. In

practice, we solve Eq. (1) in the least-squares sense, taking
the guiding curves as soft constraints, i.e. minimizing the
following quadratic energy

kLQk2 þ
X
v2C0

w2kqðvÞ � �qðvÞk2
; ð2Þ

where Q denotes the vector composed of the quaternions of
all voxels, L is the Laplacian matrix, constituting connectiv-
ity and coefficients derived from Eq. (1). C0 includes voxels
on all the sketched curves. q 2 Q is the quaternion at a spe-
cific voxel and �qðvÞ is the local frame derived from sketches.
w is the weight that balances the relative importance of
smoothness and boundary constraints. w = 100 works well
in practice and is used for all the examples in the paper.

If the interpolated q is non-zero, we normalize it to
have unit length, thus corresponds to a valid rotation. In
case this becomes zero, singularities may appear. Such
occurrence is rare in practice and does not significantly af-
fect the synthesis results, as demonstrated with the results
in Fig. 10. An arbitrary neighboring direction is simply cho-
sen to replace such singularities.

In practice, a few initial sketch curves are often suffi-
cient to establish a smooth tensor field globally aligned
with user intentions. Users are allowed to specify a new
curve Ci for local refinement. Conceptually the current
tensor field will be rotated a bit such that one direction
qCi

out of the six possibilities in the tensor field namely
�q ¼ fqx;�qx;qy;�qy;qz;�qzg which leads to the minimal
alignment error with the tangent vector t along the curve
Ci will be identified and aligned with t using appropriate
rotation. Local frames obtained through rotation form part
of the boundary conditions as before. Unit quaternions are
efficient to represent tensor fields, but have an ambiguity
that q is the same as �q. We use a simple and effective
solution to this issue. For the first point on the first curve
C1, we arbitrarily choose q, e.g. with w P 0. We can deter-
mine q on the curve C1 based on continuity along the
curve. For points on later curves Ci, the sign of q can be
chosen based on the current tensor field ~q such that
kq� ~qk is minimized.

Most previous efforts on field design focus on vector
fields (typically over manifold surfaces). Takayama et al.
[22] proposed a sketch-based approach which first opti-
mizes Laplacian energies independently for each coordi-
nate component and orthogonalizes such directions only
when necessary. Since our synthesis algorithm always re-
quires orthogonal tensor fields, quaternion interpolation
is more efficient as only four independent linear systems
are involved (rather than nine) and no postprocessing is
needed to ensure orthogonality. Our interface is also differ-
ent from the depth field based approach and probably
more suitable for our scenario since the symmetric
assumption of textures does not exist in general in our
cases. To control solid texture synthesis, rotation fields
are often sufficient. Our method can be extended to use
more generalized tensor fields with varied scalings in
space. This can be implemented by specifying scalings at
a few sparse 3D positions by the user, and similarly esti-
mating the scaling at each point of the 3D space using har-
monic interpolation.
4. Solid texture synthesis

To synthesize solid textures guided by tensor fields, we
extend the deterministic synthesis approach to deal with
tensor fields in all the major steps of the algorithm. To
measure the similarity between two pixels, we use L1 dis-
tance between a vector comprising the red, green, and
blue1 components of the pixels. For exemplar image



Fig. 4. Distortions of the initial solid texture (a) can be greatly reduced by subpart initialization (b). This also leads to improved synthesis result from
(c) to (d).
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textures with high regularity (e.g. bricks), a further feature
component is introduced, using high intensity to indicate
feature curves. Such feature curves in the input image may
be obtained automatically, or specified by the user [29].

4.1. Initialization

The synthesis process starts from a low level Lstart of the
3D volume pyramid. The initialization of Lstart is very
important, since a good initialization can better preserve
the structure of the input image and improve convergence
of the synthesis process.

Solid texture synthesis amounts to computing a triple
coordinate for each grid point. To obtain an initial guess,
we use the candidate slabs. First we tile candidate slabs
to cover the 3D space to get a volume texture V, so each
voxel v(i, j,k) (pixel coordinate) in V corresponds to a coor-
dinate triple denoted by T(v). Since we now have a tensor
field, for v in Lstart, with local tensor field qv, the warped
coordinate triple is Tð½q�1

v v �Þ, where [�] means the closest
integer point. If the derivative of the local tensor field is
significantly large or the voxel v is far from the origin,
the initial solid texture obtained in this manner may be
highly distorted. We can divide Lstart to a few K � K � K
subparts (here K refers to pixel resolution, and K = 64 is
used for our experiments) and initialize each part respec-
tively. Although this may cause discontinuities between
different parts, as an initial value, it does provide a good
approximation to the synthesized volume and leads to im-
proved synthesis results, as shown in Fig. 4.

4.2. Upsampling

Due to the use of the local tensor field, simply upsam-
pling the coordinates from the parent level is not suitable.
As shown in Eq. (3), v(i, j,k) is a point in the synthesized le-
vel Ll, and its parent is vp

i
2

� �
; j

2

j k
; k

2

� �� �
with texture coordi-

nate triple T(vp) and rotation qvp
, then the coordinate triple

for the child v in level Ll is given as
TðvÞl ¼ TðvpÞl�1 þ q�1
vp

tv ; ð3Þ

where tv equals to the offset between v and its ‘‘upsam-
pled’’ parent, which is hl(i mod 2, j mod 2, k mod 2), and
the add operation between a triple T(Txy,Tyz,Tzx) and a vec-
tor in 3D d(dx,dy,dz) is defined as

T þ d ¼ ðTxy þ ðdx;dyÞ; Tyz þ ðdy;dzÞ; Tzx þ ðdz; dxÞÞ; ð4Þ

where Txy, Tyz and Tzx refer to the three 2D coordinates of
the coordinate triple T respectively (see Fig. 5a).

4.2.1. Gaussian image stack
Instead of using a Gaussian image pyramid, we employ

the Gaussian image stack [14] in our synthesis process. This
uses Gaussian filtering without downsampling to replace
the traditional Gaussian pyramid. This essentially allows
‘‘fractional sampling’’ in a Gaussian image pyramid,
improving the sampling accuracy. Let hl denote the regular
spacing of exemplar images in level l (l = 1,2, . . . ,L), hl = 2L�l.

4.3. Correction

Correction replaces the coordinate triple associated
with each voxel by one best matching its neighborhood.
For a voxel v, we gather the voxels in 3 N � N neighbor-
hoods, and use these neighborhoods to search the best
matching candidate. There are two main differences from
the previous method:

(1) The 3 N � N neighborhoods should be aligned with
the local tensor field, not the trivial N � N neighbor-
hoods in the global coordinate. For a voxel v with
local tensor field qv, the 3 N � N neighborhoods are:
Nxy ¼ fv þ qv � ðx; y;0Þj � Nh 6 x; y 6 Nhg
Nyz ¼ fv þ qv � ð0; y; zÞj � Nh 6 y; z 6 Nhg
Nzx ¼ fv þ qv � ðx;0; zÞj � Nh 6 x; z 6 Nhg
where Nh ¼ N�1
2 . We use trilinear interpolation in coarse

levels and nearest neighbor in finer levels to approximate
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Fig. 5. Illustrations for (a) upsampling w.r.t. local tensor field and (b) the local neighborhood.
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the color of voxels in the three neighborhoods. This better
balances performance and quality, since the quality is
more affected with coarse level synthesis while the com-
putational cost is mainly determined by the fine level syn-
thesis. The neighborhood w.r.t. local fields is shown in
Fig. 5b. For fine levels, the tensor field at the center voxel
is used to sample the local neighborhood. For coarse levels,
a numerical integration along the directions is used instead
to improve the sampling accuracy, similar in spirit to the
surface case in [11].

(2) In the searching phase, we first gather a set of candi-
date triples for each voxel. For some voxel v, consid-
ering the local tensor field qv, we denote Pxy(d),
Pyz(d), Pzx(d) the projection of a vector d on planes
xy, yz, zx of the local frame qv, respectively. Our can-
didate set SðvÞ is different from [2] and is composed
of
SðvÞ ¼ SxyðvÞ [ SyzðvÞ [ SxzðvÞ

SxyðvÞ ¼ fxyCkð½Txyðv þ dÞ � hlPxyðdÞ�Þjd ¼ ðdx; dy; dzÞg;

SyzðvÞ ¼ fyzCkð½Tyzðv þ dÞ � hlPyzðdÞ�Þjd ¼ ðdx; dy; dzÞg;

SzxðvÞ ¼ fzxCkð½Tzxðv þ dÞ � hlPzxðdÞ�Þjd ¼ ðdx; dy;dzÞg;
dx; dy; dz 2 f�1;0;1g; k ¼ 1;2; . . .
where k iterates over precomputed candidate triples at
each exemplar pixel, xyCk, yzCk, zxCk represent the kth candi-
date triple for a pixel in Ixy, Iyz, Izx, [�] refers to the closest
pixel, and Txy, Tyz, Tzx are three 2D coordinates of the cur-
rent coordinate triple at a voxel, as defined in Section 4.2.
In our implementation, we have found a reduced space
with d set to (dx,dy,0), (0,dy,dz), (dx,0,dz) for Sxy, Syz and
Szx respectively is sufficient to produce good results. All
the neighboring pixels in three image planes w.r.t. the local
tensor field are collected. We accelerate the searching
phase using a PCA projection to reduce the data to about
20 dimensions per plane, without significant degradation
of the output quality.
4.3.1. Correction subpass
We similarly use subpass scheme (with s3 = 8) for better

convergence. However, unlike in 2D case where only a
small amount of extra cost is needed, on-demand synthesis
for solid textures is significantly different since some
particular surfaces are often requested, which requires
synthesizing a thin layer around the surface. The thickness
of the layer is approximately proportional to the number of
subpasses, so is the computation overhead. Our dual-grid
correction scheme reduces the dependency chain further
than what was possible with the standard correction
scheme used in [2]. This issue and our solution will be ad-
dressed in detail in the next section.

5. Spatial determinism

Since we synthesize solid textures on demand, spatial
determinism is an important requirement. Determinism
can be achieved by synthesizing all the voxels in each pyr-
amid level that will influence the correction passes of the
desired part. This is not a problem for image texture syn-
thesis; for solid textures, however, the total number of syn-
thesized voxels grows quickly with increased parameters.
For level l in a total of L levels, relevant parameters include
the size of local neighborhood Nl, the number of correction
passes Pl and the number of subpasses s3

l . We define the
impact distance of level l Ll as the largest distance of
dependent voxels away from the voxel in question, which
satisfies Ll ¼

PlNls
3
l

2 and the overall impact distance

L ¼
P

Ll ¼
P PlNls

3
l

2 . Although, in practice the interested part
of the solid is usually some 2D surfaces the total number
still grows quickly with increased parameters. This does
restrict us from using larger parameters to get high quality
results.

5.1. Observation and assumption

Using larger values of L, Nl, Pl and s3
l can greatly improve

the quality, and the resulting texture can better preserve
global statistics as well as local similarity and continuity.
Notice that the overall appearance of the synthesized vol-
ume is mainly determined by the coarse level of the vol-
ume pyramid, while the correction passes in finer grid
can only improve the local continuity. So it is reasonable
to regard that the coordinate of a voxel in finer levels is
influenced only by a limited size of neighborhood, even if
more times of correction passes are performed. In fact, it
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is not necessary to keep such a large dependent set as
in [2].

Based on this assumption, to fully control the size of the
dependent set, we propose a novel representation called
history windows. History windows describe the local
dependency for on-demand synthesis, and is used in the
correction passes. Previously used correction schemes,
including the correction pass and subpass schemes can
be treated as special cases of the new representation. This
also allows further flexible schemes to be designed, balanc-
ing between the computational cost and the quality of re-
sults, while keeping the desirable spatial determinism
property. We further propose a novel dual grid correction
scheme using this general representation which is very
efficient and achieves high quality synthesis for on-de-
mand solid texture synthesis.

5.2. History window

In the correction pass, as mentioned in Section 4, we use
3 N � N neighborhoods determined with the local tensor
field to search for a best matching candidate triple. We
associate every voxel with a history window which speci-
fies how to choose the color of voxels in the local neighbor-
hood. For simplicity, we will explain the history window in
2D case, while the extension to 3D is trivial.

5.2.1. 2D History window
We first introduce some notations. For a pixel p in the

synthesized pyramid, we use subscript to represent the
pyramid level l. Suppose we perform Pl correction passes
at every pyramid level, each pixel p has a sequence of
Pl + 1 versions. Thus pi

l refers to the pixel of p at level l after
the ith correction pass, p0

l means the upsampled pixel from
level l � 1 without any correction. We call i the version of
pi

l. In the ith correction pass for 2D texture synthesis, we
gather an N � N neighborhood for every pixel pi�1 to find
the most well matched neighborhood, then get the up-
dated pixel pi, that is, pixels of version i � 1 in pi�1’s neigh-
borhood are used in the correction pass. We use an N � N
window to record the version of pixels in pi�1’s neighbor-
hood, which is used in the ith correction pass. This N � N
window is called the history window of pi�1 and is denoted
as H(pi�1). Simple correction without subpass implies that
each element in H(pi�1) has the value i � 1; such H is also
used in the first subpass in the s2 = 4 subpasses. The history
windows of the 2nd, 3rd and 4th subpasses are illustrated
in Fig. 6a–c.

5.2.2. History window with 3D tensor field
In the 3D case, we use a D � D � D 3D window H3 to re-

cord the version of voxels in the D � D � D neighborhood.
As described in Section 4, the 3 N � N neighborhoods are
selected to align with the 3D tensor field, computed using
the nearest neighbor of the voxels in the pyramid volume.
The version of voxels used in the interpolation is deter-
mined by H3. D should be chosen larger than N, to deal with
local rotations. In practice we choose D ¼ N �

ffiffiffi
2
pl m

. This
guarantees that all the relevant neighborhood voxels are
covered in the history window.
5.3. Dual-grid correction

The history window is a general representation which
allows construction of arbitrarily complicated update
schemes. According to the observation in Section 5.1, a
voxel is highly related to voxels in its local neighborhood,
so we can safely set some barriers to limit the growth of
the dependent set. Again for simplicity, the basic idea is
first described in 2D case; all the techniques can be easily
extended to 3D space.

For some level l of the pyramid, we associate each pixel
p with a history window H(p). If a pixel q is in p’s N � N
neighborhood, the version for q in H(p) is denoted as H(p,
q). The size of the dependent set is proportional to Ps3 thus
grows quickly. By proper assignment of Hp, we can limit
the size of the dependent set under a constant value inde-
pendent of P and s. In our implementation, Hp is selected as
follows: we divide the whole image into several M �M
subparts, for every pixel q in p’s N � N neighborhood, if p
and q belong to the same subpart, then H(p,q) equals to
the latest version of q, otherwise H(p,q) equals to 0. We call
this scheme (primary) grid correction, as illustrated in
Fig. 6d and Fig. 7 (left).

This strategy can produce high quality results for voxels
near the center of each subpart, but there may exist some
artifacts (discontinuity) near the subpart boundaries. To
handle this problem, we introduce a dual-grid correction
scheme, which uses grid of the same dimension but re-
places each center of box with a vertex and each vertex
with a box centered at the vertex, as illustrated in Fig. 7
(right). For each level of synthesis with Nl passes, we first

perform Nl
2

l m
(primary) grid correction steps followed by

Nl
2

j k
passes of dual-grid correction. Note that the initial ver-

sion the dual-grid correction used is the final version by
the grid correction.

5.3.1. Subpass for grid correction
Using history windows, we can easily perform correc-

tion subpasses based on the current dual-grid correction
scheme. To simplify the description, we first introduce
intersection operator for history windows. Suppose H1(p)
and H2(p) are two history windows with the same size,
their intersection denoted by H = H1 \ H2 can be defined
as H(p,q) = min(H1(p,q), H2(p,q)). Thus the version value
in H is the minimum of the version values at the corre-
sponding position. It is clear that the size of dependent
set using H is no larger than that of using H1 or H2. Suppose
the history windows used in the two steps are Hg and Hdg

respectively. The history windows used for traditional sub-
passes are denoted as Hs, and are illustrated in Fig. 6 for 2D
case with s2 = 4. We can then use Hg \ Hs and Hdg \ Hs to
perform subpass in dual grid correction.

5.3.2. Complexity analysis
We use the impact distance described previously to

estimate the effects of dual-grid correction. Assume that
similar notations are used, except for that we use Pl and
P0 l to represent the number of grid and dual-grid correc-
tions, sl and s0 l to represent the number of grid and dual
grid subpasses. The impact distance for grid correction of



Fig. 6. History windows for different correction schemes. (a–c) history windows used in 2nd, 3rd and 4th subpasses for s2 = 4; (d) a constrained scheme
using version 0 to stop the growth of the dependent set.

Fig. 7. Left: grid correction with related history windows. Right: dual grid arrangement in red following primary grid in black for improved continuity.

Fig. 8. The dependent set (blue voxels) for synthesizing a triangular
object, N = 5,P = 3, s3 = 8, normal correction (left), and dual-grid correction
(right).
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level l satisfies Ll;1 ¼min
PlNls

3
l

2 ;Ml þ Nl
2

� �
, and that for dual-

grid correction has Ll;2 ¼min
P0lNls

03
l

2 ;Ml þ Nl
2

� �
. The overall

impact distance L ¼
P
ðLl;1 þ Ll;2Þ. When M is significantly

large, the complexity is the same. If an appropriate M is
chosen, the complexity can be well bounded by the M
and N, significantly reducing the computational and stor-
age cost. We found that M = 10 � 15 shows good balance
between quality and performance.
6. Results

We demonstrate solid texture synthesis results for a
wide variety of models using our algorithm. Like many
algorithms for texture synthesis, some parameters need
to be chosen for the system to work, however, a fixed set
of parameters works reasonably well in most majority of
experiments. 2D exemplars used in these examples are gi-
ven in Fig. 16. The masks used to enhance feature matching
for textures in the second row are given in the third row. In
most examples, we synthesize four levels with the object
embedded in a volume whose edges are longer than those
of the bounding box to reduce boundary effects(the longest
edge of the volume is about 20–30% longer than that of the
bounding box) and discretized to about 800–1024 in its
longest dimension. A local neighborhood size N = 7 is used
for the coarsest level and N = 9 for other levels. For the
coarsest level, 3–5 correction passes are used without bar-
riers for high quality results with acceptable cost due to
the coarse grid. For other levels, dual-grid correction
scheme with 2 (primary and dual) passes of corrections
are usually performed at each level, and s3 = 8 subpasses
are usually applied to improve the synthesis quality. The
experiments were carried out on a desktop computer with
2 � Quad Core 2.27 GHz CPU. Since the tensor field is usu-
ally smooth, we found a grid with the shortest dimension
discretized to 20–30 is sufficient for our experiments.
And in coarser levels, the field is further smoothed and
downsampled to reduce discontinuity. The computation
of the field takes less than 1 s each time when a new curve
is drawn. This allows tensor fields to be modified interac-
tively by designers. The tensor field only takes a small
amount of memory to store. In the synthesis process, a
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simple trilinear interpolation is used to obtain the tensor
field at each voxel from eight corner points of the coarse
grid covering the voxel. This is simply applied to each com-
ponent of the quaternion followed by a normalization to
obtain unit quaternion. The synthesis process takes about
10–25 min. We cache synthesized solids for the two coar-
ser levels as well as those generated by the model surface.
Benefitting from the use of dual-grid correction, the syn-
thesis process for a new cut is usually 10–20 s, allowing
interactive operations to be performed on the synthesized
solids. These examples take longer time than the perfor-
mance reported in [2] because the following reasons. Our
exemplar textures are more structural and the human vi-
sual system tends to be more sensitive to well structured
images. To capture such structures, we use larger neigh-
borhood size and more correction passes. Fig. 9 shows
the results with N = 5 and other parameters unchanged.
Significantly degraded results are produced for either the
trivial or given tensor fields. The quality becomes even
poorer when non-trivial tensor fields are applied since
the initialization will be much worse. Furthermore, the
tensor field needs to be accessed and involved in various
computations, leading to longer per-voxel synthesis time.
Current implementation is CPU-based; since our algorithm
is highly parallel, we expect a GPU-based implementation
to potentially improve the performance significantly. Sim-
ilar to previous works, often a single exemplar image is
sufficient for synthesis purpose, as we have done for most
examples in the paper.

Fig. 8 demonstrates the effectiveness of the grid correc-
tion algorithm. Much fewer voxels are dependent when a
triangular object is to be synthesized. As analyzed theoret-
ically in Section 5.3, our method is effective in reducing the
number of dependent voxels and corrections. A detailed
comparison for a surface in Fig. 11 is listed in Table 1. Using
dual-grid correction, the dependent voxels are reduced by
about 80% and an over 4 times speedup is obtained. An-
other example is the vase in Fig. 12 listed in Table 2. For
the last two levels that need recomputation for different
slices, only about 1

5 voxels or comparisons are needed, indi-
cating a great saving of both time and memory, as the
number of voxels is proportional to the memory cost and
the number of comparisons is proportional to the correc-
Fig. 9. Synthesized solid textures using a small neighborhood
tion time. Complicated examples similar to those pre-
sented in this paper may easily require more memory
than typically available in the computer (such as 4 GB)
without dual-grid correction. Although as a deterministic
algorithm, it is possible to partition the space and synthe-
size textures piece by piece, significant amount of dupli-
cated computation would be needed, leading to even
slower computation. Although our dual-grid correction
significantly reduces the memory and time cost (with the
same parameters), similar, visually pleasing results are
generally produced. An example is given in Fig. 11 where
(e) shows the close-up image of our method while (f) is
the result obtained without dual-grid correction, keeping
parameters unchanged.

An example of sketch guided solid texture synthesis is
shown in Fig. 1. A few sketches are drawn and used to pro-
duce a smooth 3D tensor field (a). Three orthonormal
directions are rendered in red, green and blue respectively.
Solid textures synthesized using a trivial field [10,2] are
shown in (b and e). Using the tensor field, results produced
with our method follow the overall shapes much better (c
and f). Due the deterministic nature, internal structures of
the produced solids can be synthesized on demand (d and
g). Our method can produce reasonable synthesized results
at tensor field singularities, as demonstrated in the wood
textured plate in Fig. 10. Another example in Fig. 11 syn-
thesizes zebra textures over a horse model. Our sketch
guided result looks much more realistic to mimic a zebra.
Even if this may not be an exact reproduce of real zebra,
this shows the possibility and effectiveness of controlling
the synthesized solids. It can be easily extended to synthe-
size different solid textures in different portions of the
volume.

More solid texture synthesis examples are given in
Fig. 12. The first row shows user sketches and correspond-
ing 3D tensor fields for ‘vase’, ‘dancer’ and ‘dinosaur’ mod-
els. Synthesized solid textures are shown in the second row
and internal structures are given in the third row. In these
examples, solid textures often look better if they follow
overall shapes or features of the objects. A particular exam-
ple is shown in the fourth row where different textures are
synthesized over solid ‘GM2010’ characters. By drawing
simple sketches, the synthesized textures follow and
size without (left) or with (right) the given tensor field.



Table 1
Performance comparisons for a surface of the example in Fig. 11 with1 and without2 dual-grid correction (voxels including those from direct
upsampling).

Level Voxels1 Corrections1 Time (s)1 Voxels2 Corrections2 Time (s)2

3 1,510,190 1,588,346 17.2 12,011,476 11,334,457 114.8
4 2,484,514 2,171,045 20.4 12,851,888 9,567,335 90.8

Table 2
Performance comparisons for a surface of the vase example in Fig. 12 with1 and without2 dual-grid correction (voxels
including those from direct upsampling).

Level Voxels1 Comparisons1 Voxels2 Comparisons2

3 2,187,491 658,099,709 11,116,855 3,514,865,117
4 3,445,625 808,436,278 17,730,291 3,601,332,702

Fig. 10. Synthesized solid textures with singularity.

Fig. 11. A horse model with zebra textures. Significantly more realistic result (c) than trivial field (a) can be obtained with a few user sketches (b); internal
structures are shown in (d); (e) close-up of the result of our method; (f) the result without dual-grid correction (using the same parameters).
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emphasize the shape of each character. In addition to
drawing curves on the surface, our sketching interface also
allows drawing curves on some reference surface within
the volume. An example is shown in Fig. 13 where the
overall shape of the bridge is well represented using a sin-
gle curve on a sectional plane inside the volume and the
resulting solid texture reasonably follows the geometry.
Solid textures may also follow artistically designed tensor
fields. Our sketch based interface makes it very efficient
and intuitive to put in the designers’ intentions and pro-
duce solid textures accordingly (Fig. 14).

Our method can be easily generalized to synthesize dif-
ferent solid textures in different space regions. An example
is given in Fig. 15. A few user sketches are drawn to capture
the directions along major branches, which are used to de-
rive a smooth tensor field, as shown in (a). We use two dif-
ferent texture exemplars: a tree bark texture is used to
synthesize solid textures in some space closer to the
boundary surface, and a wood texture is used to synthesize
the solid inside. Exemplar images and corresponding fea-
ture masks along with the synthesis result are shown in
(b), cutting through the volume reveals the internal struc-
tures, as shown in (c). This example demonstrates that it is
particularly important for solid textures to follow some
guiding directions for it to be realistic as real objects (such
as trees) often have their natural texture directions over
the whole solid. Image exemplars are relatively easy to ob-
tain. By synthesizing different space regions with different
exemplars, our method can produce more realistic solids.

6.1. Limitations

Our method has a few limitations. Similar to previous
methods [10,2], if the given 2D exemplars are incompatible



Fig. 12. Sketch-guided solid texture synthesis examples.
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in 3D space, synthesis results may not be satisfactory. In
most cases, the incoherence can be relieved by only con-
sider matching errors from two sectional planes instead
of three, or assigning a small weight to the third plane.
However, this is still an open problem in the general sense.
Our interpolated tensor field may have some singularities.



Fig. 14. Solid texture synthesis following user designs.

Fig. 15. Solid texture synthesis of a tree with user guidance, using multiple sets of exemplars.

Fig. 13. Sketch-guided solid texture synthesis over ‘bridge’ object using sketches inside the volume.
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In practice, however, singularities are very rare and do not
have significant impact on our synthesized results. It is still
open to future research how to fully control the singulari-
ties in the obtained tensor field. Our 2D exemplar based so-
lid texture synthesis assumes local isometric mapping
from the exemplar image to the corresponding sectional
surface (xy, yz or zx). It is not unusual this property con-
flicts with the given field (which can be arbitrary according



Fig. 16. Texture exemplars used throughout the paper.
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to user sketches). In such cases, branching points in the
synthesized textures appear for the transition purpose.
Although this implies inevitable sacrifice of continuity, as
shown in Fig. 14 and other examples, such occurrences of
branching points may appear in real world (e.g. wood) as
well and still look reasonably realistic in most cases.
7. Conclusion and future work

We have presented a novel algorithm for sketch guided
solid texture synthesis from 2D exemplars. Smooth 3D ten-
sor fields are obtained by efficiently solving a few har-
monic equations w.r.t. the boundary conditions derived
from user sketches. Solid texture synthesis is achieved
through an on-demand approach where only relevant vox-
els are synthesized. Based on a new history window repre-
sentation, we propose a dual-grid correction scheme,
which keeps the quality of results while greatly reduces
the dependent set for on-demand synthesis.

As the main part of the algorithm is fully local and par-
allel, perhaps the most direct extension is an efficient GPU
implementation. We also intend to combine the optimiza-
tion based method (such as [10]) and our correction based
method, as the former has better continuity. The history
window is a general representation and further correction
schemes based on this can be studied in the future.
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