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Registration of 3D Point Clouds and Meshes:
A Survey From Rigid to Non-Rigid
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Abstract—3D surface registration transforms multiple 3D datasets into the same coordinate system so as to align overlapping
components of these sets. Recent surveys have covered different aspects of either rigid or non-rigid registration, but seldom
discuss them as a whole. Our study serves two purposes: (i) to give a comprehensive survey of both types of registration,
focusing on 3D point clouds and meshes, and (ii) to provide a better understanding of registration from the perspective of data
fitting. Registration is closely related to data fitting in that it comprises three core interwoven components: model selection,
correspondences & constraints and optimization. Study of these components (i) provides a basis for comparison of the novelties
of different techniques, (ii) reveals the similarity of rigid and non-rigid registration in terms of problem representations, and (iii)
shows how over-fitting arises in non-rigid registration and the reasons for increasing interest in intrinsic techniques. We further
summarise some practical issues of registration which include initializations and evaluations, and discuss some of our own

observations, insights and foreseeable research trends.

Index Terms—Deformation modeling, digital geometry processing, surface registration, point clouds, meshes, 3D scanning

1 INTRODUCTION

URFACE registration transforms multiple 3D

datasets into the same coordinate system so as
to align overlapping components of these sets. The
datasets comprise measured points representing sur-
faces of 3D objects or scenes. Due to limitations of 3D
scanning technology, typically multiple datasets must
be captured from different viewpoints, each is asso-
ciated with a different coordinate system. To allow
them to be recombined to reconstruct the surfaces that
represent the original objects or scenes [1], these data
must be registered. Surface registration is thus an es-
sential component of the 3D acquisition pipeline and
is fundamental to computer vision, computer graphics
and reverse engineering. Registering templates to a set
of deforming surfaces provides cross-parametrization,
and facilitates texture and skeleton transfer, shape in-
terpolation, and statistical shape analysis. Numerous
applications also benefit from the continual research
on correspondences and registration (e.g. features and
saliency), including symmetry detection and articu-
lated object matching, finding object correspondences,
fractured object reassembly, sub-part identification,
and skeleton and pose construction.

Surface registration may consider rigid or non-rigid
shapes. The former assumes that two (or more) sur-
faces are related by a rigid transformation. The lat-
ter allows deformation (e.g. morphing, articulation)
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between them. Rigid registration is a challenging
problem. Firstly, the data itself poses many difficul-
ties, which may include noise, outliers, and limited
amounts of overlap. Noise may take the form of
perturbations of points, or unwanted points close to a
3D surface. Outliers are unwanted points far from the
surface, which can seriously affect results if not dis-
carded. Limited overlap arises due to different parts
of the object being in view in each scan; typically the
number of scans is kept low for efficiency, with few
points in common between successive scans. Further
problems may arise due to self-occlusion when the
object is scanned from certain viewing angles. While
such problems can be mitigated by careful scanning,
they are hard to avoid completely. Secondly, varia-
tions in initial positions and orientations (and what
is known about them), as well as resolutions of data,
can also affect algorithm performance, and must be
taken into account when comparing rates of conver-
gence, methods of correspondence determination, and
approaches to optimization.

Non-rigid registration is even more difficult, as it
not only faces the above challenges but also needs
to account for deformation, so the solution space is
much larger. Unlike the rigid case, where a few corre-
spondences are sufficient to define one candidate rigid
transformation for hypothesis testing, both deforma-
tion and alignment in the non-rigid case, without
strong prior assumptions, often require a lot more
reliable correspondences to define. Establishing mean-
ingful and natural correspondences, however, is a
challenging problem in its own right. Choice of appro-
priate representation for the deformation, and suitable
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tools for evaluation of non-rigid registration methods
are two difficult problems. Recent success in rigid
surface registration, coupled with the development
of scanning devices that can capture time varying
surfaces, have brought non-rigid surface registration
into focus.

Over the past two decades, many effective rigid
registration techniques have been developed. Many
of those aforementioned challenges are being ad-
dressed [2]. These include [3] which can handle up
to 35% noise, and part-in-whole problem, and [4]
which can handle up to 40% outliers, and down to
40% overlap as demonstrated in their experiments.
Comparatively, non-rigid registration techniques are
still in their infancy. Yet many useful techniques have
been developed. These include techniques that target
articulation, like [5] that can handle large gaps in
4D sequences, reduce high dimensionality of defor-
mations through automatic construction of consensus
skeletons and [6] that can register 4D surfaces and
produce an urshape template; [7] that supports facial
capture and animation of avatar heads in real-time;
and [8], [9] that can handle near- to approximate-
isometric deformation. All these have changed the
landscape of digital geometry processing, migrating
the focuses to dynamic scenes and motions.

The goal of this survey is to overview significant
work for new researchers and potential users of reg-
istration, to analyse the similarities and differences of
these methods, and to provide up-to-date references
to this field. While other surveys exist, our specific
contributions include the following:

Rigid and Non-Rigid Registration: Our survey cov-
ers registrations over the past two decades. We discuss
1) the research development from rigid to non-rigid,
2) the recent advance of intrinsic techniques, and 3)
some reasons of such research progress.

Data-fitting and Registration Components: The con-
nection of registration to data fitting and the implica-
tions may not be at all obvious to new researchers.
We first point out the connection, leading to the
discussion of three core registration components in
the light of the overfitting problem: model selection,
correspondences & constraints and optimization.
Constraints: We carefully study the constraints used
in various registration techniques. These properties or
techniques limit the search space or improve registra-
tion results.

Practicalities and Future work: We discuss various
practical issues for potential users such as the choice
of functional models, initialization, weight settings,
evaluations and finally, consider future directions and
trends guided by our analysis of the core components
and data fitting.

1.1 Comparsion to other surveys

Among all the existing surveys (Table 1), [11]-[15]
focus on rigid registration only. Our survey tries

TABLE 1
Existing Surveys of Surface Registration
.. |Non-

Ref | Rigid Rigid Focus
[10]] v v' | surface registration for medical imaging
[11]] v systematic breakdown of ICP and its variants
2] v registration and fusion of range images
[13]] v comparison of several Improved ICPs
[14]] v comparison of quadratic approximants and ICP
[15]] v coarse vs fine, pairwise vs multi-view alignments
[16]] v v' | techniques for shape correspondence

to connect rigid and non-rigid registration, compare
and contrast the novel techniques used, and discuss
the underlying background to help readers appre-
ciate the developments in the field. [10], [16] cover
both rigid and non-rigid registration. [10] focused on
applications in medical imaging. Their classification
is similar to ours, but they discussed optimization
and correspondence together. We particularly sepa-
rate constraints from optimization to enable a clearer
analysis of recent work and the research focuses of
the past decade. [16] discussed registration in the
more general context of shape correspondence. Our
survey, on the other hand, discusses registration from
the viewpoint of data fitting. This allows us to focus
on components that are more specific to registration
techniques. In particular, we highlight the novelties
in different components and their uses. We further
discuss the problem of over-fitting and provides up-
to-date references beyond those in existing surveys.

1.2 Scope

This study focuses on registration techniques for
3D point clouds, meshes (representing surfaces) and
sparse 3D point data. To limit our scope, various
related techniques that require additional information
(e.g. silhouettes extracted from images or video se-
quences, or assumptions concerning viewpoints for
the input data) are excluded, as are those which
require a specific representation (e.g. range images,
2D arrays of depth points). However, we do in-
clude techniques originally designed for range images
where they can be applied to point clouds without
modification or extra assumptions.

The literature contains many techniques for the
closely related problem of 3D volume image registration,
particularly for medical data. 2D image registration
is also widely studied. Many kinds of features or
landmarks have been proposed, often tailored to the
nature of the images, and have inspired the devel-
opment of surface registration methods (e.g. based
on SIFT [17]). Recently, non-parametric image regis-
tration techniques have been developed for medical
images. These take into account physical properties
(e.g. elasticity or viscosity) of tissues, and may also
prove useful in surface registration. Readers are re-
ferred to [18]-[20] for surveys of such techniques.
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1.3 Organization

Our survey is organized as follows. Section 2 estab-
lishes the connection between data fitting and regis-
tration, and its implications, leading to the discussion
of the three key components of registration: model
selection, correspondences & constraints and optimization.
Section 3 discusses various transformation models.
Section 4 classifies various constraints for rigid and
non-rigid registration. Section 5 discusses how regis-
tration and correspondence determination can be cast
in terms of optimization. Section 6 discusses evalua-
tions of registration. Finally, Section 7 concludes with
discussions and future possibilities.

1.4 Notation

The following notation is used in the paper. P =
{p1...pn,} and Q@ = {qi...qn,} are two point
sets representing overlapping surface portions of a
scanned 3D object. ¥ C {p1...pn, } x{d1...9n,} isa
matching relation that denotes the set of all correspon-
dences. We use a;; = {p;,q;} to denote a correspond-
ing pair of points. Sometimes, for illustration purpose,
we simplify the notation to a; = {p;,q;} to denote a
one-to-one correspondence, and N is the number of
points. p; = x(a,p;) describes a functional model x
with parameter vector a that maps a point p; to p;.
T = (R, t) is a rigid transformation comprising a rigid
rotation and translation, while A is an affine trans-
formation. u is a deformation vector. E(P,Q, X, x, a)
is an energy functional to be optimized. p(-) is a
probability distribution of a random variable. 7 is
time. DoF means the degree of freedom. x can be
further classified into extrinsic f and intrinsic g~ 'ohog
transformations, which will be defined and discussed
in the next section.

2 REGISTRATION AND DATA FITTING

Registration has much in common with data fitting.
Here, we first provide a general overview of both rigid
and non-rigid registration techniques as a whole, in
terms of a generalized version of their objective func-
tions. Then we discuss their similarities and differ-
ences to data fitting, which leads to our classification
scheme and the structure of this survey.
Registration is very often cast as an optimization
problem with the objective function of the form:

E = Egata + Freg )

The data term Eg,i, measures the alignment error, and
is related to the transformation function y:

Baaa = Y _llas — x(a,p)|* st {pia} €T ()

where p; belongs to one surface and q; to another.
Here, we assume y transforms p; to p; € P such that
the residual sum of squares |q; — p;||? is minimal;
{pi,qa;} € X is the set of all correspondences. The

3
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Fig. 1. Registration can be classified into extrinsic (y =
f) and intrinsic (x = ¢! o h o g) technique based on
their transformation f, g and mapping function h, see
Section 2.

goal of registration is to obtain the best transfor-
mation parameters a. Ey; is a regularization term
that provides additional information to constrain an
arbitrary transformation so that the solution a is a
reasonable one. Registration can be further classified
into extrinsic and intrinsic techniques (Figure 1).

Extrinsic techniques consider a surface lying in
Euclidean space. They make use of external proper-
ties (e.g. transformations: rotation(s) and/or transla-
tion(s)) that can be applied onto the surface. Often,
these techniques look for a function x = f € F :
S — S such that surface P € S can be transformed to
align and correspond with surface @ € S, where S is
the space of all possible surfaces. We refer to f and
S as the extrinsic transformation and domain in our
context.

Intrinsic techniques, in contrast, consider a surface
as free standing. They make use of properties like
surface distances and angles which are internal within
a surface. Often, these techniques transform/embed
the two surfaces P and @ into their canonical forms
P’ € ¥ and Q' € ¥, where ¥ denotes the space of all
possible canonical forms, with a function g € G : S —
V¥, and look for a mapping function h € H : ¥ — ¥
so that the surface point p; = ¢! o h o g(p;) matches
closely to q;. We refer to g and V¥ as the intrinsic trans-
formation and domain in our context. The objective
function may be seen as letting x =g lohog:

Biata = Y _llai—g 'ohog(a,ps)|® st {pi,q;} €X (3)

Some techniques may by-pass the embedding process
and optimize an objective function which is formu-
lated using intrinsic measures for correspondence es-
tablishment. The intuition is similar.

Data Fitting: Given a set of N 3D data points
P1,...,Pn, where p; = (z;,v;,2;), various data fitting
problems may be posed. The simplest is to find the
vector of parameters a of a functional model z =
f(a,z,y) that best describes the data. To measure the
fitting error, the usual formulation considers the sum
of squared residuals E:

N
E= ZHZZ —x(a,zi,5:)||* + Ereg. €))
i=1

In general, data fitting involves both selection of
X, and optimization to find the best a. Eg is a
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regularization term to avoid overfitting.

Connections and Implications: Comparison of
Eqns. 14 allows us to further analyze registration as
three core components:

Model selection (Section 3): The model x in both cases
is often guessed or provided by the users with a priori
knowledge of the data. In data-fitting, specific models
are given depending on the data, e.g., polynomial
equations or splines. In registration, x is usually based
on an assumed transformation model, and is highly
dependent on the data and applications. We will
discuss the choice of these model x. These cover rigid
transformation (Section 3.1), and both extrinsic (Sec-
tions 3.2-3.4) and intrinsic non-rigid transformations
(Section 3.5).

One of the major concerns in data-fitting is to

avoid overfitting, when x fits noise rather than the
data. The same applies to registration where the mod-
els f of extrinsic techniques usually have high de-
grees of freedom. This potentially leads to over-fitting
problems (in which there are too many parameters
to describe the transformation). In these techniques,
regularization becomes highly essential, not only to
obtain a smooth surface, but also to constrain arbitrary
transformation to obtain a reasonable solution. In
intrinsic techniques, both P and @) are transformed
into a canonical form and the mapping function £ is
usually low-dimensional. The intrinsic transformation
g provides the most important constraint to avoid
arbitrary transformation. This is one reason why these
techniques have become the recent research focus.
Correspondences and constraints (Section 4): In data
fitting, the correspondences are incorporated within
the data point (z;,y;,2;), but in registration, corre-
spondence information {p;,q;} € 3 must be de-
termined. We will discuss different constraints and
techniques to restrict the solution space (a,X). They
may be induced by the functional model x (Sec-
tions 4.1.1, 4.2.3) or related to the regularizations
(Sections 4.1.4, 4.2.6), correspondences X (like features
and saliency, Sections 4.1.2, 4.1.3, 4.2.4, 4.2.5), assump-
tions on data (like template or space-time surface,
Section 4.2.2, 4.2.7) and optimization (like search con-
straint) (Sections 4.1.5, 4.2.8).
Optimization (Section 5): Both registration and
data fitting are formulated as optimization problems
which can be solved in a similar fashion. We
will discuss techniques to find the best parameter
a and possibly 3. When registration is cast as
a continuous optimization problem, (a,¥) are
determined iteratively and simultaneously. Some
methods focus on correspondence determination
only, and ¥ is estimated iteratively. The implication
here is that many techniques which were originally
designed for data fitting (like information-based
criteria) may be applicable in registration.

4
TABLE 2
Transformation Models
Assumed .
Transformations DoF Model Formulation Examples
Rigid Euclidean -
Transformation 6 Transformation all rigid cases
A Displacement Field +
R!g|d Allgnmgnt Space Time Surface (21]
with Non-Rigid 7-18
Correction Rigid ICP [22]
+ Thin Plate Splines
Piecewise Rigid <N Predefined Skeleton [23]
Transformation ones and Joints 5], [24]-[26
Displacement Fields [6], [27]
General Local Rigid
Deformation & ?EIN Transformation (2], 28]
Fine Details Local Affine [29}-[35]
Transformation
(Nearly) Isometric Intrinsic N
Deformation <N Transformation (8], [36]-{41]

Our classification is based on these three compo-
nents. The focus on constraints, in particular, allows
us to compare the novelty of various approaches.
Since each component interacts with the others, efforts
have been made to avoid repeating information, but
we do so where necessary for clarity. While not every
registration technique fits well into this framework
derived from data fitting, these components and con-
straints do exist in most surveyed methods.

3 FUNCTIONAL MODELS

We classify the models x used in registration from
the viewpoint of the assumed transformations. Table 2
provides a quick look-up for users who need to
register surfaces undergoing a specific type of trans-
formations and their DoFs. Four main types are com-
mon: rigid transformation, piecewise rigid deformation,
general deformation and (nearly) isometric deformation.
Rigid alignment with non-rigid correction is a transitional
case between the rigid and non-rigid models.

3.1 Rigid Transformation (6 DoF)

This is the most important assumption of rigid reg-
istration: the surfaces are assumed to be aligned by
a Euclidean transformation involving a rotation and
translation (R, t): f(p;) = Rp; + t. This transforma-
tion (i) is global—the same for every point p;, (ii)
can be uniquely defined by three non-collinear pairs
of correspondences, and (iii) has low dimension (6
DoF). Using the first two properties, if both point sets
contain at least one pair of triplets that match exactly
and provide the correct transformation, it takes O(N®)
time to test all possible transformations for sets of N
points. By considering all three properties, registration
can be cast as a voting problem [17].

3.2 Rigid Alignment with Non-Rigid Correction

Displacement Field of Space-Time Surfaces (7 DoF):
To allow non-rigid correction due to subtle move-
ments of objects during acquisition, [21] proposes a
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space-time displacement model of the form f (p)) =
(R;p! + tj,77). The transformation consists of the
unknown (R;,t;) that aligns surface in consecutive
frame j in the space domain, and a translation 77
along the time axis. This technique requires dense
sampling in both the spatial and temporal domain.
Rigid ICP + Thin Plate Spline (18 DoF): Calibration
errors or device non-linearity can lead to imprecise
alignment of rigid scans. [22] uses a locally weighted
ICP to establish reliable correspondences across mul-
tiple scans. Then they optimize the locations of these
correspondences across multiple scans in a global
manner. These correspondences define the anchors
such that those misalignments can be corrected by
thin-plate spline (TPS) with 3n + 12 DoF, where n
is the number of anchor correspondences, resulting
in a sharper final model. Since n is fixed once the
rigid transformation is computed, it requires overall
18 DoF.

3.3 Piecewise Rigid Transformation

Some methods, e.g. for human modelling, assume
mainly articulated changes, where bones undergo
large rigid transformations and local non-rigid surface
deformation (bending or stretching) occurs near joints.
Predefined Skeleton: [23] uses a skeleton as a basis
for modeling deformation. Each joint is given some
DoFs (e.g. joint angles) and is related to other joints
by rigid transformations (e.g. a translation).
Bones and Joints: More recent techniques do not use
an explicit skeleton. [24] uses predefined bone infor-
mation to track bone transformations. [25] searches
in a finite set of plausible clustered rigid transforms.
The small deformations of joints are obtained by
blending the transformations of two adjacent bones in
the overlap regions [25]: f(p;) = >_; w;(pi)(R;p;i+t;)
where w;(p;) is the weight for bone j. Recently, [5]
constructs a consensus skeleton automatically from
4D sequence and [26] recovers a dynamic graph—a
poseable skeleton with bones, ball and hinge joints.
The advantage of skeletal representation is the low
DoF (<« N), which depends on the available bones or
joints. It also allow new poses to be created.

3.4 General Deformation and Fine Surface Details

Further techniques consider more generic deforma-
tions which include articulation, non-rigid deforma-
tion and fine surface details.

Local Displacement Field (3N DoF): [27] allows
points to displace freely, and encourages the dis-
placement vectors to point in similar directions by
regularizing high-frequency components of the dis-
placement field. [6] uses meshless finite element defor-
mation: f(pi,7) = pi + >_; ¥;(pi)uy,» which depends
on certain nodes j scattered near (but not on) the
surface, where u; , are displacement vectors; v;(p;)
is the influence of node j on p;. This technique

expects as input a sequence of frames, allows adap-
tive sampling, reduces DoF to 3n, where n is the
number of nodes. [35] uses thin plate spline (TPS)
to define a transformation model (DoF 12 + 3N):
f(p;) = pi-a+w-w(p;), where a represents the affine
transformation parameters and w is the parameter for
the TPS smoothness kernel w(p;).

Local Rigid Transformation (6N DoF): [2] defines a
model: f(p;) = R;p; + t; using local rigid transfor-
mations (R, t;) at each point. Nearby points with the
same (R;,t;) are clustered into patches and are up-
dated every few optimization steps. It is adaptive to
the deformation; the DoF depends on the number of
clusters. [28] uses local rigid transformations, an iter-
ative as-rigid-as-possible deformation technique [42]
and space-time surface constraints to align surfaces
from densely temporally sampled sequences.

Local Affine Transformation (12N DoF): Local affine
transformations are frequently used in non-rigid reg-
istration [29], [31]. Higher DoFs allow more free-
dom to capture fine surface detail changes (e.g. body
fat [43], wrinkles [32]). [34] defines a model: f(p;) =
A;p; and uses stiffness to ensure adjacent transforma-
tions are similar. [33] uses differential coordinates and
can be considered as a local affine transformation with
a smoothness constraint. [32] uses an embedded graph
node model: f(pi) = > . w(pi, x;)[A;(Pi;x;)+x;+bj]
where b is the translation vector of certain nodes x;,
with weighting function w. These x; lie on the surface.

3.5 (Nearly) Isometric Deformation

Intrinsic Transformation: Recent techniques empha-
size intrinsic models, which assume (nearly-) isometric
(distance-preserving) deformation. Intrinsic geometry
concerns properties like surface distance and angle.
Instead of studying p; = f(p;), they study p;, =
g~ 'ohog(p;) so that p; matches closely to q; (Figure 1).
Here g is the assumed intrinsic transformation and h
is often a low-dimensional (« N) mapping function
that establishes the point correspondences (Section 2).

Notable and pioneering works include: [36] seeks
a low dimensional embedding that preserves all pair-
wise geodesic distances, [37] uses generalized multidimen-
sional scaling to embed one mesh in another for partial
matching, [38] uses diffusion distance and Gromov-
Hausdorff distance to handle topological noise, and
[40] shows that a single correspondence can establish
correspondences for all points using the heat kernel.
[39] pioneers the use of the Mobius transformation
(isometry is a subgroup of the Mobiiis group). This
has stimulated much subsequent work including [8],
[41].

3.6 Observations and Discussion

Extrinsic Models: A general observation made by all
extrinsic models of non-rigid techniques is that the
more high frequency information on the surface, the
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more DoF required. In the extreme case, non-rigid
registration methods that handle large deformation
involving articulation or fine detail preservation, use
12 DoF (an affine transformation) per point or node.

It is well-known that using too many DoF can over-
fit noise. In rigid registration, the overfitting problem
is generally ignored because there are 6 DoF only.
When non-rigid registrations assume high DoFs, over-
fitting can become a problem (though not frequently
discussed). To alleviate it, [2], [6], [32] reduce the
DoF explicitly by computing local transformations
with respect to clusters or nodes, and most non-rigid
registration methods use regularization to further con-
strain the solutions.

Although many of these non-rigid deformation
models are different in terms of formulation, they all
have one common characteristic. Whether they use
adjacency similarity, gradient or Laplacian fields [28]
(first-order), thin-plate splines [35] (second-order),
or various regularizers (Section 4.2.6), they all try
to preserve some kind of smoothness. In term of
data fitting, this ensures that the registered surface
represents the surface details but not noise.

Intrinsic Models: Intrinsic models assume (nearly)
isometric deformation. Fine surface details are usually
ignored when establishing correspondences, due to
their intrinsic nature. Many methods of this kind
require mesh data with consistent topology, and may
not work on point cloud data. Large topological
errors and holes affect these techniques.

This section has considered many transformations.
The appropriate model to use depends on the data
itself. Users should determine the kinds of deforma-
tions and other properties of their data to select a
suitable model. This point may easily be overlooked.

We exclude the discussion of similarity transfor-
mation, which concerns an additional scale factor
compared to a rigid transformation. The major reason
is that, in registration, most of the 3D scanned data
are assumed to be multiple views of the same object
which share the same scale. When registration is
required for establishing correspondences across a set
of 3D models from heterogeneous data source, scale
becomes an important factor. One example includes
the registration of sets of faces from different per-
sons [44]. Procrustes analysis [45] is one such impor-
tant technique.

4 CONSTRAINTS FOR RIGID AND NON-
RIGID REGISTRATION

We next classify various constraints, and roughly or-
dered them in decreasing strength of priors: see Ta-
bles 3 (rigid) and 4 (non-rigid), and subsequent sub-
sections. Constraints are the properties that limit the
search space for transformation and correspondences.

6
TABLE 3
Rigid Registration Constraints. T: Transformation;
SC / DC: Sparse / Dense Correspondence.
Constraints Classifications Type Examples
Distance and Angle
Transformation- Preserving Properties S [46], [47]
Lower-Bounding DC T[48]
Induced
Constraints Affine Ratio T T4]
Principal Axes T  T[49]
Closest Point Criterion  DC  [14], [50], [51]
Spin Images SC [52]
Curvature SC  [53], [54]
Moments & Spherical SC  [54]
Features ntegral Descriptors SC  [46],[48], 155
- oefficients 17
Cluster Signature SC  [46]
Differential Properties SC  [56]
Rareness SC  [48]
Geometry
Saliency Scale-Space SC (171
Feature Scale-Space SC  [48]
Size & Curvature SC  [53]
Multi-Scale Slippage SC  [57]

MSER ' SC 58]

Equalizing
Regularization Correspondences DG [59], [60]
Maximizing
Correspondences DG [13]. [61]
Localization DC [62]
Search Constraint Hierarchical
Approaches DC  [56] [62]

In rigid registration, correspondences assist in further
pruning the transformation search space, whilst in
the non-rigid case, establishing correspondences is the
essential step that drives alignment.

4.1

We consider transformation-induced constraints, fea-
tures, saliency, search constraints and regularization.

Constraints for Rigid Registration

4.1.1 Transformation-Induced Constraints

Transformation-induced constraints are properties re-
lated to rigid transformation that can be used to prune
the transformation or correspondence search space.
Distance and Angle Preserving Properties: Distance
and angle preserving properties of solids can be
used for pruning unreliable sparse correspondences
established by other constraints. [46] assumes that the
Euclidean distance between the centers of a pair of
features on a surface, and the angles between their
principal directions and their connecting line, are pre-
served under a rigid transformation. RANSAC-based
DARCES [47] uses distance-preserving constraint to
enumerate and test three pairs of correspondences in
a sphere to limit the transformation search space.
Lower-Bounding: [48] uses (Euclidean) distance-
based lower-bounding and the branch-and-bound to re-
duce the correspondence search space (Section 5.2.1).
Affine Ratio: Given two surfaces P and () in arbitrary
initial poses, [4] randomly selects a 4-point tuple from
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P and another 4-point tuple from (), and compares
the affine ratios. If they form a correspondence, their
affine ratio will match. They further speed up the
enumerate-and-test process using a fast range query
search of points that satisfy the affine ratios.

Principal Axes: Principal axes, computed through
principal component analysis (PCA), are three orthogo-
nal directions (eigenvectors correspond to the largest
eigenvalues) where the greatest variance of the data-
points lie. A good review, including their use for
coarse registration, is given in [15]. A recent advance
[49] combines PCA with the least median of squares,
providing resistance to noise and outliers. PCA meth-
ods are most useful for whole object registration.

Closest Point Criterion (CPC): CPC constrains the
potential dense correspondences. Assuming a rigid
transformation, it chooses the closest point q; € @
as the match for p;. It is used in the iterative closest
point (standard ICP) algorithm [50], which minimizes:

E(R,t) = min} |la; — (Rp: + t)’ ()

This iterative algorithm must be carefully initialized.
At each step a new set of parameters (CPC corre-
spondences, rotation R and translation t) are com-
puted and updated. [63] recently provided a formal
treatment of CPC showing that it guarantees the es-
tablished point correspondences cannot be too wrong
at each step: it is impossible that some correspon-
dences are of high quality, while their neighbors are
of significantly lower quality, because the relationship
of correspondences are implicitly captured by the
rigid transformation. Many modifications to ICP have
been proposed, to improve speed, range and rate of
convergence, and robustness—see the earlier survey
in [15]. Recent improvements explicitly model inliers
and outliers [64], and confidence in correspondences
using graduated assignment [59], [60], [65].

There are alternatives of CPC. The first of these
was point-to-plane ICP. [51] minimizes the shortest
distance between a point and the tangent plane of the
closest point on another surface. This allows faster
tangential movement of the surfaces. [66] studies
motion of one surface within the squared distance
field of another, and derives a local quadratic approxi-
mant for the squared distance function; standard ICP
uses a linear approximation. They reveal that this
local quadratic approximant gives a hybrid between
standard and point-to-plane ICP; [14] derives a reg-
istration method with quadratic convergence. These
methods give faster and more stable convergence
with accuracy similar to that of standard ICP. In-
dependently, [67] proposed a similar method based
on a generalized Gauss-Markov model which uses a
statistical framework to model noise.

4.1.2 Features

Features are quantities (e.g. principal curvatures) that
describe a point. Multiple features can be concate-
nated to form a feature vector. When features of two
points (or clusters) match, a meaningful correspon-
dence may exist. Higher-dimensional features offer
greater pruning power because of the low probability
of matching all components of the feature, but often
take longer to compute. Low-dimensional features are
quick to compute and is usually used in conjunction
with other constraints like saliency (Section 4.1.3).
Features are sometimes referred as point signatures
if they have high descriptive and pruning power.
Such features can be defined in a transformation
invariant way, and help to establish sparse corre-
spondences. These features include spin images [52],
mean curvature [56], Gaussian curvature [53], mo-
ments and spherical harmonics [54], integral descrip-
tors [46], [48], [55], FFT and DCT coefficients of distri-
butions of normals [17], cluster signatures of size and
anisotropy [46] and SHOT signature [68].

4.1.3 Saliency

Saliency is a measure of local significance in a surface:
salient points/regions are those whose properties
are unlike most of their neighbours. They are used
for key point/region detection, often in conjunction
with features (Section 4.1.2). They reduce the size
of correspondence space, potential mismatches and
obtain more reliable coarse correspondences. These
saliency measures include: differential properties [56],
rareness [48], scale space analysis on geometry [17]
and features [48], size and curvature based on visual
saliency [53], multi-scale slippage [57] and maximally
stable extremal regions [58].

4.1.4 Regularization Constraints

Regularization involves adding penalty terms to the
objective function. It incorporates a priori information,
improves search, and avoids local minima during
optimization. Two regularization terms are used in
rigid registration; details of the optimization processes
involved are given in Sections 5.2.3 and 5.2.2.

Equalization: [65] casts registration as a continuous
optimization problem that handles both rigid trans-
formation and correspondence determination simulta-
neously. It uses CPC, and formulates a regularization
term based on entropy: —>_, >, M;;logM;; where
M is the matching probability matrix of all corre-
spondences. When all point matches are equally likely,
the entropy reaches a maximum. This term can be
interpreted as equalizing the importances of point
matches, forcing them to the same distance and thus
causing the surfaces to run parallel, rather than inter-
secting one another [59]. From an optimization point
of view, this helps to convexify the error landscape of
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the objective function. [13] uses a similar argument in-
volving equalization of confidence weightings based
on mean field variables.

Maximizing Correspondences: [65] uses the term
—>_i >_; M;; to maximize correspondences and bias
the objective function towards more matches (i.e. it
favors M;; = 1 over M;; = 0). This maximizes the
overlapping area.

4.1.5 Search Constraints

Search constraints are for efficiency. These include:
Localization: [62] gives a fast ICP algorithm (Sec-
tion 4.1.1) based on localization. They restrict the search
for a new CPC at each iteration to the local neighbor-
hood of the correspondence in the previous iteration,
avoiding a global exhaustive search.

Hierarchical Approaches: [62] further combines the
above with a coarse-to-fine hierarchical search tech-
nique. Use of down-sampled data speeds up the
first few iterations of ICP; the resolution is gradually
increased to obtain more reliable alignment. [56] uses
a hierarchy of surface features in the form of points,
curves and finally surfaces. They estimate a Euclidean
transformation using a few salient points. The trans-
formation is then refined using curves, and surfaces.

4.2 Constraints for Non-Rigid Registration

This section discusses constraints for non-rigid reg-
istration, assigning them to categories of markers,
templates, deformation-induced constraints, features,
saliency, regularization, envelopes of motion and
search constraints (Table 4).

4.2.1 Markers

3D markers provide sparse correspondences. For ex-
ample, early commercial systems used simple refer-
ence objects (e.g. spheres) clamped to a surface before
data acquisition, which are then identified by fitting
methods [69]. Other techniques identify markers from
an accompanying video sequence using e.g. Laplacian
convolution filters [23] or SIFT [33]. Some approaches
simply assume correspondences are provided [34].

4.2.2 Templates

Templates simplify the part-to-part alignment prob-
lem to part-to-whole alignment, by providing strong
structural information including priors for shape, con-
straints on arbitrary deformation, and connectivity.
These greatly help to handle topological noise and
missing data. [6], [28], [79] constructs a template,
an urshape, by accumulating and filling in missing
data from other scans in the same sequence. They
have been used extensively in non-rigid registration to
constrain dense correspondences [23], [29], [32], [34],
[80]. This works for objects with well defined forms,
such as the human face and body.

TABLE 4
Non-Rigid Registration Constraints.

Constraints Classification Type Examples

3D Obijects SC [69]
Markers ptical/Manua 23], [33], [34
Template DG, D [6], [23], [28], [34]

Isometry sC D [2], [81, [9], [36]-[40],
Deformation-  Consistency >~ [70]-[72]
Induced Self-Deformation
Constraints Distortion SC. D [70]
Spin Images SC [25], [72]
Curvature SC [71],172]
Integral
Features Descriptors SC [46]
Heat Kernel
Signature SC [73HH78]
. Extremities SC [70]
Saliency Slippage SC [57], [71]
Orthonormality DC,D [32]
Handling Holes DC,D [31]

Geometric DC.D 6], [25], [27], [29],

—_— Coherence [30], [32], [35]
Regularization - xerrion DC,D [24]
Temporal
Coherence DG.D [6], [79]
Envelope of Motion DC [21], [28]
Search Closest Point DC [2], [6], [25], [29], [34],
Constraints Criteria [46], [79]

T: Transformation; D: Deformation;
SC, DC: Sparse / Dense Correspondence

4.2.3 Deformation-Induced Constraints

The deformation model itself may induce constraints.
Isometry Consistency: Generalising the distance pre-
serving constraint in the rigid case, some methods
assume inelastic or isometric deformation. We first
discuss the various definitions of surface distance and
then the use of isometry for correspondence.

Definition of surface distances: Surface distances
are intrinsic measures defined solely by a metric ten-
sor. Let (M, §) be a Riemannian manifold with a met-
ric tensor §. The intrinsic Laplace-Beltrami Operator
A is determined by ¢, and induces a family of surface
distances of the form: d(z,y)? = Y, Q\i)(Pr(z) —
Py (y))?> where \;, and @, are the eigenvalues and
eigenfunctions of A. These include the diffusion dis-
tance [38] (Q(\x) = e~2t*¢) which measures the degree
of connectivity of two points by paths of length ¢;
the commute-time distance [81] (Q(\g) = )\,;1) which
is a scale-invariant version of the diffusion distance;
and the biharmonic distance [82] (2(\) = ), %) which
balances the local and global properties of diffusion
distance. The biharmonic distance is more shape-
aware and insensitive to topology.

The geodesic distance can be defined via the length
of curve v on M: d(z,y) = min, fol I/ (r)||dr, v(0) = =
and (1) = y where § provides the inner product to
measure length. Geodesic distance is sensitive to noise
and holes. [83] proposes fuzzy geodesic distances
which trades off between precision and stability. [84]
approximates geodesic distances by unfolding bound-
ary of holes. The geodesic distance is often found by



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

solving the eikonal equation and wavefront propa-
gation [85]. [86] recognizes the connection between
heat and distance, and develops an efficient scheme to
find geodesic distance, which is less sensitive to noise
and holes: d?(x,y) = lim; o —4tlogh(x,y) where
he(z,y) = > e e dy (2)®y(y) is the heat kernel.

[75] extends the diffusion distance on 2D manifold
to 3D volume. It targets volume-preserving deforma-
tion and is found useful in medical imaging. Different
Riemannian metrics can be induced by appropriately
selecting the arc length. [76], for example, develops
an affine-invariant version of diffusion distance by
constructing a new Riemannian metric tensor. It is
useful for equi-affine-invariant deformation.

Use of isometry: There are many ways to use the
isometry constraint, which indicates that the surface
distance between two points is the same before and
after non-rigid deformation. The direct use of geodesic
distance can be seen in [70], where they define geodesic
distortion in terms of maximum differences of geodesic
distances, and in [2], where they define isometric con-
sistency in terms of ratios of geodesic distances. [5]
extends the latter to work on 1D skeletons for space-
time surface registration. There are techniques that
formulate correspondences as a minimization of over-
all geodesic distortion [9]. Isometry can also be formu-
lated as a transformation model (Section 3.5).
Self-deformation Distortion: [70] uses a self-
deformation distortion measure to avoid unrealistic
sparse correspondences arising due to large stretching
(e.g. a limb point being mapped to the torso)
or repeated structures (e.g. a left leg point being
mapped to the right leg). This approach is based on
mesh differential deformation techniques and the use
of salient points (Section 4.2.5). This work discusses
the establishment of meaningful correspondences
across deforming objects of quite different kinds.

4.2.4 Features & Signature

Features designed for rigid registration like spin im-
ages, mean curvature and integral descriptors (Ta-
ble 4) have been used to find correspondences in non-
rigid registration.

There are isometry invariant features. [73] proposes
the heat kernel signature (HKS), which is based on
heat diffusion at a point. It is intrinsic (invariant to
isometric deformation), multi-scale, informative (con-
tains all information about the intrinsic geometry of a
shape) and stable. It is used in [40] to define isomet-
ric mapping. [87] relates and reinterprets HKS with
other spectral shape matching techniques through the
Gromov-Wasserstein distance.

Over the past years, variants of HKS have been
proposed. [74] uses Fourier transform to avoid scale
differences and defines a scale-invariant version of
HKS. [75] extends HKS to volumetric data, using vol-
umetric distance. [76] defines a new first fundamental
form and uses a finite-element technique to define

an affine-invariant version of HKS. [77] proposed the
Wave Heat Kernel Signature (WKS) which uses a
quantum mechanical approach to capture multi-scale
details. WKS is shown to be more descriptive than
HKS. There is an emerging approach [78] to automat-
ically learn the optimal feature descriptor, in terms of
localization, discriminativity and various invariances.

4.2.5 Saliency

Slippage features designed for rigid registration are
used in [57] to identify correspondences between non-
rigid shapes. [8], [70] use extrema of a deformation
invariant function, the integral geodesic distance G(p) =
Jsep dg(p,s)dP, to locate salient points. G(p) is large
if p is far away from the rest of the mesh (e.g. at the
tip of a finger for a whole body model). This integral
is stable under changes of surface detail.

The heat kernel signature (HKS, Section 4.2.4) pro-
vides the basis for the definition of salient points
and important components for non-rigid shapes. [88]
defines ”Persistent Heat Signature” for points using
persistent homology. The idea is to track and identify
critical points (maxima, minima) when the topology
of HKS changes over the surface. [89], [90] apply
the concept of maximally stable extremal regions
(MSER) from computer vision to detect stable re-
gions/components in non-rigid shapes.

4.2.6 Regularization

In Section 3.6, we pointed out the importance of
regularization for extrinsic non-rigid registration tech-
niques. Here we survey and classify these techniques.
Orthonormality: [32] uses an affine transformation
A = [a;8,33] for each node to model fine surface
details. In order to encourage the overall deformation
model to respect articulation, they maximize local
rigidity:

> ( (a782)° + (a1 &9)” + (a3 83)"+ )
— \ (1-&7a1)" +(1- & 8)° +(1-a34;)°

Handling Holes: [31] avoids the effects of holes due to
occlusion by minimizing Y-, w?||p! —2]||3+>_,(1—w?)?
where 2! are depth values. Holes usually have large
depth values, causing a high error. The optimizer
gives holes small weights w; in the first term. The
second term prevents a trivial solution with all w; = 0.
Geometric Coherence: Various methods encourage
geometric properties to vary as smoothly as possible,
or non-rigid transformation fields to be coherent. [28],
[33] use differential coordinates (first order) and [35]
uses thin plate splines (TPS) (second order) in non-
rigid deformation to provide smoothness. [27] en-
courages displacement vectors to point in similar
directions by analyzing the low-frequency compo-
nents of the displacement field. [30] regularizes the
local affine transformation A, of each triangle ¢ using

i X jen A = AjllE + il Ai — T|% where N (i)
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is the set of neighbouring triangles to ¢, and ||.||r is
the Frobenius norm. The first term ensures adjacent
transformations are as similar as possible [29], whilst
the second term penalizes over-smoothing which
leads to unwanted changes in shape. [6] encourages
the normals of adjacent points to vary as smoothly
as possible using -, 37w, (D —p"j)TnZ-)2 +
Y Y enpn) (M = n;-)2 where N(p;) and n’ are the
neighborhood and the normal of p’ on the recon-
structed shape. The first term encourages points to lie
in the tangent plane of their neighbors and the second
term aligns adjacent normals.

Articulation Structure: In articulation, points belong-
ing to the same bone have the same transformation
because of the bone’s rigidity, except near joints. To
ensure smooth transition of geometry of a point p at
joint or to fill in missing data between two bones b;, b;,
a regularization term }__||Ty, (p) — Ty, (p)||? would
be used. [24] further assumes skeletal information is
available and [25] finds bone transformations from
clustering and uses geodesic consistency.

Temporal Coherence: This is used for regularizing
non-rigid registration when capturing sequences of
3D scans. [6], [79] employ conservation of momen-
tum to avoid high frequency tangential deformation
noise and remove temporal jittering by minimizing
>3 (a(pi, T+ 1) — 2u(p;, 7) + u(p;, 7 — 1)) where
u(p;,7) is the deformation field of a point p; at
time 7. They further suggest two regularization terms,
S, ¥, (det(Vu(pi, 7))~ 1)? and 3, 3, (u(py, 7+ 1) -
u(p;, 7))? to preserve volume and temporal smoothness.
A deformation field is locally volume preserving if
det(Vu) = 1. The temporal term imposes a small
penalty on velocity in order to avoid fluttering arti-
facts in regions that are not well-constrained by data
points, such as boundaries.

4.2.7 Envelope of Motion

Correspondences can be computed from space-time
surfaces: the envelope of motion is given by trajectories
of points perpendicular to their normal field. [21] was
the first to consider space-time surfaces for both rigid
registration and non-rigid correction. Instantaneous
kinematics are used to define and minimize the dot
product of the velocity field and the normal field. For
non-rigid correction, they sample points, compute lo-
cal instantaneous space-time velocities, and propagate
results to neighboring points using regularization.
[28] extends the method to larger deformations by
extracting an urshape [79], and using a non-linear
as-rigid-as-possible model [42] for deformation. Space-
time surfaces require very dense spatial and temporal
sampling of data.

4.2.8 Search Constraints

The Closest Point Criterion (CPC) has been used
extensively in non-rigid registration, often in an opti-
mization process similar to that of rigid registration.

CPC is applied to find tentative correspondences at
each step. Practical optimization issues are discussed
later in Sections 5.1.1, 5.5.

4.3 Observations and Discussion

Our classification (Tables 3 and 4) shows that several
similar high-level constraints are used in both rigid
and non-rigid registration, namely transformation-
(deformation-) induced constraints, features, saliency,
regularization and search constraints. In particular,
many features and saliency have been reused in non-
rigid registration. They are usually defined on lo-
cal surface geometry and are (at least, assumed to
be) invariant under transformation. Some constraints
have been adopted by non-rigid registration, e.g., [46]
defines an isometry constraint based on Euclidean
distance, which is replaced by geodesic distance in [2].

A significant difference is that while no rigid regis-
tration methods use templates, many non-rigid meth-
ods do. The template helps to control the extra DoF
in the non-rigid case. This works because non-rigid
registration is typically applied to specific objects with
a well-known form, such as human faces and bodies.
Rigid registration is often applied to unknown or
much more general objects and scenes, and templates
are less useful.

Isometry is a very powerful constraint which is
sufficient to define a class of intrinsic transformation
models (Section 3.5), and is used in optimization in
various ways. From a high level viewpoint, recent
intrinsic techniques enforce isometric consistency. Ex-
trinsic non-rigid registration allows fairly arbitrary
deformation (due to the high dimensionality of the
models (an over-fitting problem)) but encourages isom-
etry through the heavy use of regularization. In gen-
eral, most non-rigid constraints (both extrinsic and
intrinsic) focus on modelling the relationship between
correspondences, whilst this relationship is implicitly
captured by the rigid transformation in rigid registra-
tion.

For rigid registration, the closest point criterion
(CPCQ) is effective, as the rigidity constraint is imposed
by the assumption of rigid transformation. In non-
rigid registration, most deformation models allow
arbitrary local transformation, and the results may
not adequately respect the material properties of the
underlying surfaces. CPC alone is not likely to be
very effective in the non-rigid case. That is why we
classify CPC as transformation-induced constraint in
rigid case but search constraint in non-rigid case.

Choice of features for feature matching is not
well discussed in the literature. Our own experiences
and those reported elsewhere can be summarised as
follows. Curvatures are fast to compute, but easily
affected by noise and incomplete surfaces. Integral
invariants are robust to noise and give similar in-
formation to curvature. Users must define a suitable
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ball and grid size for feature matching to get good
performance. Slippage analysis is unsuited to smooth
surfaces due to its definition. SHOT signatures per-
form better than spin images [68]. A comparison of
several recent features and saliency measures for non-
rigid shapes can be found in [91].

Discussion on priors and space-time registration:
Here we discuss the constraints of non-rigid regis-
trations in terms of the strength of prior. Markers
and templates are explicit prior knowledge provided
by users. Transformation (deformation)-induced con-
straints and reliable features & saliency measures are
important priors. The transformation-induced con-
straints are stronger and can often be used for eval-
uating and pruning correspondences established by
the latter. These constraints allow registration to be
carried out on highly sparse data, or data from a
single view, and often in a pairwise manner.

The focus of space-time surface registration is the
use of weaker priors, e.g. various regularizations and
envelop of motion. The idea is that more temporal
data helps constrain an arbitrary deformation. These
techniques usually target sequences, require denser
temporal sampling, assume small deformation and
large overlap of regions for feature correspondences
between consecutive frames. Perhaps the weakest
prior is the envelop of motion which requires both
dense spatial and temporal sampling. (Search con-
straints are mostly for efficiency.)

Recent space-time registrations focus on reduc-
ing the dimension of the deformation (alleviating
the over-fitting problem) by constructing a low-
dimensional representation (e.g. skeletons [5], bones
and joints [26]). These enable registration techniques
to handle sparser data and multiple or all frames at
a time, and generate more accurate results. There are
methods that focus on global registration in terms of
the alignment order of (multiple) sequences to reduce
accumulation errors [92].

5 OPTIMIZATION METHODS

Rigid and non-rigid registration techniques are typ-
ically cast as non-linear optimization (see Table 5).
Many techniques optimize both transformations and
correspondences whilst some optimize transforma-
tions or find correspondences only.

5.1

Local deterministic methods look for a solution that
maximizes/minimizes an objective function locally.
These techniques are efficient but also depend heavily
on initialization and often converge to local minimum.

Local Deterministic Optimization

5.1.1 Gradient Descent, Newton and related methods

Gradient-descent, Newton, (damped) Gauss-Newton,
quasi-Newton and Levenberg-Marquardt (L-M) are the

TABLE 5
Optimization Methods.

Rigid Non-Rigid
Registration &  Registration &

Formulations Correspondence Correspondence

Examples Examples
Gradient Descent & [11], [60]-[52], [24], [28], [30],
related methods [54], [62], [93]  [34]
2 Newton,
5 GausoNewon, L (141401 [66) (2L 07)[52]
€ method ’
s &  Quasi-Newton [6], 1237, 129], [30]
S &  Expectation
a
- Maximization (271 (91, 127]
Branch and Bound &
Tree Search [48] [70]
Graduated
2 Assignment [59], [60] (35]
-2 Mean Field Annealing [13]
_ '€ Gaussian Field [95]
_‘é’ 5 Framework
O ©  Game Theoretical
oo Framework [96]
Spectral Method [2], 151, [97]
Genetic Algorithm & [15]
© Simulated Annealing
% Particle Filtering [3]
%OJ 'Ilzirgﬂ%?orm (7] [(39]
»n RANSAC [39] [71]1,198]
Belief Propagation [72]
- . Prune and Search Sections 4.1.2,4.1.3
i 2 o Geometric Hashing  [53]
6 8 ¢ Embedding _
O BN Techniques [36]-(38], [99]

most frequently used optimization techniques in
rigid and non-rigid registration.

Rigid Registration: The optimal transformation a at
each iteration is updated by (a) taking derivatives of
the objective function, (b) linearizing the rigid motion
(rotation and translation) [94] or kinematic (helical
motion) parameters [66], (c) setting the derivatives
to zero and (d) solving the resulting system of equa-
tions. [14] points out that standard ICP is similar to
a gradient-descent method because it always finds
the best transformation locally at each step. In rigid
transformation estimation, a closed-form least-squares
solution (preferable for efficiency and robustness) ex-
ists if three or more distinct non-collinear pairs of
correspondences are given [100], which can be solved
by SVD, quaternions, orthonormal matrices or dual
quaternions.

Non-Rigid Registration: Most methods based on CPC
formulate an energy functional with data and reg-
ularization terms. We summarize some key imple-
mentation issues here. [29] suggests a multi-resolution
approach, optimizing a low resolution mesh to find
correspondences, then optimizing again on a high res-
olution mesh. Methods handling large deformations
generally start the optimization with small emphasis
on the data term because CPC tends to be invalid.
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After a few steps, more emphasis is put on the data
term because the original shape has been deformed
to lie close enough to the aligning shape [29], [30].
This is similar to graduated convexity (Section 5.2.2)
except that weights are assigned empirically.

5.1.2 Expectation Maximization (EM)

Some methods solve for groups of parameters in
alternate steps, e.g. first fixing correspondences and
optimizing transformation parameters, then fixing
transformation parameters and optimizing the corre-
spondences. These are EM approaches.

Rigid Registration: [27] represent the centroids of one
point set using a Gaussian mixture model (GMM) and
align them with another set of data points. The EM
algorithm alternates between two steps: (1) it refines
the parameters (the transformations and the covari-
ances of GMM), and computes the posterior prob-
ability distributions of the GMM centroids through
Bayes theorem, (2) computes the rigid transformation
parameters that maximize the likelihood.

Non-Rigid Registration: [27] extends the above
method to non-rigid registration by regularizing the
displacement fields using coherence.

Non-Rigid Correspondence: [9] formulates the prob-
lem of shape correspondences as a combinatorial
optimization, solved using EM approach, with the
goal of minimizing the overall isometric distortion of
correspondences all over the surface.

5.2 Global Deterministic Optimization

Local optimization can become stuck in local minima
if the initial solution is not close to a global solution.
Global optimization tries to find a global solution
and to avoid local minima. Registration, when cast
as global optimization, does a complete search with
bounds (exact global solution), or approximates /
relaxes the problem into continuous settings so that
a near global solution can be found.

5.2.1

A decision tree can be formed where each node is a
possible correspondence {p;,q;}. The root is {0,0};
the set of nodes forming a path from root to a leaf
node is one set of possible correspondences between
two surfaces. Branch-and-bound is a complete search
technique, which is based on a lower bound on the
cost function. Its efficiency depends on how tight the
bound is, and how quickly it can be computed.
Rigid Registration: [48] uses distance root mean
squared error:

Branch and Bound & Tree Search

dRMS?(P, Q) = la; — a;l])?

e ZZ Ipi — pjll —

as a bound on CPC error (Eqn 5); it is both tight and
fast to compute.

Non-Rigid Correspondence: [70] represents potential
correspondences in a tree, and uses a self-deformation
distortion measure for a set of correspondences to
prune whole branches of a tree search. This method
allows natural correspondences to be found between
two non-rigid 3D shapes of quite different kinds.

5.2.2 Graduated Assignment

The graduated non-convexity, which is a deterministic
annealing technique, seeks a convex function £ =
Ep + BEg to approximate the non-linear objective
function Ep by adding a regularization term Eg.
controls convergence of the system in a similar way
to temperature in simulated annealing.

Rigid Registration: [65] initiated the application of
graduated non-convexity to registration. They cast the
combinatorial search as a constrained continuous non-
linear optimization with cost function:

ZZMUH% Rp; — |
+3 ZZMJ log ML, —aZZMw,

where o, are welghts, M is the matchmg proba-
bility matrix, and (R,t) is a rigid transformation.
The second and third terms are regularization terms
(see Section 4.1.4). § is the inverse computational
temperature of the system. This method can be sped
up by k nearest neighbors [59] and CPC [60].

Non-Rigid Registration: [35] defines a transformation
model using thin plate spline, and uses graduated as-
signment for non-rigid registration and optimization.

(6)

5.2.3 Mean Field Annealing

Mean field annealing is a deterministic approximation
to the simulated annealing technique.
Rigid Registration: [13] minimizes the cost function:

:Zmillqi —Rp; — t|?

Hm_luzmg

i

E(M,R,t)

where m; is the mean field variable and is a vector in
M (the matching probability matrix). The first term is
the data term and the others are regularization terms
(see Section 4.1.4).

5.2.4 G@Gaussian Fields

The Gaussian field framework replaces a non-linear,
non-smooth error function by a convex smooth ap-
proximation, with the help of mollification: a summa-
tion of a large number of Gaussian functions which,
by the Central Limit Theorem, leads to a single Gaus-
sian. Tracking the global extremum is much easier as
the error is differentiable even for noisy input data.

Rigid Registration: [95] uses the objective function:

_maxzzexp( quﬂ)
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where d(p;,q;) = |la; — Rp; — t|. o works like
the temperature in annealing technique. This method
shows robustness in the presence of strong noise.

5.2.5 Game Theoretical Framework

Finding a large set of correspondences that express a
high level of mutual compatibility can be formulated
as an inlier selection process of a non-cooperative
game [101]. The inlier selection is modelled as two
players competing with one another.

Rigid Correspondences: [96] uses game theory to
recognize rigid objects in a cluttered scene. They use
the consistency of Euclidean distances between point
pairs to model a competitive game. To obtain reliable
correspondences, they define two steps: 1) to run the
competitive game to obtain a set of reliable sparse
correspondences, 2) to propagate the sparse set to a
dense set using neighbouring information.

5.2.6 Spectral Correspondence

A spectral method [97] takes into account the rela-
tionship between points and correspondences, and
formulates it as an eigen-decomposition problem.
Non-Rigid Correspondence: [2] extends the concept
to the non-rigid case. Two relationships are consid-
ered: (i) the similarities of two points (as difference
of principal curvatures), and (ii) the isometric consis-
tency (as difference of geodesic distances) of two pairs
of correspondences. Having defined an affinity matrix
of correspondences, they compute its principal eigen-
vector. The eigenvector entries define the confidence
values of correspondences that belong to a coherent
cluster. This helps to prune unreliable ones.

5.3 Stochastic Optimization

Many techniques model registration and the corre-
spondence determination problem with statistics and
probabilistic approaches in order to handle datasets
with noise, outliers and missing data.

5.3.1 Genetic Algorithm and Simulated Annealing

Genetic algorithm adapts the idea of evolution and
natural selection [102]. Simulated annealing is inspired
by thermodynamics. These rigid techniques are dis-
cussed in [15].

5.3.2 Particle Filtering

Particle filtering is a recursive Bayesian estimation
technique to estimate the posterior distribution of
a state given past observations. Its strength lies in
its ability to handle non-linear functions and non-
Gaussian noise. It is often used in object tracking.

Rigid Registration: [3] sees the optimization of rigid
registration as a sequence of steps to arrive at a
global solution. They use particle filtering to track the
optimal state (the rigid transformation). The method
handles noise, arbitrary initial estimates, missing data,

and both sparse and dense point sets. At each iterative
step, the algorithm draws N, particles (here, initial
transformations) from the proposed distribution, and
feeds them into a local optimizer (e.g. ICP) to produce
candidate solutions. Importance weights are adjusted.
New particles are predicted, and the process repeats.
Multiple particles help to avoid local minima.

5.3.3 Hough Transform (Voting)

The Hough transform was originally developed for line
detection in images, and was later developed to detect
other shapes and find transformation parameters. It
operates on a quantized parameter space using an
accumulator.

Rigid Registration: [17] identifies salient points, gen-
erates candidate transformations, votes for their pa-
rameters in the accumulator space, and picks the
peaks after all votes have been cast. The accuracy of
the method depends on the accumulator resolution,
so ICP is subsequently applied for fine alignment.
Non-Rigid Correspondence: [39] uses voting for non-
rigid correspondences. The key novelty is to project a
genus-zero topology mesh in a mid-edge parametriza-
tion so that a global Md&bius transformation can be
used, as for a rigid transformation. The method re-
peatedly samples three points, applies the Mobius
transformation and tests if the transformation is valid
or not using isometric consistency. This method votes
for correspondences.

5.3.4 RANSAC

Random sample consensus (RANSAC) is a robust al-
gorithm for fitting models in the presence of many
outliers. It follows a hypothesis-and-test paradigm.
Rigid Registration: [4] considers rigid registration
as a largest common pointset (LCP) problem. Given
two point sets P and @, RANSAC finds the largest
subset P’ C P such that the error between T(P’) and
@ is less than some predefined threshold, where T
is a rigid transformation. The affine ratio constraint
reduces the number of possible correspondences.
Non-Rigid Correspondence: [71] introduces impor-
tance sampling into RANSAC. Potential correspon-
dences are drawn from a probability density function.
Isometric consistency is formulated as a likelihood
to adjust the posterior probability such that more
reliable correspondences are determined in the next
iteration. Results are improved using a tangent-space
optimization technique that moves points along the
mesh. [98] uses an entropy-based planning strategy to
select important matches and reduce sampling cost.

5.3.5 Message Passing and Belief Propagation
Random variables, which have a Markov property,
can be represented as a graph in a Markov random field
(MRF), where the undirected edges model the inter-
dependencies between random variables.



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

Non-Rigid Correspondence: [72] uses MRF to model
the inter-dependency of correspondences, aiming to
find correspondences that maximize a certain joint
probability distribution. Two probability potentials
are considered: (i) discrepancies between the com-
pressed spin images of two points, and (ii) isometric
consistency between two pairs of correspondences.
The simplifying assumption of MRF is that all prob-
abilities are independent of others and can be mul-
tiplied together. They apply loopy belief propagation to
find a (local) maximum of probability.

5.4 Constrained Search

Constrained search establishes special constraints to
limit the search space. We summarize them as follows.

5.4.1 Enumerate and Prune

Enumerate and prune is the usual strategy to obtain
sparse (or initial) correspondences. In general, it is im-
possible to enumerate all correspondences. Saliency,
features (Sections 4.1.2, 4.1.3) and other constraints are
usually employed to prune the huge search space.

5.4.2 Geometric Hashing

Geometric hashing pre-computes and stores a trans-
formation invariant representation of a patch in a
hash structure. The hash bins are used to restrict the
number of potential matches.

Patch Correspondences: [53] extracts patches using
salient geometric features and hashes the transforma-
tion invariant representations. The representation has
complexity (“;:Sl) as it takes every point-triple from
the patch P; containing | P;| points. Given a new patch
Q)s, a new representation is formed and found in the
hash structure in (%’!) time. The key is to break the
correspondence problem of complexity (%) - (1<)
into two sub-problems; this allows simultaneous pro-
cessing of all hashed patches. The method has huge
memory requirements.

5.4.3 Embedding Techniques

Non-rigid Correspondence: A class of techniques
use embedding to establish correspondences. [36] com-
putes and aligns eigenvectors of a geodesic kernel.
Correspondence is established through exhaustively
pairing (sign-flip, eigen-mode switch) and non-rigid
alignment of the leading 6 eigenvectors. These eigen-
vectors capture the low-frequency structure of the
meshes. [99] extends the concept further by defin-
ing histograms for these eigenvectors for quick pair-
ing. [37], [38] embed a mesh directly in another, by
using generalized multi-dimensional scaling (GMDS) and
Gromov-Hausdorff distance for partial matching [103].
In general, this class of work is inspired by [104]
which embeds non-rigid models into some canonical
space for surface matching. Once the intrinsic geom-
etry is embedded (through g € G, see Figure 1),

the correspondence problem (h € H) reduces to a
standard rigid or low-dimensional non-rigid match-
ing and alignment problem (f € F) [36], [103].

5.5 Initialization

Global deterministic optimization, stochastic methods
and constrained search generally do not require ini-
tialization. Here we focus on local iterative optimizers
that do need an initial estimate.

Rigid Registration: [67] interactively selects three
common points to define an initial rigid transforma-
tion. [46], [52] use reliable correspondences to au-
tomate this process. [14], [54], [59], [60], [62], [64],
[94] test their methods on a set of predefined initial
transformations within a certain range, and evaluate
the range of convergence. In general, the broader and
more stable the convergence funnel, the better the
method [94]. Certain methods are designed to obtain
coarse alignments (e.g. [17], [49]; see [15]).
Non-Rigid Registration: [22], [32] use rigid regis-
tration to find an initial estimate. [2] tries multiple
initializations if the error of the first is too high. [25]
finds the initial transformation of a rigid sub-part by
looking for clusters in transformation space defined
by all possible correspondences. For a sequence of
3D scans, adjacent frames are roughly aligned, and
correspondences can be tracked [6], [21], [28], [33],
[79]. Other approaches [23], [24], [29], [30], [43] as-
sume markers or specific segmentation information
are provided.

5.6 Observations and Discussion

Rigid and non-rigid registration are typically cast as
optimization problems. The error landscape depends on
the type of data being registered, outliers, noise, and
missing data. We summarize some observations and
experiences of our own and from the literature.
Rigid Registration: If the surfaces are relatively clean
and there is a good initial estimate of alignment,
local optimizers (e.g. ICP or gradient descent, Newton’s
method) are the most efficient choice. However, if
there is significant noise, or the initialization is poor,
these methods may not converge [94]. Global deter-
ministic optimization (e.g. the Gaussian field frame-
work [95]) or stochastic techniques (e.g. particle filter-
ing [3]) are more reliable in these situations. Stochastic
techniques do not guarantee a globally optimal solu-
tion, but the solutions are usually good. In practice,
using a fast stochastic technique (e.g. RANSAC [4])
to obtain an initial coarse alignment, and a local
optimizer for subsequent fine alignment is a good
approach. Features and saliency are important for fast
pruning and establishing coarse alignment. Hierarchi-
cal methods can also find an initial alignment, and
optimize it during fine alignment.

Non-Rigid Registration: Extrinsic non-rigid registra-
tion usually uses local optimization for efficiency. In
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particular, the quasi-Newton method can avoid the
need to invert a large Jacobian or Hessian matrix.
However, local optimization typically requires good
initialization. Three techniques are used to make lo-
cal methods work well (i) regularization, (ii) corre-
spondences and (iii) pre-registration. Regularization
is useful because it convexifies the error landscape
of the objective function. It is often used with de-
creasing weights in successive steps to avoid pre-
mature convergence at a local minimum. Reliable
correspondences drive optimization directly and pre-
registration or coarse alignment are used to provide
good initialization (Section 5.5).

Recent advances in intrinsic techniques study
isometric consistency and intrinsic geometry. Many
of them use probabilistic techniques, and the solutions
are usually good. Over-fitting is less of an issue in
these techniques, but they mainly target (nearly-)
isometric deformations. Computing surface distances
on a large set of points, and handling topological
noise and holes are important issues. Sub-sampling
of the surfaces may be required.

Quadratic Assignment Problem: Some optimization
techniques are related to the intractable quadratic
assignment problem (QAP). We summarize them be-
low. QAP considers allocating a set of facilities to
a set of locations, with the cost being a function of
the distances d and flows f between the facilities,
together with the costs b associated with a facility
being placed at a certain location. The objective is to
find the mapping ¢ which assigns each facility ¢ to a
location ¢(i) such that the total cost is minimised:

arg min 2D fudowew) + D bio)
i i

The intuition is to arrange ¢ so that facilities 7, j
with high flow fij are assigned to locations ¢(i) and
¢(j) which have small distance ‘2¢(i)¢(j)' QAP is NP-
hard, and all existing techniques approximate or relax
the solution one way or another. [65] approximates
the QAP by linearising the cost function via Taylor
series and using two-way constraints to convert the
QAP into a continuous search. Inspired by this, grad-
uated assignment (e.g., [35], [59], [60]) and mean field
annealing [13] techniques are further developments
with additional constraints. These techniques use a
rigid transformation instead of the quadratic term
fijcf¢(i)¢(j) to model the pairwise relationship of corre-
spondences (facilities & locations in QAP). To explic-
itly model such a relationship, spectral techniques [2],
[97] and a game theoretical framework [96] consider
the objective function: x” Mx where M summarizes
the QAP cost above. Both techniques relax x, the bi-
nary assignment, to a continuous one. The difference
is that the former constrains ||x|2 = 1 (due to the
use of Rayleigh quotient); whilst the latter ensures
that ||x||; = 1. Markov random field approaches use

probability potentials to model the inter-dependences
of correspondences using geodesic distance. Inspired
by these pairwise techniques, higher-order matching
techniques (e.g. [105], [106] which consider ternary
relationships) are emerging.

6 EVALUATION

Here, we discuss common evaluation approaches and
survey those datasets that are commonly used.
Rigid Registration: The most common way to evalu-
ate rigid registration is to compare the deviation of the
rotation and translation parameters directly because
the rigid transformation is low-dimensional (6 DOFs).
These parameters can be obtained from synthetic
datasets, where additional noise, outliers and different
level of overlaps may be added/adjusted. There are
several publicly available datasets with ground truth
(e.g. [107], [108]). The ground truth parameters are
defined during the scanning. These datasets are usu-
ally small in size. For large scale datasets (e.g. [109]),
ground truth are not available, and visual assessment
(e.g. sharpness) is required. The range and rate of
convergence are also common measures.

Non-Rigid Registration: Evaluation of non-rigid reg-
istration is a significant issue, since non-rigidity is dif-
ficult to formulate and can most directly be assessed
in terms of correspondences. Earlier techniques use
visual assessment. [6], [28], [32] used parametrization
to demonstrate low visual distortion. [39] uses colour
coding to show sparse correspondences.

Recent techniques use public datasets for evalua-
tion. Several datasets are available: 1) benchmark for
3D mesh segmentation [110] (e.g. Ballerina). These
meshes have different numbers of vertices, connectiv-
ity and severe non-uniformity of sampling. 2) non-
rigid world dataset [111] contains various animal
and human mesh models with different poses, where
each object has ~3K vertices with arbitrary connec-
tivity. 3) dataset created by existing techniques, with
fixed mesh connectivity, and uniformly sampled at
high resolution (9-30K) [112] (e.g. Jumping Man), [72]
(e.g. Dancing Man), [30] (e.g. Horse Gallop)—created
by [113]. These ground truth correspondences are ob-
tained by fitting a common template on the registered
data. 4) TOSCA high-resolution dataset is constructed
with ground truth correspondences, with fixed num-
ber of vertices and connectivities.

When there is no ground truth correspondences,
evaluation of techniques using dataset types 1 and
2 are usually based on visual assessment by con-
necting spare correspondences with lines [9]. Given
ground truth correspondences in dataset types 3 and
4, additional metrics can be defined. [8] uses sum of
isometric distortion—difference of geodesic distances
between the end-points of one correspondence with
respect to all the other correspondences. This can be
visualized per vertex, assuming there is a one-to-one



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

mapping. [9] sums these isometric distortions all over
the surface to obtain one single number. Note that iso-
metric distortion is meaningful only if the datasets are
undergoing a (near-)isometric deformation. Note also
that the evaluation of new techniques on dataset type
3 may actually compare their performance against the
techniques that create the dataset.

A benchmark database [91] based on TOSCA fur-
ther allows evaluations on isometry, topology, holes,
scale, sampling, and noise of features and saliency. [8]
also recruited a volunteer to label 10-35 semantically
meaningful and consistent feature points for each
class of objects in the watertight meshes dataset [114].

In the computer vision literature, [115] discusses
how to evaluate registration without ground truth.
One way is to evaluate the results by generalizing
them to unseen data (a well known method in data-
fitting). Given ground truth data, receiver operating
characteristic (ROC) curves, which are plots of true
positive rate against false positive rate, may be used.
In general, obtaining ground truth data is difficult.
One idea is to use image-based techniques [116] and
compare the results with non-rigid registrations.

7 CHALLENGES AND FUTURE DIRECTIONS

In this section, we discuss challenges and possible
future directions in registration.

Deformation Models: Section 3 surveyed various
transformation models for registration. Most existing
methods assume a single model for the two surfaces
being aligned. This is practical, enabling optimization
to simultaneously find the best transformations for all
points. However, a surface comprises different materi-
als and may undergo different kinds of deformation.
For example, arms and legs (mainly) undergo artic-
ulations, whilst deformation of a skirt leads to folds
and wrinkles, and in such cases multiple deformation
models might be more useful. The main difficulties
of doing so are the need for surface segmentation,
constraints between adjacent models, and approaches
to merge registration and deformation results.

In general, non-rigid registration is problem- and
data-dependent. Users and researchers should care-
fully consider the nature of the deformation. As well
as blendshape models [117], physical models relating
tissues, bones and muscles may be useful in 3D
face registration. This area is yet to explore, possibly
due to the complexity of facial physiology. Related
techniques [118] are emerging.

Over-Fitting & Model Selection: In data-fitting, one
does not want the model to describe the noise (i.e.
to over-fit the model). Similarly, non-rigid registration
should align 3D surfaces rather than noise or holes.
Over-fitting often is not a concern in rigid registration
as the rigid transformation is low-dimensional, and
the same at all points. Non-rigid registration, how-
ever, requires higher DoF. (e.g. local affine transfor-

mations have 12n DoFs, where n is the number of
points or nodes.)

It is well-known theoretically that such high di-
mensionality can lead to over-fitting. Ultimately, two
general surfaces can always be brought into alignment
with arbitrarily small error. However, the resulting
alignment need not represent physically correct cor-
respondences between homologous structures on the
surface. Indeed, simply comparing the residual errors
or the rate of convergence for two non-rigid extrin-
sic registration techniques tells us little about which
produces the more meaningfully correct result.

To alleviate the over-fitting problem, existing ex-
trinsic techniques encourage smoothness through (i)
formulating a priori knowledge or assumptions as
regularization, (ii) introducing additional equations
by some linear constraints on neighborhoods or (iii)
uses a reduced representation (e.g. embedded graph
nodes, meshless element models). Recent intrinsic
techniques [36], [38], [39] use low dimensional em-
bedding to by-pass the high-dimensionality problem
by assuming a strong inelastic isometry constraint.

A closely related issue is how to automatically
determine the most appropriate deformation model:
in nearly all existing work, deformation models are
predetermined and thus require a priori knowledge.
However, non-rigid registration is similar to data
fitting, where there are many well-established tech-
niques for model selection: cross-validation, early stop-
ping and model comparison (e.g. information-based cri-
teria). They could potentially be used to develop a
fully automatic method. In information theory, the
minimum description length criterion is well-known for
determining the best model from data; it has been
used in image registration [119], face (texture and
depth) registration [120] and medical data registra-
tion [121] in computer vision, but is relatively little
used in computer graphics and shape analysis.
Constraints and Correspondences: Meaningful cor-
respondences should relate homologous sections of
the shapes, i.e., sections that are semantically related.
Although many techniques and constraints have been
proposed to facilitate correspondence search, human
assistance and visual inspection are sometimes re-
quired to provide semantic input. As we have noted,
there are no precise definitions and methods for evalu-
ating quality of correspondences. Such definitions and
measures are needed that match human perception or
are based on physical behavior.

More effective pruning constraints and techniques
are always beneficial. Recent research in intrinsic ge-
ometry and isometric consistency has led to important
advances for isometric deformation, especially for
face and body modeling. Here, we try to bring the
analogies with machine learning and provide insights
to why these intrinsic techniques are important.
Connection to Machine Learning (ML): There are two
kinds of learning methods in ML [122]: inductive and
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analytical learning. Inductive learning (e.g. neural net-
work) generalizes hypotheses, in terms of a function,
from training examples to unseen data. A hypothesis
is assumed to be found/fitted empirically from a large
amount of training data. The justification is based on
statistical inference. The advantage is that it requires
little prior knowledge, but the hypothesis may be
incorrect if there is not sufficient training data—over-
fitting. Analytical learning uses domain theory (e.g.
rules) and deductive inference to derive hypothesis. It
does not require lots of training data but is seriously
affected if the domain theory is incorrect.

A comparison of registration techniques reveals that
rigid registration and intrinsic techniques are based
on strong prior knowledge (or at least, assumptions).
Having a rigid transformation requires all points to
transform rigidly. Intrinsic transformations require the
two surfaces (and all points on them) to satisfy iso-
metric consistency. These transformations are similar
to the domain theory in analytical learning—a global
rule, one reason why these techniques can be cast as
optimization problems and solved using the Hough
transform [17], [39] or RANSAC technique [4], [71]
efficiently. This strong domain theory leads to two ex-
amples which demonstrate the successful application
of typical deductive inference: 1) [40] suggests that
fixing one correspondence, all other correspondences
can be inferred for non-rigid shapes. 2) [98] further
answers how many correspondences are required to
constrain deformations of non-rigid shapes.

For general extrinsic non-rigid registrations with
high DoF, this strong domain theory is lost. This
is similar to inductive learning with limited prior
knowledge. This type of technique assumes the de-
formation (hypotheses) can be learnt from sufficient
training data. Yet, given only two surfaces and a
high-dimensional deformation model (like [6], [32]),
the solution can only be regularized by other prior
knowledge—mostly in the form of regularizations
to ensure smoothness. One way of providing more
training data is to look into the temporal domain. This
explains why recent extrinsic non-rigid techniques
focus heavily on registering space-time sequences.

The pitfall of analytical learning is that it depends
on a perfect domain theory. For non-rigid shapes,
many deformations are only near/approximate-
isometric, which may lead to matching ambigui-
ties [8]. In cases with large topological changes, the
isometry assumption may fail [38]; handling such
issues is a challenging task. Similarly, the rigid trans-
formation is not perfect (i.e. cannot always explain
the optimal solution) under noise, outliers and limited
amount of overlap. Recent efforts of the community
is to model and study these factors (e.g. Section 4.1.4).
These approaches may be considered a combination
of inductive and analytical learning techniques [122].
Learning from rigid registration in this perspective
may be a promising direction.

Optimization: Optimization is an important issue
in registration as it affects accuracy, robustness and
convergence. Many optimization techniques used in
rigid registration have yet to be applied to non-rigid
cases. A major obstacle to adapting these techniques
is the high dimensionality, causing most extrinsic
approaches to use quasi-Newton techniques instead of
the more stable Newton or L-M methods. The former,
however, may not converge if the initial alignment
is too far from the optimal solution. Stochastic ap-
proaches are promising methods that are not sensitive
to initialization. By transforming non-rigid shapes
into the intrinsic domain, many stochastic methods
have found applications in establishing correspon-
dences, and often near globally optimal solutions are
obtained. Adapting these techniques to large scale
data, deriving specific objective functions, handling
various levels of geometric and topological noise, and
extending them to non-isometric and elastic deforma-
tion are some of the challenges.

Datasets: Recent research has focused on analyzing
sequences of 3D scans: (i) hardware for capturing
such sequences at a high frame rate is now readily
available, and (ii) sequences assist registration by
providing intermediate information, and thereby
constraints. However, most techniques can cope with
only limited sequences (15-200 frames), mainly due to
memory limitations. Faster techniques, and especially
ones that can handle more and larger data, are an
ever-present goal. Groupwise registration techniques
have been developed [33], [123] which are typically
more reliable, and reduce the accumulated errors that
arise in pairwise registration. Further challenges lie
in (i) avoiding the need for markers or templates, and
(ii) capturing and processing fine scale details [32].
As has been found in medical imaging, registration
utilizing heterogeneous information (e.g. geometry
and texture [41], [120]) may give higher accuracy.

Foreseeable Trends:

Rigid Registration is becoming more robust and re-
liable over the past two decades of researches. Many
challenges posed by rigid registration have been ad-
dressed [2]. We foresee that rigid registration is be-
coming application-oriented (e.g., [124]). Developing
rigid registration techniques that can handle large
datasets with different levels of details and regularity
structures is essential. With the advance of technol-
ogy, handheld devices will soon possess 3D scanning
functionality. Real-time techniques that target these
ubiquitous devices are new directions.

Non-Rigid Registration, in general, is still at its infant
stage, largely because of the large varieties of trans-
formations in the real world and the shortage of our
knowledge of these transformations. One direction
is to investigate these deformations from a reverse
engineering point of view. Many existing non-rigid
techniques are still in the stage of proof-of-concept—
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showing what can be done. Developing and capturing
more ground truth data for each type of these trans-
formations would help mature these techniques.

Evaluation of correspondences and transformations
are two important areas. Defining the semantic mean-
ing of correspondences is a hard problem in itself,
and currently no work considers the evaluation of
transformations. Computation efficiency is another
issue. Perhaps, one can employ machine learning to
learn the nature or pattern of unreliable or incorrect
correspondences. This can speed up optimization to
obtain reliable solution.

We also foresee two directions regarding intrinsic
techniques: 1) Existing techniques focus mostly on
modelling near-isometric deformation and obtaining a
global consistent set of correspondences. Relaxing the
concept to local isometric deformation but ensuring
global consistency would be one direction because
most real-life deformations are globally non-isometric
(e.g, due to deformation at joints) but locally isomet-
ric. 2) Most techniques focus on registering surfaces of
similar sources. If one wants to register surfaces from
heterogeneous sources (e.g., two totally different hu-
man faces and their expressions), these techniques do
not work. This relates to the morphing problem [30],
and is useful for medical applications.

Non-isometric deformations need further consider-
ation. [8] has started in this direction using blended
conformal maps. [41] combines intrinsic (conformal
map) and extrinsic measures (e.g. texture, Gaussian
maps, curvatures) to handle non-isometric deforma-
tion. Consideration of elastic and plastic properties of
materials is more commonplace in medical imaging,
and needs further work in this community, but one
foreseeable challenge is the lack of ground truth for
evaluation. Designing reliable non-rigid registration
for large dataset and for ubiquitous devices (e.g.
Kinects) is important.
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