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Block Compressive Sensing for Solder Joint Images
with Wavelet Packet Thresholding

Hui-Huang Zhao, Paul L. Rosin, and Yu-Kun Lai

Abstract—This paper provides a novel method which can
achieve better results in solder joint imagery compression and
reconstruction. Wavelet packet decomposition is used to gen-
erate some frequency coefficients of images. The higher and
lower frequency coefficients of the reconstruction signal are
used separately to improve the reconstruction performance. A
threshold which only relates to the higher frequency coefficients
is defined to remove the noise in the reconstruction result in
each iteration. A new control factor is further defined to control
the threshold value. The control factor relates to the wavelet
packet low frequency coefficients, and is updated by the wavelet
packet low frequency coefficients in each iteration. Experimental
results reveal that the proposed algorithm is able to improve
performance in terms of peak signal to noise ratio (PSNR) and
structural similarity (SSIM), compared to classical algorithms in
reconstruction of different types of solder joint images. When
the sample rate is increased the proposed method improves
reconstruction results and maintains low computational cost. The
proposed algorithm can retain more image structure and achieve
better results than some common methods.

Index Terms—Solder Joint Image, Block Compressive Sensing
(CS), Orthogonal Matching Pursuit, Greedy Basis Pursuit, Sub-
space Pursuit, Compressive Sampling Patching Pursuit, Wavelet
Packet Thresholding

I. INTRODUCTION

Surface mount technology (SMT) components are a key
part of electronic products. Their assembly quality greatly
affects the quality of the products. To improve the inspection
rate of solder joint defects (such as pseudo-solder, insufficient
solder), image compression, image segmentation [26], image
enhancement and image filtering, etc. are used in automatic
optical inspection (AOI) [1], [31]. Compressive Sensing (CS)
is a sampling paradigm that provides signal compression at a
significantly lower rate than the Nyquist rate [9], [10]. It has
been successfully applied in a wide variety of applications
in recent years, including image processing [5], Synthetic
Aperture Radar (SAR) [3], Magnetic Resonance Imaging
(MRI) [21], video processing [34], color images [2], poly-
nomial expansion [23], information security [33] and solder
joint image compression [36]. In [22], the authors proposed an
adaptive observation matrix for sparse sampling of ultrasonic
wave signals which were analyzed in phased array structural
health monitoring. The authors in [17] proposed a novel
reconstruction method for X-rays based on CS. [35] proposed
a solder joint image compression method and used different
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square block dimensions (4, 8 or 16) when the image size is
256×256.

The success of deep convolutional neural networks (DC-
NNs) in computer vision has also raised interest in Com-
pressive Sensing. [27], [29] both proposed a deep learning
approach for accelerating MRI using a large number of
existing high quality MR images as the training datasets.
[18] proposed a novel DCNN CS method. In their method,
the DCNN is designed to learn to take measurements and
recover signals. [30] developed a novel CS method based on
the Deep Residual Reconstruction Network (DR2-Net). DR2-
Net uses two observations to reconstruct the image from its
CS measurement. Those methods based on deep CNNs need
a large number of existing images and much time to train
the model. However, the number of sample defect images is
usually very limited, so it can be impractical to apply this
approach to solder joint image compressive sensing.

In order to improve the performance in image compressive
sensing, [13] proposed and studied block compressive sensing
for natural images and this method involves Wiener filtering
and projection onto the convex set and hard thresholding
in the transform domain. For 512× 512 size images, the
author suggested block dimension 32 and proposed a BPL
(Block Projected Landweber) method with a variant of pro-
jected Landweber (PL) iteration and smoothing [19]. [4], [32]
and [16] studied the block compressed sensing with projected
Landweber (PL). [24] proposed a block compressed sensing
method based on iterative re-weighted l1 norm minimization.
During those methods the row and column dimensions of the
measurement matrix size are the square of the block size. Thus
the approach requires substantially more memory as the block
size increases.

In this paper, we develop a novel CS algorithm named
BCS WP SPL. The three main contributions of this paper are
summarized as follows:
• Wavelet packet decomposition is used to generate some

frequency coefficients of signals. We separately use its
higher and lower frequency coefficients of the reconstruc-
tion signal to improve the reconstruction performance.

• We define a threshold which only relates to the higher
frequency coefficients to remove the noise in the recon-
struction result in each iteration.

• We define a new control factor which is used to control
the threshold value. The control factor relates to the
wavelet packet’s low frequency coefficients which are
used to update it in each iteration.

The rest of this paper is organized as follows. In section II, we
introduce related work on CS. In section III, we describe the
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BCS WP SPL method for image compression. Experimental
results and comparison are shown in section IV. Finally, we
conclude our paper in section V.

II. RELATED WORK

The major challenge in CS is to approximate a signal given
a vector of samples. Given a signal x ∈ RN×N , we want to
recover x from y = Fx, where F ∈ RM×N (M < N) is a
measurement matrix. If x is sufficiently sparse, x can be exactly
recovered with CS theory. Otherwise, x can be made sparse
by applying orthogonal transforms, for example, the Discrete
Cosine Transform (DCT), from x̂ = Yx, where Y ∈ RN×N is
an orthogonal basis matrix. Recovery of x with the smallest
l0 norm consistent with the observed y is an NP-complete
problem. Usually, x can be recovered with an l1 optimization:�

minimize ‖ x̂ ‖1
subject to : y = FY−1x̂

(1)

There are many methods available for solving the problem
in Eq. 1. One common method is based on a projection which
forms x̂ by successive projection and thresholding. Given an
initial approximation x̂0 the approximation at iteration i is

x̌i = x̂i +YF
T (y−FY

−1x̂i) (2)

x̌i =

�
x̌i;

��x̌i
��≥ l i

0; otherwise:
(3)

where l i is a threshold at each iteration, and FFT = I [14],
According to the introduction above, we can find that de-

spite many CS algorithms appearing in the literature, there are
still many challenges in compressive sampling to approximate
a signal. On one hand, in most methods a column or row
of an image is normally viewed as a vector, and so the
local 2D spatial image information is ignored. All the block
compressive sensing methods mentioned above can achieve
good performance, but they can still be improved. On the other
hand, some classical methods, such as SPL and BCS SPL,
have good performance, but there are some parameters that
need to be set by experience. Third, the computational cost for
many methods, such as SP, GBP, CoSaMP, is unsatisfactory,
and the time requirement increases substantially as the number
of samples increases.

III. BLOCK COMPRESSIVE SENSING FOR SOLDER JOINT
IMAGES WITH WAVELET PACKET THRESHOLDING

A. Block Compressive Sensing

In the classical methods, a column or row of an image
is normally viewed as a vector. But in many applications
the nonzero elements of sparse vectors tend to cluster in
blocks [12]. Given an N1×N2 image, it is split into small
blocks of size n1× n2, and it is transformed into a 1× n1n2
vector. Let fi represent the vectorized signal of the i-th block
through raster scanning, i=1, 2, : : : , K, and K = N1N2=n1n2.
One is able to get an m-dimensional sampled vector yB through
the following linear transformation,

yB = FB fi; (4)

where FB is an n1n2 × n1n2 measurement matrix which is
constructed by Eq. 5.

Fn1n2 = orth((randn(n1n2)) (5)

where orth(·) is a function that generates an orthonormal
basis for the input matrix, and randn(t) is a function for
creating a random matrix of size t×t whose entries are chosen
independently from a normal distribution with zero mean and
variance equal to 1

t [28].
The block CS method is more efficient than the standard

CS method as an m× n1n2 random matrix FB is generated
for each image block. The small measurement matrix requires
less memory storage and allows faster processing, while large
data produces more accurate reconstruction.

One can learn from Eq. 4 that block compressive sensing
is different from the common Compressive Sensing method
which is based on using a column or row of the image to do the
reconstruction. During block compressive sensing, an image
is split into small blocks. This is because in most images the
pixel values in a local patch are the same or similar. Especially
in chip component solder joint images and gull-wing leaded
solder joint images, the pixels in the area of the solder joint
have similar values and the pixels in the background area have
the same values. So during block compressive sensing, those
pixels have a high probability to be split into the same block,
and the orthogonal transformed image will have more sparsity
than when using normal compressive sensing methods. This
aids improving the the reconstruction result.

B. Wavelet Packet Transfer Threshold

The Wavelet Packet Transform (WPT) is an efficient tool
for signal analysis. The idea is exactly the same as those
developed in the wavelet framework. Wavelet packet is a
further generalization of wavelet analysis. The main difference
is that the Wavelet Packet Transform offers a finer analysis,
enabling finer control of partitioning the wavelet coefficients.
The function groups are defined as follows:�

y2n(t) =
√

2åk∈Z hk(t)yk(2t− k);

y2n+1(t) =
√

2åk∈Z gk(t)yk(2t− k):
(6)

where h(k) and g(k) are the wavelet filter coefficients in multi-
resolution analysis. Specifically, when n = 0, Eq. 6 equals�

y0(t) =
√

2åk∈Z hk(t)y0(2t− k);

y1(t) =
√

2åk∈Z gk(t)y0(2t− k):
(7)

where y0(t) and y1(t) correspond to the wavelet function and
scaling function respectively.

After splitting, a vector of approximation coefficients and
a vector of detail coefficients are obtained. So, the Wavelet
Packet Transform can be more precise and provide compre-
hensive treatment of high-frequency signals and low-frequency
signals which are very important in signal thresholding. We
can use a complete binary tree to show its output in the
following figure 1.

cDh
j ;cDv

j;cDd
j are details of the signal S in three orientations:

horizontal, vertical, and diagonal, respectively. Wavelet packet
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Fig. 1: 2-Dimensional Discrete Wavelet Packet Transform

Fig. 2: A two-dimensional wavelet packet tree containing two
layers

decomposes the signal at high frequency (cDh
j ;cDv

j;cDd
j ) and

low frequency (cA j).
In general, wavelet packet decomposition divides the fre-

quency space into various parts and allows better frequency
localization of signals. So, for 2 level decomposition, the two-
dimensional wavelet packet tree has the form in figure 2.

The root of the tree is the original image. The next level
of the tree is the result of one step of the wavelet packet
decomposition.

We can see from the introduction above, that wavelet packet
transfer has special abilities to achieve higher discrimina-
tion by analyzing the higher frequency domains of a signal
During our approach, we deal with the higher frequency
and lower frequency of the reconstruction signal separately.
High frequency coefficients and low frequency coefficients are
generated by wavelet packet decomposition, and usually the
higher frequency domains consist of noise, so the threshold
should have some connection with them. First, we define a
threshold to remove the reconstruction result in each iteration.
J indicates the J-th wavelet packet decomposition, and K is
the total number of coefficients in each high frequency. The
threshold value l is defined as

l = GsJ (8)

where G is defined as a control factor which connects with low
frequency coefficients to manage convergence and remove the
noise, and sJ is a median estimator of the standard deviation,
and is defined as

sJ =
median(

��åK
k=1(cDh

J(k)+ cDv
J(k)+ cDd

J (k)
��)

0:6745
(9)

where cDh
J ;cDv

J ; and cDd
J are the k-th high frequency coef-

ficients in the J-level wavelet packet decomposition in the
horizontal, vertical, and diagonal orientations respectively.
0.6745 is a value making the median an unbiased estimator
for the normal distribution [19]. For each iteration result x, we
deal with it as

T hreshold(x) =

�
x(k); |x(k)| ≥ l

0; |x(k)|< l :
(10)

where x(k) is the k-th element in x.

C. The Control Factor with Wavelet Packet Coefficients

As we mentioned earlier, there is a control factor in Eq. 8.
In general, the control factor is based on experience and it is
constant. In this paper, we define the control factor G which
connects with the wavelet packet coefficients. The new control
factor is updated using the wavelet packet low frequency
coefficients in each iteration, so it can control the threshold
value efficiently. Assuming J indicates the J-th wavelet packet
decomposition, K is the total number of coefficients of low
frequency, and i is the iteration number, the new control factor
is defined as

G
i =

vuutmedian

 
K

å
k=1

cAi
J(k)

!
(11)

where cAi
J(k) are the k-th low frequency coefficients in the J-

level wavelet packet decomposition in the i-th iteration. So the
Control Factor is updated with the low frequency coefficients
in each iteration.

D. Algorithm

According to the introduction above, we now propose the
BCS WP SPL algorithm whose details are shown in Algo-
rithm 1.

In Algorithm 1, wpdec(·) is a function of wavelet package
decomposition, and a db3 wavelet is used in our experiments.
We split the image into blocks and each block is transformed
into a one-dimensional data vector. We also used the Wiener
filter to smooth the signal, and can choose different neighbor-
hoods at different levels of the wavelet packet decomposition.

E. Algorithm convergence analysis

In Algorithm 1, the discrete wavelet transform can be
computed in O(n) operations, and there are two transforms.
So each iteration requires O(2nk) iterations. Multiplication by
the measurement matrix F is an intensive operation which
requires O(nk) operations. The hard-thresholding step is car-
ried out independently in each iteration. It also requires O(n)
operations.

IV. RESULTS AND DISCUSSION

A. Sparsity Comparison

Some original solder joint images that will be used as test
images are shown in figure 3. Given that x̂ is defined as the
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Algorithm 1: Block Compressive Sensing based on
wavelet package transform threshold

Input : An image x; a sparse signal transform matrix
Y ∈ RN×N , a measurement matrix F ∈ RM×N ,
FFT = I; M is the sample rate; y = Fx, wavelet
transform level J.

Output: A reconstructed image x.

Procedure:
for each block b

x0
b = FT

b yb
end
i = 0;r0 = 1;r−1 = 0:
while

��ri− ri−1
��< 10−4 do

x̂i=Wiener(xi)
for each block b

x̃i
b = x̂i

b +FT
b (yb−FT

b x̂i
b)

x̌i = Yx̃i

wpdec(x̌;J)
for each level J

for each subband AJ ∈ {cAJ}
for each block b

Gi according to Eq. 11.
for each subband D ∈ {cDh

J ;cDv
J ;cDd

J}
for each block b

T hreshold(x̌i
b) according to Eq. 10

ˆ̂xi = Y−1x̌i

for each block b
xi+1

b = ˆ̂xi
b +FT

b (yb−Fb ˆ̂xi
b)

end
ri+1 =‖ xi+1− ˆ̂xi ‖2
i = i + 1

end
x = xi+1

Fig. 3: Solder images

image after applying the orthogonal transform, the summed
sparsity of its blocks is defined as

Sp = l0
e (x̂i; j ≤ e) ; (12)

where x̂i; j is the element at location (i; j) in the x̂, and l0
e (·)

is a function defined in [15]. A comparison of image sparsity
after applying the orthogonal transform is shown in table I.

One can see from table I that Block Compressive Sensing
can achieve better sparsity than normal Compressive Sensing.

B. Experimental Comparison

In order to evaluate the quality of the reconstructed results,
many researchers used the Peak Signal to Noise Rate (PSNR)

and structural similarity (SSIM) to estimate the result in
image processing [8]. In our study, PSNR and SSIM are used
to compare the experimental results. The experiments were
implemented on an Intel Core i5 with 2.70 GHz CPU. Since
some methods require the image size to be a power of 2, we
have cropped all the images to 256×256.

Now let us compare the proposed BCS WP SPL method
with the popular methods CoSaMP [7], BCoSaMP [35]
OMP [20], BOMP [12], FGB [36], BFGB, SP [6], GBP [25]
and BCS SPL [24] .

During BOMP, BCoSaMP, BFGB, the block size is set
to 16 × 16. The reconstruction results based on popular
methods with sample rate u = 0:5 (M = N × u = 128) are
shown in figure 4(a-i) and the reconstruction result based on
BCS WP SPL with the same sample rate and the neighbor-
hood in the Wiener filters w = 3, Itr = 30 iterations is shown
in figure 4(j).

One can see that our method can achieve a better result than
SP, OMP, GBP, CoSaMP, BOMP, BCoSaMP, FGB, BFGB,
and BCS SPL in figure 4. There are some block artifacts in
figure 4(g,h). More PSNR and SSIM comparisons for a range
of sampling rates are shown in table II.

From the figure and table above, one can see that the
proposed BCS WP SPL approach obtains better results in
terms of PSNR and SSIM than SP, GBP, CoSaMP, BOMP,
OMP BCoSaMP and BCS SPL. The GBP method fails in
image reconstruction when the sampling rate u = 0:1.

The runtime comparisons of different methods are shown
in table III. SP, GBP, CoSaMP, BOMP, OMP and BCoSaMP
cost more time with an increasing number of samples. OMP
can achieve the fastest reconstruction. The BCS SPL and
BCS WP SPL methods require less time as the number
of samples increases. BCS WP SPL costs more time than
BCS SPL, because BCS WP SPL costs extra time in wavelet
packet decomposition.

C. Parameters Analysis

During BCS WP SPL, the Wiener filter is used to smooth
the reconstruction result. We carried out more experiments
with the image shown in figure 4(a) with different neighbor-
hood sizes for the Wiener filters (3× 3, 5× 5, 7× 7) and
different wavelet packet decomposition levels J = 2;3. The
results are shown in table IV.

For both levels J = 2;3, a 3× 3 Wiener filter achieves
better results in terms of PSNR and SSIM than the 5× 5
and 7×7 Wiener filters. When the sampling rate u < 0:5 the
proposed method based on 2 level wavelet packet decompo-
sition achieves better results than 3 level wavelet packet in
PSNR and SSIM. But when the sampling rate u ≥ 0:5 the
proposed method based on 3 level wavelet packet decompo-
sition achieves better results than 2 level wavelet packet in
PSNR and SSIM.

D. Small defect solder joint image reconstruction

For some challenging solder joint images with small defects,
the proposed method can also achieve a better performance
than other methods. A chip component defect solder joint
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TABLE I: Sparsity comparison after applying the orthogonal transform for figure 3

type figure 3 (a) figure 3 (b) figure 3 (c)
Normal Compressive Sensing 99.08% 95.88% 98.32%
Block Compressive Sensing 99.39% 99.39% 99.69%

(a) SP (b) OMP (c) GBP (d) CoSaMP (e) BOMP

(f) BCoSaMP (g) FGb (h) BFGb (i) BCS SPL (j) BCS WP SPL

Fig. 4: Reconstruction results based on different methods

TABLE II: Quantitative comparison in PSNR and SSIM based on different methods for a range of sampling rates applied to
figure 3 (a)

Methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
SP 8.83/0.051 12.76/0.110 16.55/0.218 18.83/0.326 20.33/0.399 21.94/0.489 23.02/0.545 24.20/0.613 25.14/0.655

OMP 9.51/0.120 18.06/0.251 19.68/0.335 21.10/0.400 22.46/0.476 24.46/0.575 25.81/0.646 26.93/0.698 27.89/0.737
GBP 0 /0 13.83/0.185 17.47/0.315 19.41/0.419 20.59/0.475 21.97/0.544 22.86/0.588 23.62/0.625 24.47/0.657

CoSaMP 8.61/0.031 10.62/0.063 15.87/0.183 17.81/0.251 19.70/0.344 21.53/0.448 23.01/0.522 24.31/0.593 25.51/0.656
BOMP 16.23/0.268 20.33/0.403 22.23/0.509 23.84/0.589 25.34/0.651 26.56/0.705 27.72/0.752 28.68/0.787 29.67/0.817

BCoSaMP 6.42/0.029 10.68/0.071 12.69/0.113 14.72/0.173 17.51/0.283 21.01/0.422 22.87/0.515 24.41/0.590 26.24/0.676
FGB 6.94/0.037 12.05/0.141 15.16/0.260 20.77/0.521 23.59/0.663 25.07/0.727 26.11/0.773 26.84/0.806 26.85/0.824

BFGB 13.63/0.239 23.23/0.625 25.02/0.690 26.29/0.736 27.19/0.766 27.90/0.787 28.69/0.810 29.34/0.827 29.98/0.843
BCS SPL 26.96/0.732 29.36/0.808 29.74/0.814 32.45/0.885 33.78/0.909 35.28/0.933 36.87/0.951 39.01/0.968 42.12/0.984

BCS WP SPL 27.01/0.736 29.49/0.8175 29.85/0.817 33.04/0.901 34.50/0.924 36.03/0.944 37.83/0.961 40.05/0.976 43.30/0.988

image which has two small concavities is shown in figure 3(b).
Its reconstruction results are shown in figure 5.

During the BCS WP SPL, we set J = 2 and the Wiener
filter neighborhood size 3.

One can see that our method can achieve a better result
than SP, OMP, GBP, CoSaMP, BOMP, BCoSaMP, FGB, BFGB
and BCS SPL in figure 5. There are some block artifacts in
figure 5(g,h). More PSNR and SSIM comparisons for a range
of sampling rates are shown in table V.

From the figure and table above, one can see that the
proposed BCS WP SPL approach obtains better results in
terms of PSNR and SSIM than SP, GBP, CoSaMP, BOMP,
OMP BCoSaMP and BCS SPL. The GBP method fails in
image reconstruction when the sampling rate u = 0:1.

E. Different types of solder joint image experiment

We also experiment with different types of solder joint
image. A chip component solder joint image and its recon-
struction results are shown in figure 3(c).

During the BCS WP SPL, we set J = 2 and the Wiener
filter neighborhood size 3. The reconstruction results when
the sampling rate is u = 0:5 are shown as in figure 6.

We carry out more experiments with the image in figure 3(c)
with different sampling rates u = [0:1;0:9]. The results are
shown in tables VI.

From table VI, one can see that the proposed approach ob-
tains better results in terms of PSNR and SSIM than SP, GBP,
CoSaMP, BOMP, OMP BCoSaMP and BCS SPL. BCS SPL
achieves the second best results. With increasing number of
samples, the proposed approach gets better reconstruction
results (unlike some other methods).

Compared to BCS SPL, the proposed approach achieves
better results in terms of PSNR and SSIM than BCS SPL
at most sampling rates. When the sampling rate u = 0:2;0:4,
BCS SPL can achieve a better result than BCS WP SPL, but
the proposed approach can achieve a better result in terms of
SSIM than BCS SPL. This means BCS WP SPL has a better
performance in retaining image structure than BCS SPL.




