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ABSTRACT

Effective representation and reconstruction for human faces
are very important in many applications. Existing linear
representation methods cannot reconstruct high quality 3D
faces with details, while the newest non-linear representa-
tion method is less suitable for real shapes since spectral de-
compositions are unstable across different graphs. To address
these problems, we propose a multi-scale graph convolutional
autoencoder for face representation and reconstruction. Our
autoencoder uses graph convolution, which is easily trained
for the data with graph structures and can be used for other de-
formable models. Our model can also be used for variational
training to generate high quality face shapes. Experimental
results demonstrate that our model can generate more plausi-
ble, complex, and stable 3D shapes, and achieves higher qual-
ity face reconstruction compared with state-of-the-art meth-
ods.

Index Terms— Face representation, face reconstruction,
autoencoder, mesh, variational training

1. INTRODUCTION

Human faces play a key role in identity recognition, message
transmission, and emotional expression. Effective represen-
tation and reconstruction of a specific face are very impor-
tant for creating personalized avatars, 3D printing, and face
animation, which have a wide range of applications in movie
production, computer games, augmented reality (AR) and vir-
tual reality (VR). However, human faces are highly variable as
they are affected by many factors such as age, sex, ethnicity,
etc., and deform significantly with expressions. Therefore, it
is difficult to effectively represent and reconstruct such non-
linear deformations.

Traditional methods use a laser scanner or a depth camera
to reconstruct a 3D face using fusion-based methods [1], but
they cannot achieve animation, editing and generation. To
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address this problem, parametric face models [2, 3, 4] and
blendshapes [5] are proposed to represent facial shapes and
expressions, and several methods successfully reconstruct the
face shape from the scanned depth mesh using these models
[6, 7]1. However, the reconstructed shapes using the linear
representation are generally smooth without rich details.
Deep learning has great success in many application ar-
eas, especially convolutional neural networks (CNN). Volu-
metric representations [8] and point clouds [9] are used to re-
construct 3D models using CNN, but these methods require a
lot of memory and cannot effectively represent face deforma-
tions. The surface mesh, as a common representation for face
shapes, has a graph structure with irregular connectivity that
is difficult to directly use CNN. To better represent faces, Ran-
jan et al. [10] introduce a model that learns a non-linear repre-
sentation of a face using spectral convolutions on their dataset
containing 20, 466 high resolution face meshes with extreme
facial expressions. However, this method uses spectral fil-
tering to generalize convolutional network to irregular graph
structured data, which is less suitable for real shapes since
global decompositions are unstable across different graphs.
To address these problems, we propose a new face repre-
sentation and reconstruction method with hierarchical graph
convolutional mesh autoencoders (MAE), which can achieve
higher quality reconstruction. Our MAE model is primar-
ily composed of dynamic filtering convolutional layers [11],
which dynamically compute the correspondences between fil-
ter weights and graph neighborhoods with arbitrary connec-
tivity from features learned by the network. We also perform
multi-scale sampling on the mesh to obtain a hierarchical face
representation. Our MAE model can be used for variational
training to generate high quality face shapes. Experimental
results show that our method has higher accuracy of face re-
construction than state-of-the-art method [10], and can gener-
ate plausible high-quality facial meshes by variational train-
ing.
The main contributions of this work are summarized as:
e We propose a new graph convolutional autoencoder

with a hierarchical multi-scale representation for face
surface meshes. Our model relies on the vertex con-



nection relationship of the mesh for convolution, and
can also generate a hierarchical mesh representation by
effectively sampling the vertices of the mesh.

e Our autoencoder uses mesh raw data without complex
embedding process and is easily trained.

e We show that our method has higher reconstruction ac-
curacy than state-of-the-art method and can generate
more plausible, complex and stable 3D shapes.

2. RELATED WORK

2.1. Face Representation

Most methods use statistical priors to model the structure and
expression of faces [6, 7]. 3D Morphable Model (3DMM)
proposed by Blanz and Vetter [2] is the first and the most pop-
ular face representation prior based on principal component
analysis (PCA). Basel Face Model (BFM) [12] is the publicly
available version of this model and has been widely used in
many applications. Booth et al. [3] proposed another linear
face model learned from nearly 10,000 facial scans of more
diverse subjects in a neutral expression. However, the above
linear representation methods cannot capture extreme defor-
mations and non-linear expressions. Ranjan et al. [10] pro-
pose a non-linear representation model learned by spectral
convolutions on their dataset containing 20,466 high resolu-
tion meshes with extreme facial expressions. But this method
uses spectral filtering to generalize convolutional network to
irregular graph structured data, which is less suitable for real
shapes since global decompositions are unstable across dif-
ferent graphs. In this paper, we propose a new model using
dynamic filtering convolutional layers with a multi-scale rep-
resentation to be more suitable for meshes.

2.2. Generative Modeling

Traditional methods [13, 14] use probabilistic inference for
3D model generation (synthesis), but they are only suitable
for specific 3D shapes. Recent work considers using deep
learning for 3D model generation. Wu et al. [8] propose
a generative model using a convolutional deep belief net-
work on a 3D voxel grid, but volumetric operations require
a lot of memory and can only synthesize coarse 3D shapes
without details. Tan et al. [15] use RIMD (Rotation Invari-
ant Mesh Difference) representation and a variational autoen-
coder (VAE) on meshes to generate new shapes not existing
in the original dataset. Gao et al. [16] propose a new varia-
tional autoencoder to encode shape deformations and a cycle-
consistent generative adversarial network (GAN) for reliable
mapping between latent spaces. However, these methods re-
quire dedicated deformation representations and may not rep-
resent subtle details well. In this paper, we use multi-scale
mesh sampling operations combined with graph convolutions
to better model high resolution details.

3. METHOD

In order to simultaneously achieve face latent representation
and reconstruction, we propose a multi-scale mesh AE model.
Note that our method can be extended to other deformable
objects.

3.1. Multi-scale MAE Model

Define a 3D facial mesh (or a general deformable mesh) as a
set of vertices and edges, F = (V, ), with |V| = n vertices
that lie in 3D Euclidean space, V. € R™*3. The adjacency
matrix AV is a collection of edge sets that represents the neigh-
borhood for each vertex. Our multi-scale mesh AE consists of
two parts: an encoder and a decoder. The encoder encodes the
3D mesh F into a latent vector z = E(F), and the decoder
decodes the latent vector into a 3D mesh F = D(z). Tradi-
tional CNNs cannot deal with such irregular data graphs, and
thus we use dynamic filtering convolutional layers [11] to pro-
cess the mesh data. It can learn the mapping from the neigh-
borhood patch to filter weights, which considers the intrinsic
characteristic of the mesh. Specifically, the input to a layer is
a feature vector x; associated with a vertex 7 € {1,...,n}, and
the output is also a vector y;:

M
1
yi=b+ Z Wil Z em (Xi, X; ) WinX;, (1

m=1 v JEN;

where N; is the set of neighbors of vertex i, and {W,, €
RN=*Nyl js a set of M weight matrices for the filters.
N, and N, are the dimensions of x; and y; respectively.
em(Xi,xj) o exp(th (x; — x;) + c,) are positive edge
weights in the patch normalized to sum to one over m, which
leads to translation invariance of the weights in the feature
space. The characteristics of translation invariance have bet-
ter training effects when using the original spatial 3D coordi-
nates as the input features of the shape mesh. b, W, t,, and
¢, are trainable weights, and M is a fixed design parameter.

To achieve multi-scale convolution on meshes, we also
use mesh sampling to get a new topology and connection
relationship for the mesh, which helps our network capture
global and local features. Specifically, we down-sample a
mesh with n vertices to k vertices (n > k) using permuta-
tion matrix P; € {0,1}**™ [10]. Py4(p,q) denotes whether
the g-th vertex is kept during down-sampling, Py(p, q) = 1 if
the vertex is kept, and 0 if it is discarded. The down-sampled
vertex set V4 is a subset of the original mesh vertices. Down-
sampling is obtained by iteratively contracting vertex pairs,
which uses a quadratic matrix [17] to maintain surface error
approximations. Up-sampling on the other hand maps k ver-
tices to n vertices, and the up-sampling matrix P, € R"**
is constructed during down-sampling. The up-sampled ver-
tices V,, = P, V4. The process of up-sampling is to re-add
the vertices v, discarded during the down-sampling process
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Fig. 1. The architecture of our network.

into the down-sampled mesh, i.e. mapping v, into the clos-
est triangle (h,,7) in the down-sampled mesh and comput-
ing the barycentric coordinates by v = wp vy, + w;v; + w;v;
where vy, v;,v; € Vg and wy, + w; + w; = 1. The weights
in P, are then updated as P,(g,h) = wp, Py,(q,1) = w;,
P,(¢,j) = wj, and P,(q,1) = 0 otherwise.

In our multi-scale mesh AE, we use the per-vertex Eu-
clidean distance between the predicted mesh and the ground-
truth mesh to represent the reconstruction error because we
find that better convergence can be obtained when using per-
vertex Euclidean distance loss in our problem. The loss func-
tion we used is defined as

loss = | D(E(F)) = FI?, 2
The goal of our loss function is to make the reconstructed F’
as consistent as possible with the input F.

3.2. Network Architecture

Figure 1 shows a schematic rendition of our model. The en-
coder consists of 6 graph convolutions with filter dimensions
of (16, 32, 64, 96, 128, 256). Each convolution is followed by
a batch normalization layer [18] and a ReLU activation layer
[19]. Down-sampling is used after each activation function,
and the ratios are [2, 2, 2, 4, 4, 4]. The output sizes of en-
coder layers after graph convolution are 2512x 16, 1256 <32,
628x64, 157%x96, 40x 128, and 10x256, respectively. The
last layer of encoder is a fully connected layer, which maps
the feature € R19%256 into latent space z € R128,

The decoder first uses a fully connected layer which maps
z to mesh space so that we can up-sample to reconstruct the
mesh. Following the fully connected layer are 6 graph con-
volutional layers with interleaved up-sampling layers. Each
of the graph convolutions is followed by a batch normaliza-
tion layer and a ReLU layer similar to the encoder network.

Up-sampling ratios are [4, 4, 4, 2, 2, 2]. The output sizes of
decoder layers after graph convolution are 40x 128, 157 %96,
628 %64, 1256%32,2512x 16, and 5023 x 3, respectively. The
last graph convolution of decoder has no batch normalization
or ReLLU activation.

3.3. Training Details

Our model is trained on a public face dataset, CoMA [10],
which consists of 12 classes of extreme and asymmetric ex-
pressions from 12 different subjects. The dataset contains
20,466 3D face meshes with 5,023 vertices and the same
connectivity.

When training an auto-encoder model, we use M = 16
and set the latent dimension as 128, which can effectively
improve the reconstruction quality. We train our multi-scale
AE model directly on the input meshes with 5023 vertices,
and use the 1-ring neighbors around a vertex to form the ad-
jacency matrix. We train our auto-encoder for 100 epochs
with a learning rate of 2 x 10~ and batch size of 8 using the
ADAM optimizer [20].

4. EXPERIMENTAL RESULTS

In this section, we first evaluate the reconstruction capability
of our proposed model with interpolation experiment and ex-
trapolation experiment in Sec. 4.1, and then we demonstrate
the generative capacity of our model by sampling from the
latent space to synthesize new expressive faces in Sec. 4.2.

4.1. Representation Quality

Interpolation Experiment. In order to evaluate the face re-
construction capability of the proposed method, we compare
our method with a state-of-the-art method, CoMA [10], on its
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Fig. 2. Comparison with CoMA: Qualitative results for interpolation experiment.

dataset in Table 1. We adjust their network layers and param-

eters to best optimize their performances. The face dataset is Table 2. Quantitative evaluation for mesh extrapolation
divided into a training set and a test set with a ratio of 9 : 1. (mm)
The mean errors and standard deviation for per-vertex Eu- Our Method CoMA [10]
clidean distance on the test set are given in Table 1. It can Sequence Meoan Error | Std | Mean Error | Std
be seen that our method achieves more accurate reconstruc- bareteeth 1.020 0.928 1376 1536
tion. Visual inspection of the qualitative results in Figure 2 heeks in 1.028 0.957 17883 1501
il;):(&/); ;Elit our reconstructed meshes are more realistic and eyebrow 0794 0.630 1053 1088
’ high smile 1.014 0.896 1.205 1.252
Table 1. Quantitative comparison for interpolation experi- lips back 1.013 0.881 1.193 1.476
ment (mm). lips up 0.974 0.876 1.081 1.192
Sequence Our Method CoMA [10] mouth down 0.803 0.686 1.050 1.183
Mean Error | Std | Mean Error | Std mouth extreme 1.189 1.520 1.336 1.820
Test data 0.583 0.436 0.891 1.073 mouth middle 0.854 0.740 1.017 1.192
mouth open 0.904 0.815 0.961 1.127
Extrapolation Experiment. To evaluate the generaliza- mouth side 1.110 1.286 1.264 1611
tion ability of our model, we verify on a cross validation mouth up 1.005 0.868 1.097 1.212

dataset that splits the CoMA dataset [10] by completely ex-
cluding one expression set from all the subjects in the dataset.
We test our method and the CoMA method [10] on the ex-
cluded expression. We perform 12 fold cross validation, one
for each expression as shown in Table 2. It can be seen that
our model performs better than the state-of-the-art method on
all the expression sequences. Figure 3 shows visual inspec-
tion of the qualitative results.

4.2. Generation of Novel Shapes

To prove the generative capabilities of our multi-scale mesh
AE model, we train our model with a variational autoencoder.
In our multi-scale mesh VAE, we use the per-vertex Euclidean
distance to represent the reconstruction error between the pre-
dicted mesh and the ground-truth mesh. The total loss func-
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Fig. 3. Comparison with CoMA: Qualitative results for extrapolation experiment.

tion is defined as
loss = || D(E(F)) — F|I> + wDk1(q(z|F)p(z), (3)

where p(z) is the prior probability, ¢(z|F) is the posterior
probability, and Dy is Kullback-Leibler divergence. The
weight w adjusts the importance of KL divergence in the la-
tent space. Our mesh VAE is a generation model whose goal
is to obtain the distribution of g(z|F), i.e. to obtain the dis-
tribution of the latent variable z given the distribution of the
input data F. It calculates F and joint probability distribution
of p(F, z). We assume that the potential variable z of the out-
put obeys a prior distribution, namely Gaussian distribution.
Therefore, after training the model, we can get z’ by sam-
pling this prior distribution which may have not appeared in
the training process but we can still get 7' through this z’ in
the decoder. This results in new samples that match the orig-
inal data distribution, and hence has the ability to generate
new samples. We feed the decoder with Gaussian distribu-
tion z ~ (0,I) to generate new shapes, and the results are
shown in Figure 4. It can be seen that our model can easily
generate plausible high-quality facial meshes. These results
indicate that our self-growth weight training method can ef-
fectively balance the relationship between the variational la-
tent distribution towards Gaussian prior and the mesh recon-
struction quality. Quantitative comparison with CoMA VAE

model [10] is given in Table 3. We adjust their network layers
and parameters for their best performance. Our method also
has smaller error for VAE model.

Table 3. Quantitative comparison for VAE experiment (mm).

Sequence Our VAE model CoMA VAE model [10]
q Mean Error Std Mean Error Std
Test data 0.707 0.585 1.150 1.297

5. CONCLUSION

This paper proposes a multi-scale graph convolutional model
for 3D representation and reconstruction of human faces. The
graph convolution algorithm based on graph structure can ef-
fectively learn mesh data, and the multi-scale sampling can
make the network better learn global and local face mesh
features. Experimental results demonstrate that our method
produces better qualitative results and lower reconstruction
errors compared with state-of-the-art method. Recovering a
complete facial mesh from a poor quality depth map using
our model is practically useful and will be explored in future
work.
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Fig. 4. Randomly generated face meshes by our multi-scale
mesh VAE.
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