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Abstract—Face portrait line drawing is a unique style of art which is highly abstract and expressive. However, due to its high semantic

constraints, many existing methods learn to generate portrait drawings using paired training data, which is costly and time-consuming

to obtain. In this paper, we propose a novel method to automatically transform face photos to portrait drawings using unpaired training

data with two new features; i.e., our method can (1) learn to generate high quality portrait drawings in multiple styles using a single

network and (2) generate portrait drawings in a “new style” unseen in the training data. To achieve these benefits, we (1) propose a

novel quality metric for portrait drawings which is learned from human perception, and (2) introduce a quality loss to guide the network

toward generating better looking portrait drawings. We observe that existing unpaired translation methods such as CycleGAN tend to

embed invisible reconstruction information indiscriminately in the whole drawings due to significant information imbalance between the

photo and portrait drawing domains, which leads to important facial features missing. To address this problem, we propose a novel

asymmetric cycle mapping that enforces the reconstruction information to be visible and only embedded in the selected facial regions.

Along with localized discriminators for important facial regions, our method well preserves all important facial features in the generated

drawings. Generator dissection further explains that our model learns to incorporate face semantic information during drawing

generation. Extensive experiments including a user study show that our model outperforms state-of-the-art methods.

Index Terms—Face portrait, Drawing, Style transfer, Unpaired image translation, Generative adversarial network, Quality metric

F

1 INTRODUCTION

FACE portrait line drawing is a highly abstract and expres-
sive art form, which compresses the rich information in
human portraits into a sparse set of graphical elements
(e.g. lines) and has high semantic constraints. Usually only
skilled artists can generate delicate portrait line drawings
and different artists have diverse styles. However, the hand-
made drawing process is time consuming and challenging.
Recently, a few state-of-the-art works develop elegant algo-
rithms to automatically generate face portrait line drawings
[1], [2], [3], which show some interesting progress on the
aspect that artificial intelligence can learn to create human
art. In this paper, we take a step forward by addressing the
following problem: Can artificial intelligence learn the artistic
style space of face portrait line drawings and generate portrait
drawings of “new styles” unseen in the training data?

This challenging problem has not been studied in pre-
vious research, possibly due to two outstanding issues.
First, artistic portrait line drawings (APDrawings) are quite
different from the previously tackled image styles. Image
style transfer has been a longstanding topic in computer
vision. In recent years, inspired by the effectiveness of deep
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learning, Gatys et al. [4] introduced convolutional neural
networks (CNNs) to transfer the style from a style image to a
content image, and opened up the field of neural style trans-
fer. Subsequently, generative adversarial networks (GANs)
have achieved much success in solving image style transfer
problems [5], [6]. However, existing methods are mainly
applied to cluttered styles (e.g., oil painting style) where (1)
a stylized image is full of fragmented brush strokes and (2)
the requirement for the quality of each individual element is
low. APDrawings are completely different, and generating
them is very challenging because the style is highly abstract:
it (1) only contains a sparse set of graphical elements, (2) is
line-stroke-based and disables shading, and (3) has high se-
mantic constraints. Therefore, previous texture-based style
transfer methods and general image-to-image translation
methods fail to generate good APDrawing results (Fig. 1).

The second outstanding issue is to use unpaired train-
ing data. The artistic style space of APDrawings contains
diverse styles and collecting paired training data for each
style is impossible. APDrawingGAN [1] and APDrawing-
GAN++ [2] are the only methods that explicitly deal with
APDrawings by using a hierarchical structure. However,
these methods require paired training data that is costly
to obtain. Compared to paired training data, APDrawing
generation learned from unpaired data is much more chal-
lenging. Previous methods for unpaired image-to-image
translation [6], [8] use a cycle structure to regularize train-
ing. Although cycle consistency loss enables learning from
unpaired data, we observe that when applying them to
face photo to APDrawing translation, due to significant
imbalance of information richness in these two data types
(accurately recovering a photo from the corresponding line
drawing is an impossible task), these methods tend to
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(a) Input (b) Gatys et al. (c)Linear Style Transfer (d) MUNIT (e1) Ours-pre (style1) (e2) Ours-pre (style2) (e3) Ours-pre (style3)

(f) DualGAN (g) CycleGAN (h) UNIT (i) APDrawingGAN++ (j1) Ours (style1) (j2) Ours (style2) (j3) Ours (style3)

Fig. 1. Comparison with state-of-the-art methods: (a) input face photo; (b)-(c) style transfer methods: Gatys [4] and Linear Style Transfer [7]; (f)-
(h) single-modal image-to-image translation methods: DualGAN [8], CycleGAN [6], UNIT [9]; (d) multi-modal image-to-image translation methods
MUNIT [10]; (e) our previous conference version (Ours-pre) [3] that outputs three styles; (i) a portrait generation method APDrawingGAN++ [2]
using paired training data; (j) our method. Note that our method only uses unpaired training data. Due to this essential difference, we only compare
APDrawingGAN++ with our method in Appendix A5.2.

embed invisible reconstruction information indiscriminately
in the whole APDrawing, causing a deterioration in the
quality of the generated APDrawings, such as important
facial features partially missing (Figs. 1(f-g)).

Our previous conference work [3] partially addressed
the unpaired training data issue by proposing an asymmet-
ric cycle structure and a truncation loss to prevent the model
from embedding invisible features in the generated AP-
Drawings. In this paper, we substantially improve upon [3],
and propose a novel quality-metric-guided APDrawing gen-
eration model, which can generate (1) “better looking”
APDrawings according to human perception, and (2) “new
style” APDrawings other than the styles in the training
data. Learning from unpaired data makes our model able to
utilize diverse APDrawing styles from web data for training
the style space. To exploit the natural diversity of styles
from web training images (see Fig. 2 for some examples),
our model can (1) learn multiple styles (as well as the style
space) of APDrawings from web data of mixed styles, (2)
generate “new styles” unseen in the training data, and (3)
control the output style using a code in the style space. The
source code is available1.

In particular, we make the following contributions:

• We propose a novel quality metric for APDrawings
by learning from human perception. The new quality
metric is modeled by a regression network whose
input is APDrawing alone and the output is a quality
score.

• Based on the quality metric, we propose a quality
loss that is consistent with human perception, and
use it to guide the network toward generating better
looking APDrawings.

• We generate APDrawings of “new styles” unseen in
the training data by searching for a corresponding
style code in the style space.

• To interpret our model, we dissect the generator by
visualizing feature maps and comparing them to
face semantics, validating that our generator learns

1. https://github.com/yiranran/QMUPD

to incorporate semantic face information during AP-
Drawing generation.

2 RELATED WORK

2.1 Neural Style Transfer

Inspired by the successes of CNNs in many visual percep-
tion tasks, Gatys et al. [4] proposed to use a pretrained
CNN to transfer the style in an image to the content of
another image in two steps. First, the content features and
style features are extracted from images. Second, the content
image is optimized by matching the style features from the
style image while simultaneously maintaining the content
features. In [4], the Gram matrix is used to measure style
similarity. This method opens up the field of neural style
transfer and many follow-up methods are proposed based
on this.

Li and Wand [11] proposed to replace the Gram matrix
by a Markov Random Field (MRF) regularizer for modeling
the style. Stylized images are synthesized by combining
MRF with CNN. To speed up the slow optimization process
of [4], some methods (e.g., [12], [13]) use a feed-forward
neural network to minimize the same objective function.
However, these methods still suffer from the problem that
each model is restricted to a single style. To simultane-
ously speed up optimization and maintain style flexibility
as [4], Huang and Belongie [14] proposed adaptive instance
normalization (AdaIN) to align the mean and variance of
content features to those of style features. In these example-
guided style transfer methods, the style is extracted from a
single image, which is not as convincing as learning from
a set of images to synthesize style (refer to GAN-based
methods in Section 2.2).

In principle, some neural style transfer methods can
generate images with styles unseen in the training data (e.g.,
[4]). However, these methods model style as texture, and are
not suitable for our APDrawing style that has little texture.
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(a) Style 1 (b) Style 2 (c) Style 3thin parallel lines
simple flowing lines
few dark regions

thick lines
large dark regions

Fig. 2. Representative images of the three styles in our collected web
portrait line drawing data. (a) The first style is from Yann Legendre
and Charles Burns who use thin parallel lines to draw shadows. (b)
The second style is from Kathryn Rathke who draws facial features
using simple flowing lines and uses few dark regions. (c) The third style
is from vectorportal.com where continuous thick lines and large dark
regions are utilized. Close up views are presented alongside for better
comparison of the three styles.

2.2 GAN-based image-to-image translation

GANs [15] have achieved much progress in many vision
applications, including image super-resolution [16], text-
to-image synthesis [17], [18], and facial attribute manip-
ulation [19], etc. Among these works, two unified GAN
frameworks, Pix2Pix [5] and CycleGAN [6], have boosted
the field of image-to-image translation.

Pix2Pix [5] was the first general image-to-image transla-
tion framework based on conditional GANs, and was later
extended to high-resolution image synthesis [20]. Pix2Pix is
trained by paired data. Recently, more works focus on learn-
ing from unpaired data, due to the difficulty of obtaining
paired images in two domains. In this direction, two repre-
sentative works are CycleGAN [6] and DualGAN [8], which
make use of the cycle consistency constraint. This constraint
enforces that the two mappings from domains A to B and
from B to A — when applied consecutively to an image —
revert the image back to itself. Different from enforcing cycle
consistency at the image level, UNIT [9] tackles the problem
by a shared latent space assumption and enforcing a feature-
level cycle consistency. These methods work well for general
image-to-image translation tasks. However, in the transfor-
mation from face photos to APDrawings, we observe that
cycle consistency constraints lead to facial features partially
missing in APDrawings, because the information between
the source and target domains is imbalanced. In this paper,
we relax the cycle consistency in the forward cycle (i.e.,
photo → drawing → photo) and propose additional con-
straints to avoid this problem. The NIR-to-RGB method in
[21] adopts a very different type of asymmetry — it uses the
same loss for the forward and backward cycles, and only
changes the network complexity — and targets a different
task from ours.

The aforementioned unpaired translation methods are
also limited in the diversity of translation outputs. Unpaired
data such as crawled web data often naturally contains
multi-modal distributions (i.e. inconsistent styles). When
knowing the exact number of modes and the mode each
sample belongs to, the multi-modal image-to-image trans-
lation could be solved by treating each mode as a separate
domain and using a multi-domain translation method [19],
[22]. However, in many scenarios including our prob-
lem setting, this information is not available. MUNIT [10]
deals with multi-modal image-to-image translation without
knowing the mode each sample belongs to. It encodes an

Fig. 3. Samples of collected (including generated and artist) portrait line
drawings of target style 2 for quality metric model training. The drawings
from top to bottom have decreasing quality.

image into a domain-invariant content code and a domain-
specific style code, and recombines the content code with the
style code sampled from a target domain. Although MUNIT
generates multiple outputs with different styles, it cannot
generate satisfactory portrait line drawings with clear lines.
By inserting style features into the generator and using a
soft classification loss to discriminate modes in the training
data, our network architecture proposed in this paper can
produce multi-style outputs and generate better looking
APDrawings than state-of-the-art methods.

3 QUALITY METRIC FOR APDRAWINGS

Most image-to-image translation methods guide generation
towards the target domain using a discriminator which
decides whether an image is a real target-domain image or
not. When the target domain is APDrawings, we found it
is not sufficient to decide whether such a drawing is real or
fake; i.e., the generator needs further to be told the quality
of the synthesized drawing. To the best of our knowledge,
there lacks an optimization tool to encourage the network to
generate good looking portrait line drawings. The perception
of good APDrawings — e.g., fluent lines and avoiding
messy lines on the face — can be easily concluded by a
human, but has not been fully described in an optimization
goal. Thus, we introduce a new quality metric for portrait
line drawings by learning from human preference.

From previous user studies, we found that people can
easily decide the quality of a portrait line drawing without
knowing the original face photo. So our desired metric can
be modeled by a regression network whose input is an
APDrawing alone and the output is its quality score.

To obtain such a regression network to predict APDraw-
ing quality, we first generate many APDrawings using ex-
isting methods and mix these generated drawings with real
artist drawings. Then a user study is conducted to collect
human preferences of these APDrawings. After calculating
the quality score of each drawing based on human prefer-
ence, we train a regression network to predict the quality
score of an APDrawing.
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3.1 Data Preparation

We use existing unpaired image-to-image generation meth-
ods including DualGAN [8], CycleGAN [6], UNIT [9],
ComboGAN [22], DRIT [23] and our previous conference
work [3] to learn the three target styles (as specified in
Fig. 2). We then test the trained models on collected web
face photos and generate portrait line drawings for the three
target styles. The generated drawings are mixed with high-
quality APDrawings for subsequent human evaluation. To
facilitate the development of a good quality prediction
model, we include drawings with diverse quality in the data
(as shown in Fig. 3).

3.2 Human Preference Collection and Ranking

Considering pairwise comparison is one of the most prac-
tical and reliable methods to compare different results, we
design a user study based on pairwise comparison. From
the comparison results, we compute a ranking. However,
given n results, obtaining all n(n − 1)/2 comparisons from
a user study is time consuming and not feasible when n
is large. We seek to utilize as few pairwise comparisons
as possible to get a global ranking. The efficient ranking
method in [24] is suitable in our application. It randomly
conducts pairwise comparisons and estimates the score of
an object as the relative difference of numbers of preceding
items and succeeding items. By using this efficient ranking
strategy, an average of O(n log n) pairwise comparisons are
sufficient to recover the true ranking.

User study design. Noting that it is difficult to compare
the quality of portrait line drawings of different styles due
to the style distractions, we therefore only enable pairwise
comparison between portrait line drawings of the same
style. Then we adopt the above efficient ranking strategy
and conduct three user studies based on pairwise com-
parison for three target styles. To simplify the answering
process, each user is shown three portrait line drawings
of the same style in a question and asked to rank the
three drawings (the answer to each question equals to three
pairwise comparisons). To balance the data amount and
the effort for human evaluation, we randomly choose 250
drawings for each of the three target styles and collect
2, 450 ∼ 3, 450 question responses for each style.

Score and ranking calculation. We calculate the scores
and global rankings for portrait line drawings of each style
separately. To compute the relative difference of numbers
of preceding items and succeeding items in [24], for each
question answer, denote the ranking as I1 ≺ I2 ≺ I3,
then the score of I1 decreases by 2 (0 preceding and 2
succeeding), the score of I3 increases by 2 (2 preceding
and 0 succeeding) and the score of I2 stays unchanged. By
summarizing all question responses for a style, we calculate
the score for each drawing of this style and get a global
ranking based on the score. The scores are then normalized
to the range [0.1, 1]2 so that drawing scores of the three
styles have the same range.

2. The lower bound is greater than zero since even the worst exam-
ples of training data are better than random.

Input Face Photo Generated Drawing Photo Reconstruction

Nonlinear

mapping

Fig. 4. CycleGAN reconstructs the input photo from generated draw-
ings using a strict cycle-consistency loss, which can potentially embed
invisible reconstruction information anywhere in the whole drawings.
A nonlinear monotonic mapping of the gray values is applied in a
local region around the nose to visualize the embedded reconstruction
information.

3.3 Quality Metric Prediction

Given the portrait drawing data and the normalized quality
score, we train a regression network to predict APDrawing
quality. The regression network is based on the Incep-
tion v3 [25] architecture. It takes an APDrawing as input
and outputs a quality value. We gather the drawing data of
three target styles and train a unified prediction model M .

Since the quality metric model behavior is learned from
human evaluation, the predicted score can help guide the
drawing generator toward better quality. Furthermore, it
can also be used to choose which trained version of the
photo-to-APDrawing generator to use, e.g. when multiple
versions are trained using different hyper-parameters.

4 NETWORK ARCHITECTURE AND OPTIMIZATION

4.1 Overview

With the aid of trained quality metric model (Section 3), in
this section, we propose a GAN model with a novel asym-
metric cycle structure, that transforms face photos to high-
quality APDrawings, only using unpaired training data. Let
P and D be the face photo domain and the APDrawing
domain, and no pairings need to exist between these two
domains. Our model learns a function Φ that maps from P
to D using training data S(p) = {pi|i = 1, 2, · · · , np} ⊂ P
and S(d) = {dj |j = 1, 2, · · · , nd} ⊂ D. np and nd are the
numbers of training photos and APDrawings. Our model
consists of (1) two generators, i.e., a generator G transform-
ing face photos to APDrawings, and an inverse generator F
transforming APDrawings back to face photos, and (2) two
discriminators, i.e., DD responsible for discriminating gen-
erated drawings from real drawings, and DP responsible
for discriminating generated photos from real photos.

The information in the APDrawing domain is much less
than in the face photo domain. For example, in the cheek
region, there are many color variations in the original photo
but the cheek is usually drawn completely white (i.e. no
lines are included) in an APDrawing. As illustrated in Fig. 4,
enforcing a strict cycle-consistency loss like in CycleGAN [6]
on the reconstructed and input photos will cause the net-
work to embed reconstruction information in very small
variations in the generated APDrawings (i.e., color changes
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that are invisible to the eye but can make a difference in
network calculation); a similar phenomenon was observed
in [26]. Embedding reconstruction information in very small
variations achieves a balance between cycle-consistency loss
and GAN loss in CycleGAN; from the generated drawing
G(p), a face photo similar to the input photo p can be
successfully reconstructed because of small color changes,
while at the same time G(p) tries to be similar to real
drawings and be classified as real by the discriminator.
However, in APDrawing generation, embedding invisible
reconstruction information indiscriminately in the whole
drawing will put a strong restriction on the objective func-
tion optimization. Moreover, it will allow important facial
features to be partially missing in the generated drawings.

To address this problem, our model utilizes a novel idea:
although cycle consistency constraints are useful to regular-
ize training, we are only interested in the one way mapping
from photos to APDrawings. Therefore, unlike CycleGAN,
we do not expect or require the inverse generator F to
reconstruct a face photo exactly as the input photo (which
is a near impossible task). Instead, our proposed model is
asymmetric in that we use a relaxed cycle-consistency loss
between F (G(p)) and p, where only edge information is
enforced to be similar, while a strict cycle-consistency loss is
enforced on G(F (d)) and d. By tolerating the reconstruction
information loss between F (G(p)) and p, the objective func-
tion optimization has enough flexibility to recover all im-
portant facial features in APDrawings. A truncation loss is
further proposed to enforce the embedded information to be
visible, especially around the local area of the selected edges
where relaxed cycle-consistency loss works. Furthermore,
local drawing discriminators for the nose, eyes and lips are
introduced to enforce the significance of their existence and
ensure quality for these regions in the generated drawings.
By integrating these techniques, our model can generate
high-quality APDrawings with complete facial features.

Another benefit of our model is to generate multi-style
APDrawings. The APDrawing data we collected from the
Internet contains a variety of styles, of which only some
are tagged with author/source information. We select rep-
resentative styles from the collected data (Fig. 2), and train
a classifier for the collected drawings. Then a learned repre-
sentation is extracted as a style feature vector and inserted
into the generator to control the generated drawing style.
An additional style loss is introduced to optimize for each
style.

Different from our previous conference work [3], we
further improve the APDrawing quality and alleviate un-
wanted artifacts by utilizing the trained quality metric
model (Section 3). A human-perception-consistent quality
metric loss is proposed to guide the network toward gener-
ating good looking APDrawings.

The four networks in our model are trained in an
adversarial manner [15]: (1) the two discriminators DD

and DP are trained to maximize the probability of as-
signing correct labels to real and synthesized drawings
and photos, and (2) meanwhile the two generators G
and F are trained to minimize the probability of the dis-
criminators assigning the correct labels. The loss function
L(G,F,DD, DP) contains six types of loss terms: adversar-
ial loss Ladv(G,DD) + Ladv(F,DP), relaxed cycle consis-

tency loss Lrelaxed∼cyc(G,F ), strict cycle consistency loss
Lstrict∼cyc(G,F ), truncation loss Ltrunc(G,F ), style loss
Lstyle(G,DD), and quality loss based on the quality metric
model Lquality(G). Then the function Φ is optimized by
solving the minimax problem with the loss function:

min
G,F

max
DD,DP

L(G,F,DD, DP)

= (Ladv(G,DD) + Ladv(F,DP))

+ λ1Lrelaxed∼cyc(G,F ) + λ2Lstrict∼cyc(G,F )

+ λ3Ltrunc(G,F ) + λ4Lstyle(G,DD) + λ5Lquality(G)

(1)

The network architectures for G, F , DD and DP are
introduced in Section 4.2. The detailed design of six loss
terms are presented in Section 4.3. An overview of our
model is illustrated in Fig. 5.

4.2 Network Architecture

Our GAN model consists of (1) a generator G and a drawing
discriminator DD for face photo to APDrawing translation,
and (2) another generator F and a photo discriminator DP

for the inverse APDrawing to photo translation. Consider-
ing information imbalance between the face photo in P and
the APDrawing in D, we design different architectures for
(G,DD) and (F,DP).

4.2.1 Face photo to APDrawing generator G

The generator G takes a face photo p and a style feature s
as input, and outputs an APDrawing G(p, s) whose style is
specified by s.

Style feature vector s. We first train a classifier C (based
on VGG-19 [27]) that classifies APDrawings into three styles
(Fig. 2), using tagged web drawing data. Then we extract the
output of the last fully-connected layer and use a softmax
layer to calculate a 3-dimensional vector as the style feature
for each drawing (including untagged ones).

Network structure. G is an encoder-decoder with resid-
ual blocks [28] in the middle. It starts with a flat convolution
and two down convolution blocks to encode face photos and
extract useful features. Then the style feature is mapped to
a 3-channel feature map and inserted into the network by
concatenating it with the feature map of the second down
convolution block. An additional flat convolution is used to
merge the style feature map with the extracted feature map.
Afterwards, nine residual blocks of the same structure are
used to construct the content feature and transfer it to the
target domain. Then the output drawing is reconstructed by
two up convolution blocks and a final convolution layer.

4.2.2 Drawing discriminator DD

The drawing discriminator DD has two tasks: 1) discrimi-
nating generated APDrawings from real ones; and 2) clas-
sifying an APDrawing into three selected styles, where a
real drawing d is expected to be classified into the correct
style label (given by C), and a generated drawing G(p, s)
is expected to be classified into the style specified by the
3-dimensional style feature s.

For the first task, to enforce the existence of important
facial features in the generated drawing, in addition to
a global discriminator D that examines the full drawing,
we add three local discriminators Dln, Dle, Dll to focus on
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Generator 𝐺
Input photo 𝑝

Style feature 𝑠 Generated drawing 𝐺(𝑝, 𝑠)
Style classification Real / Fake

Generator 𝐹

Generator 𝐹 Generator 𝐺

HED

Input drawing 𝑑 Generated photo 𝐹(𝑑) Reconstruction 𝐺(𝐹 𝑑 , 𝑠)

HED

Relaxed cycle-consistency loss

LPIPS

Strict cycle-consistency loss

Discriminator𝐷

Discriminator𝐷𝒫
Real / Fake

Adversarial lossStyle loss

Adversarial loss

Nose Discrim𝐷𝑙𝑛 Eye Discrim𝐷𝑙𝑒 Lip Discrim𝐷𝑙𝑙𝑫𝓓 = {𝐷, 𝐷𝑙𝑛 , 𝐷𝑙𝑒 , 𝐷𝑙𝑙}

Trunc

Style feature 𝑠

Reconstruction 𝐹(𝐺 𝑝, 𝑠 )

Truncation loss

Quality Metric
Model 𝑀 Quality loss

Fig. 5. Our GAN model uses an asymmetric cycle structure, which consists of a photo to drawing generator G, a drawing to photo generator F , a
drawing discriminator DD and a photo discriminator DP . We use a relaxed cycle-consistency loss between reconstructed face photo F (G(p, s))
and input photo p, while enforcing a strict cycle-consistency loss between reconstructed drawing G(F (d)) and input drawing d. We also introduce
local drawing discriminators Dln, Dle, Dll for the nose, eyes and lips and a truncation loss. Our model deals with multi-style generation by inserting
a style feature vector into the generator and adding a style loss. A quality loss based on the quality metric model (Section 3) further encourages
generation of “good looking” APDrawings. The detailed architecture is illustrated in Appendix A2.

discriminating local drawings around the nose, eyes and
lip respectively. The inputs to these local discriminators are
masked drawings, where masks are obtained from a face
parsing network [29]. Finally DD consists of D,Dln, Dle and
Dll.

Network structure. The global discriminator D is based
on PatchGAN [5] and modified to have two branches. The
two branches share three down convolution blocks. Then
one branch Drf includes two flat convolution blocks to
output a prediction map of real/fake for each patch in the
drawing. The other classification branch Dcls includes more
down convolution blocks and outputs probability values
for three style labels. Local discriminators Dln, Dle, Dll also
adopt the PatchGAN structure.

4.2.3 APDrawing to face photo generator F and Photo

discriminator DP

The generator F in the inverse direction takes an AP-
Drawing d as input and outputs a face photo F (d). It
adopts an encoder-decoder architecture with nine residual
blocks in the middle. Photo discriminator DP discriminates
generated face photos from real ones, and also adopts the
PatchGAN structure.

4.3 Loss Function

There are six types of losses in our loss function (Eq. (1)).
We explain them in detail as follows.

Adversarial loss. The adversarial loss judges discrim-
inator DD’s ability to assign correct labels to real and
synthesized drawings. It is formulated as:

Ladv(G,DD) =
∑

D∈DD

Ed∈S(d)[logD(d)]

+
∑

D∈DD

Ep∈S(p)[log(1−D(G(p, s))]
(2)

where s is randomly selected from the style feature vectors
of APDrawings in the training data S(d) for each p. As DD

maximizes this loss and G minimizes it, this loss drives the
generated drawings to become closer to real drawings.

We also adopt an adversarial loss for the photo discrim-
inator DP and the inverse mapping F :

Ladv(F,DP) = Ep∈S(p)[logDP(p)]

+ Ed∈S(d)[log(1−DP(F (d))]
(3)

Relaxed forward cycle-consistency loss. As previously
mentioned, we observe that there is much less information
in domain D than information in domain P . We do not
expect the result from p → G(p, s) → F (G(p, s)) to be
pixel-wise similar to p. Instead, we only expect the edge



SUBMITTED TO IEEE T-PAMI 7

information in p and F (G(p, s)) to be similar. We extract
edges from p and F (G(p, s)) using HED [30], and evaluate
the similarity of edges by the LPIPS perceptual metric pro-
posed in [31]. Denote HED by H and the perceptual metric
by Llpips. The relaxed cycle-consistency loss is formulated
as:

Lrelaxed∼cyc(G,F ) = Ep∈S(p)[Llpips(H(p), H(F (G(p, s))))]
(4)

Strict backward cycle-consistency loss. On the other
hand, the information in the generated face photo is ade-
quate to reconstruct the APDrawing. Therefore, we expect
the result from d → F (d) → G(F (d), s(d)) to be pixel-
wise similar to d, here s(d) is the style feature of d. The
strict cycle-consistency loss in the backward cycle is then
formulated as:

Lstrict−cyc(G,F ) = Ed∈S(d)[||d−G(F (d), s(d))||1] (5)

Truncation loss. The truncation loss is designed to pre-
vent the generated drawing from hiding information in
small values. It is in the same format as the relaxed cycle-
consistency loss, except that the generated drawing G(p, s)
is first truncated to 6 bits3 to ensure that encoded informa-
tion is clearly visible, and then fed into F to reconstruct
the photo. More specifically, we first scale the intensities to
the range [0, 64), truncate the fractional part, and then scale
back. Denote the truncation operation as T [·], the truncation
loss is formulated as:

Ltrunc(G,F ) = Ep∈S(p)[Llpips(H(p), H(F (T [G(p, s)])))]
(6)

At the beginning of training process, the weight for the
truncation loss is kept low, otherwise it would be hard to
optimize the model. The weight gradually increases as the
training progresses.

Style loss. It is introduced to help G generate multiple
styles with different style features. Denote the classification
branch in DD as Dcls. The style loss is formulated as

Lstyle(G,DD) = Ed∈S(d)[−
∑

c

p(c) logDcls(c|d)]

+ Ep∈S(p)[−
∑

c

p′(c) logDcls(c|G(p, s))]

(7)
For a real drawing d, p(c) is the probability over style
label c given by classifier C , Dcls(c|d) is the predicted
softmax probability by Dcls over c. We multiply the term
by the probability p(c) in order to take into account those
real drawings that may not belong to a single style but
lie between two styles, e.g. with softmax probabilities
[0.58, 0.40, 0.02]. For generated drawing G(p, s), p′(c) de-
notes the probability over style label c and is specified by
style feature s, and Dcls(c|G(p, s)) is the predicted softmax
probability over c. This classification loss drives Dcls to
classify a drawing into the correct style and drives G to
generate a drawing close to a given style feature.

Quality loss based on the quality metric model. It is
designed for generating “good looking” APDrawings. The
quality metric model M (described in Section 3) predicts
a quality score of an APDrawing by how consistent it is

3. Generally the intensity of a digital image is stored in 8 bits.

with human perception, where better looking drawings get
higher prediction scores (in the range [0.1, 1]). We then
define the quality loss Lquality as

Lquality(G) = Ep∈S(p)[1−M(G(p, s))]. (8)

5 NEW STYLE GENERATION

In this section, we propose a solution to address the chal-
lenging problem of how to generate high-quality APDraw-
ings of “new styles” unseen in the training data. In our
multi-style generation setting, different style feature vectors
lead to different style outputs. The three target styles cor-
respond to vectors [1, 0, 0], [0, 1, 0], [0, 0, 1], respectively. An
interesting question is what results other style feature vectors
would generate and whether some style feature vectors could
generate new styles unseen in the training data.

More specifically, the three target styles we used here are
representative styles of portrait line drawings, as shown in
Fig. 2. These three styles vary in line thickness, arrangement
and dark region ratio, etc. The key features in the three styles
are: 1) the drawings of style1 often use thin parallel lines to
draw shadows, 2) the drawings of style2 use simple flowing
lines and few dark regions, and 3) the drawings of style3
use thick lines and large dark regions.

By interpolating between the style feature vectors, we
observe that the generated results show a combination of
target styles. As shown in Fig. 6e, the results of style feature
vector [0, 0.5, 0.5] exhibit a combination of styles 2 and 3, i.e.,
medium dark regions and flowing lines; in other words, less
dark regions compared to (d) and more compared to (c). The
result of vector [0.5, 0, 0.5] in Fig. 6f shows a combination of
styles 1 and 3, i.e., a combination of thin parallel lines and
dark region shadows; in other words, hair regions are more
detailed (parallel lines) than (d) and more abstract than (b).
Close-up views are also provided for better comparison.

Next we explore whether the network can generate some
“new” styles4 unseen in the training data. Given a “new”
style APDrawing dtarget as a reference, we use the trained
APDrawing generator G to look for a style feature vector s
in the style space that generates APDrawings most similar
in style to the unseen target dtarget. The best style feature
vector s∗ is found by optimizing the style distance between
the generated APDrawing guided by this vector and the
target dtarget. Denote the loss term to measure style distance
as Lstyle. The problem is formulated as:

s∗ = argmin
s

Lstyle(G(p, s), dtarget) (9)

where p is a face photo in the training data. Examples of
“new” style generation and the corresponding “new” style
targets are presented in Figures 7(a-d).

To model the style similarity, we explored existing
style losses [32] including Gram-matrix-based loss [4] and
histogram-based loss [33]. We found histogram loss is better
for measuring line drawing style differences. Given the
generated APDrawing A and the target style APDrawing

4. Here, a “new” style portrait drawing means that the style is not
one of the three target styles and unseen in the training data.
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(a) Input (b) [1,0,0] (c) [0,1,0] (d) [0,0,1] (e) [0, 0.5, 0.5]   (f) [0.5, 0, 0.5]
Style1: thin parallel

lines

Style2: few dark

regions; simple flowing

lines

Style3: large dark

regions; thick lines

Style2 + Style3:

medium dark 

regions and flowing 

lines

Style1 + Style3:

more detailed than

style3 (d), more

abstract than style1 (b)

style3

style2

medium
dark
region

Fig. 6. Results of interpolating between style feature vectors: (a) input photos, (b)-(d) results of three target styles, (e)-(f) results of interpolating
target styles. Close-up views are shown by the side.

(a) Target (b) Input (c) Optimization process              (d) Final result (e) Loss curve 

[0.36,0.39,0.25] [0.99,0.18,-0.17] [1.64,-0.54,-0.10]

[0.01,0.01,0.97] [0.50,-0.54,1.04] [0.42,-0.68,1.26]

Fig. 7. Examples of “new” style generation. Given a target “new” style portrait drawing (i.e., style unseen in training data) in (a), we find a proper
style feature vector that generates APDrawings similar to the target, by optimizing a histogram based style loss. The optimization process is shown
in (c) and the final generated APDrawing is shown in (d). The style loss change during optimization is shown in (e). Style feature vectors used for
generation are shown under each generated APDrawing. Close-up views are shown by the side.

B, histogram matching is performed to match feature acti-
vations of A to feature activations of B. We use VGG-19 [27]
to extract features and take five feature activations for style
representation (‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’,
‘conv5 1’). Denote the i-th feature activation as Oi, and
the j-th channel in Oi as Oij , we compute the normalized
histogram for Oij of A and match it to the normalized
histogram for Oij of B, thus obtaining the remapped ac-
tivations. The process is repeated for each channel in Oi.
Denote the i-th remapped activations as Ri(Oi, A,B). The
histogram loss is defined as:

Lhistogram(A,B) =
5∑

i=1

||Oi(A)−Ri(Oi, A,B)|| (10)

Then we set Lstyle in Eq. (9) to Lhistogram. We randomly
initialize the style feature vector and use an Adam opti-
mizer with learning rate 0.05 to optimize the vector. Some
examples of the optimization process and results are shown
in Figs. 7c and 7d.

6 GENERATOR DISSECTION

Our model can successfully learn to generate good looking
APDrawings in multiple styles using a single network, and
can generate APDrawings of “new styles” unseen in the
training data. To better interpret our model, we explore the
semantic meaning of convolution layers in the APDrawing
generator G by visualizing feature maps and analyzing their
relation to face semantics. Following [34], we measure the
spatial agreement between thresholded feature map and
facial part segmentation with intersection-over-union (IoU).
For a convolution layer unit u and a facial part region r (e.g.,
upper lip, left eye, etc.), denote the feature map of u as Fu,
the upsampled feature map as F ↑

u , and the facial part region
r’s segmentation5 as Sr . The IoU is calculated as

IoUu,r =
Ep|(F

↑
u > tu,r) ∩ Sr(p)|

Ep|(F
↑
u > tu,r) ∪ Sr(p)|

tu,r = argmax
t

I(F ↑
u > t;Sr(p))

H(F ↑
u > t;Sr(p))

(11)

5. A face parsing network [29] is used for facial part segmentation.
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Layer resblock2_1 unit #18 thresholded feature map matches category “upper lip” segmentation with average IoU=0.31

Layer resblock3_2 unit #77 thresholded feature map matches category “eye” segmentation with average IoU=0.41

Layer resblock5_1 unit #33 thresholded feature map matches category “nose” segmentation with average IoU=0.05

Fig. 8. Visualizing interpretable units. The rows from top to bottom show units that best match “upper lip”, “eye”, and “nose” categories, respectively.
The IoU is measured over the full test set of 154 images. For each unit, eight images with top IoU are shown, and the masks of thresholding the

upsampled feature map (F
↑
u > tu,r) are outlined in yellow.

where p denotes face photos sampled from the face photo
domain P , the IoU is measured over a test set of face
photos. The map F ↑

u > tu,r produces a binary mask by
thresholding the upsampled feature map at a fixed level
tu,r . Sr is a binary mask in which the foreground contains
pixels belonging to the facial part region r. The threshold
tu,r is computed by maximizing the information quality
I/H where H is the joint entropy and I is the mutual
information [35].

We use IoUu,r to find the facial parts related to each
convolution layer unit and label each unit with the facial
part that best matches it. The units with maxr IoUu,r > 0.05
are called “interpretable” units. Figure 8 shows some ex-
amples of interpretable units with different labels. Among
5,505 convolution units in our generator G, 594 of them are
interpretable units, showing that face semantic information
is learned and incorporated during APDrawing generation.

7 EXPERIMENTS

We implemented our model in PyTorch. All experiments
are performed on a computer with a Titan Xp GPU. The
parameters in Eq. (1) are λ1 = 5 − 4.5i

N
, λ2 = 5, λ3 = 4.5i

N
,

λ4 = 1, λ5 = 0.5 · 1{i>100}(i), where 1A is the indicator
function, i is the current epoch number, and N is the total
epoch number (N = 300). We apply the quality loss after
100 epochs so that the model can learn a proper drawing
first and is then optimized towards better quality.

7.1 Experiment Setup

Data. We collect face photos and APDrawings from the
Internet and construct (1) a training corpus of 798 face
photos and 625 delicate portrait line drawings, and (2) a
test set of 154 face photos. Among the collected drawings,
(1) 84 are labeled with artist Charles Burns, 48 are labeled
with artist Yann Legendre, 88 are labeled with artist Kathryn
Rathke, and 212 are from the website vectorportral.com, and
(2) others have no tagged author/source information. We

(a) Input Content (b) Input Style (c) Gatys (d) LinearStyleTransfer (e) Ours(style1,2,3)

Fig. 9. Comparison with two state-of-the-art neural style transfer meth-
ods, i.e., Gatys [4] and LinearStyleTransfer [7].

observed that both Charles Burns and Yann Legendre use
similar thin parallel lines to draw shadows, and so we
merged drawings of these two artists into style1. We choose
the drawings of Kathryn Rathke as style2 and the drawings
of vectorportral as style3. Styles 1 and 2 have distinctive
features: Kathryn Rathke uses flowing lines but few dark
regions, while vectorportral uses thick lines and large dark
regions. All the training images are resized and cropped to
512× 512 pixels.

Training process. It includes two steps: (1) training
classifier C and (2) Training our model. We first train a style
classifier C (Section 4.2.1) with the tagged drawings and
data augmentation (including random rotation, translation
and scaling). To balance the number of drawings in each
style, we take all drawings from the first and second styles,
but only part of the third style in the training stage of C ,
in order to achieve balanced training for different styles. In
the second step, we use the trained classifier to obtain style
feature vectors for all 625 drawings. We further augment
training data using synthesized drawings. Training our net-
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(a) Input (b) DualGAN (c) CycleGAN (d) UNIT (e) Ours(style1) (f) Ours(style2) (g) Ours(style3)

Fig. 10. Comparison with three single-modal unpaired image-to-image translation methods: DualGAN [8], CycleGAN [6], UNIT [9]. All methods are
trained using the same training corpus with both real and synthesized drawings.

(a) Input (b) MUNIT (c) ComboGAN (style1, 2, 3) (d) DRIT (style1, 2, 3) (e) Ours (style1, 2, 3)

Fig. 11. Comparison with three unpaired image-to-image translation methods that can deal with multi-modal or multi-domain translation: MUNIT [10],
ComboGAN [22], DRIT [23]. All methods are trained using the same training corpus with both real and synthesized drawings.

work with the mixed data of real and synthesized drawings
results in high-quality generation for all three styles; see
Figs. 9-11 for some examples, where our results of styles
1, 2, 3 are generated by feeding in style feature vectors
[1, 0, 0], [0, 1, 0], [0, 0, 1], respectively.

7.2 Comparisons

We compare our method with two state-of-the-art neural
style transfer methods: Gatys [4], LinearStyleTransfer [7],
and six unpaired image-to-image translation methods: Du-
alGAN [8], CycleGAN [6], UNIT [9], MUNIT [10], Combo-
GAN [22] and DRIT [23].

For the two neural style transfer methods, i.e., Gatys [4]
and LinearStyleTransfer [7], their inputs are a content image
(face photo) and a style image (one of the collected artist line
drawings). For the six unpaired image-to-image translation
methods, i.e., DualGAN [8], CycleGAN [6], UNIT [9], MU-
NIT [10], ComboGAN [22] and DRIT [23], we retrained each
comparison model using our training set, which consists of
978 photos, and both 625 collected real drawings and 353
synthesized drawings.

Comparisons with neural style transfer methods are
shown in Fig. 9. Gatys’ method fails to capture APDrawing
styles because it uses the Gram matrix to model style as
texture, but APDrawings have little texture. LinearStyle-

Transfer produces visually better results, although they are
still not desired APDrawings: the generated drawings have
many thick lines and they are produced in a rough manner.
Compared to these example-guided style transfer methods,
our method learns from a set of APDrawings and generates
delicate results for all three styles.

Comparisons with single-modal unpaired image-to-
image translation methods are shown in Fig. 10. DualGAN
and CycleGAN are both based on strict cycle-consistency
loss. This causes a dilemma in photo-to-APDrawing trans-
lation: either a generated drawing looks like a real draw-
ing (i.e., close to binary, containing large uniform regions)
which cannot properly reconstruct the original photo, or a
generated drawing has good reconstruction with grayscale
changes but which does not look like a real drawing.
Meanwhile, compared to CycleGAN, DualGAN is more
grayscale-like, less abstract and worse in line drawing style.
UNIT adopts feature-level cycle-consistency loss, which less
constrains the results at the image level, making the face
appear deformed. In comparison, our results both preserve
face structure and have good image and line quality.

Comparisons with unpaired image-to-image translation
methods that can deal with multi-modal or multi-domain
translation are shown in Fig. 11. Results show that MUNIT
does not capture the APDrawing styles and the results are
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TABLE 1
User study results. The i-th row shows the percentages of different
methods (ComboGAN [22], CycleGAN [6], our conference version

(Ours-pre) [3] and Ours) being ranked as the i-th among four methods.

ComboGAN CycleGAN Ours-pre Ours
Rank1 23.7% 8.1% 23.1% 45.1%
Rank2 12.2% 8.9% 46.4% 32.6%
Rank3 35.1% 27.9% 21.9% 15.1%
Rank4 29.0% 55.2% 8.6% 7.2%

TABLE 2
Analysis of variance (ANOVA) results for pairwise comparisons.

Pairwise comparison Ranked Best
Ours vs. ComboGAN p=3.57e-7
Ours vs. CycleGAN p=1.32e-22
Ours vs. Ours-pre p=2.09e-11

more similar to a pencil drawing with shading and many
gray regions. ComboGAN fails to capture all three repre-
sentative styles, which performs slightly better on styles
2 and 3 than style 1. DRIT also fails to capture all three
representative styles; the results of all three styles look
similar and only approximate the target styles 1 and 3. In
comparison, our method generates distinctive results for
three styles and reproduces the characteristics for each style
well.

7.3 Quantitative Evaluation

User study. Considering the artistic merits of portrait line
drawings, we conduct a user study to compare our method
with CycleGAN [6], ComboGAN [22] and our conference
version (Ours-pre) [3]. LinearStyleTransfer, Gatys, Dual-
GAN and UNIT are not included because of their lower
visual quality. MUNIT and DRIT are not included because
they obviously do not capture the target styles. We ran-
domly sample 60 groups of images/drawings from the test
set: 20 for style1 comparison, 20 for style2 and 20 for style3.
Before the test, the participants went through some practice
examples, and were given guidelines about the standard of
good portrait line drawings. During the test, participants (1)
were shown a photo, a real drawing (the style reference) and
4 generated drawings at a time, and (2) were asked to sort 4
results from best to worst. 54 participants attended the user
study and 3,240 votes were collected in total.

Results of the percentages of each method ranked as 1st,
2nd, 3rd and 4th are summarized in Table 1. Our method
ranks the best with 45.1% of the votes, which is higher than
the other methods, i.e., ComboGAN, CycleGAN and our
conference version, which rank the best in 23.7%, 8.1% and
23.1% of the votes. The average rank of our method is 1.84,
lower compared to CycleGAN’s 3.30, ComboGAN’s 2.69
and our conference version’s 2.16. We then conduct analysis
of variance (ANOVA) between our method and each of
other methods on the percentage of being ranked best by
individual users. Pairwise ANOVA results are shown in
Table 2. All of the p-values are � 0.01, justifying that the
rejection of the null hypothesis and the differences between
the means of our method and each of other three methods
(ComboGAN, CycleGAN or our conference version) are
statistically significant. A test boxplot of four methods is

ComboGAN CycleGAN Ours-pre Ours

0.0

0.2

0.4

0.6

0.8

Ra
nk
ed
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t

Fig. 12. Test boxplot [36] of four methods. In each box, the central red
line indicates the median, and the bottom and top blue edges of the box
indicate the 25% and 75% percentiles respectively. The dashed black
line extends to the extreme data points.

TABLE 3
Fréchet Inception Distance (FID) of our method and four multi-modal

image translation methods. The FID values are computed between the
set of generated APDrawings of each style and the collected true

drawings of the corresponding style.

Methods Style1 ↓ Style2 ↓ Style3 ↓

MUNIT [10] 194.3 267.4 242.8
ComboGAN [22] 184.9 144.1 141.4

DRIT [23] 82.8 135.0 119.9
Ours-pre [3] 88.3 139.0 108.2

Ours 81.2 114.3 89.7

shown in Fig. 12. These results demonstrate that our method
outperforms other methods. All generated drawings evalu-
ated in the user study are presented in the appendix.

GAN Metric Evaluation. We adopt the Fréchet Incep-
tion Distance (FID) [37] to evaluate the similarity between
the distributions of two drawing sets — one is the set
of generated APDrawings for one style and the other is
the set of collected true drawings for this style — where
lower FID indicates better similarity. By changing the input
style feature vector, we transform all face photos in the
test set into three styles of APDrawings. The FID values
between the set of generated APDrawings of each style
and the collected drawings of the corresponding style are
computed and summarized in Table 3. The results show that
compared with the other multi-modal generation methods
(MUNIT [10], ComboGAN [22], DRIT [23] and our confer-
ence version [3]), our method has lower FID on all three
styles, indicating our method generates a closer distribution
to the distribution of true drawings.

Quality metric model evaluation. We apply the trained
quality metric model M on generated drawings of different
methods, and the quality scores are listed in Table 4. The
score for each method is averaged on the test set. Our
method achieves the highest score, indicating that our gen-
erated results have the best perceptual quality according to
the trained metric model.

More test results. In addition to photos collected from
Internet, we also test our method on photos from the
CelebAMask-HQ Dataset [38]. The results are summarized
in Appendix A5.3.
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TABLE 4
The scores predicted by quality metric model M on the results of

different methods. The score for each method is averaged on the test
set. Higher quality score indicates better quality.

Methods Gatys LST DualGAN CycleGAN UNIT
Quality score 0.37 0.35 0.35 0.35 0.36

Methods MUNIT ComboGAN DRIT Ours-pre Ours
Quality score 0.33 0.40 0.44 0.45 0.51

(a) Input (b) w/o !!"#$%"&(c) w/o !!"#$%"& (d) w/o "#∗ (e) w/o HED (f) Ours

w/o "#∗

Fig. 13. Ablation study: (a) input photos, (b) results of removing re-
laxed cycle-consistency loss (i.e. using L1 loss) and removing local
discriminators, (c) results of removing relaxed cycle-consistency loss,
(d) results of removing local discriminators, (e) results of removing HED
in calculating relaxed cycle-consistency loss, (f) our results.

7.4 Ablation Study

We perform an ablation study based on the four key ingre-
dients of our model: (1) relaxed cycle consistency loss, (2)
the quality loss based on the quality metric model, (3) local
discriminators, and (4) HED edge extraction. Results show
that they are all essential to our model. In Appendix A4,
three more ablation studies are presented: the first focuses
on the style feature vector and style loss, the second focuses
on the truncation loss, and the third focuses on how face
region information is utilized in the discriminator.

As shown in Fig. 13b, without relaxed cycle consistency
loss and local discriminators, facial features are often miss-
ing, e.g., the nose is missing in all three rows, and eye details
are missing in the first and third rows. Removing only re-
laxed cycle consistency loss (Fig. 13c) preserves more facial
feature regions (e.g., the nose in the second row) when com-
pared to Fig. 13b, but some parts (e.g., the nose in the third
row) are still missing compared to our method (Fig. 13f).
Removing only local discriminators (Fig. 13d) produces few
missing parts: although the results are much better than
Fig. 13b in terms of preserving facial structure, some facial
features are not drawn in the desired manner, i.e., some
black regions or shadows (that are usually drawn near facial
boundaries or hair) appear near the nose. When both relaxed
cycle consistency loss and local discriminators are used,
results (Fig. 13f) preserve all facial feature regions and no
undesired black regions or shadows appear in faces. These
results show that both relaxed cycle consistency loss and
local discriminators help to preserve facial feature regions
and are complementary to each other: (1) the relaxed cycle
loss works in a more global and general way, it alleviates the
need to hide information and helps preserve outlines (since
lines are more easily missing in nose, eyes and lips regions,

TABLE 5
Fréchet Inception Distance (FID) of the ablation studies. The FID

values are computed between the set of generated APDrawings of
each style and the collected true drawings of the corresponding style.

Methods Style1 ↓ Style2 ↓ Style3 ↓ Avg ∆

w/o Lrelaxed, w/o Dl∗ 102.9 126.8 105.1 16.53
w/o Lrelaxed 88.0 132.9 107.0 14.23

w/o Dl∗ 89.4 142.3 101.4 15.97
w/o HED 84.1 114.8 103.4 5.70

w/o Lquality [3] 88.3 139.0 108.2 16.77
Ours 81.2 114.3 89.7 /

their effects on these regions are more visible), and (2) as
a comparison, the local discriminators work in a local way,
dedicated to eyes, nose and lips, improving drawings and
eliminating artifacts in these local regions.

As shown in Fig. 13e, without HED edge extraction in
the relaxed cycle consistency loss calculation (i.e., calcu-
lating LPIPS perceptual similarity between the input and
reconstructed photo), the lines are often discontinuous or
blurred, e.g., the nose outlines in the second row are discon-
tinuous (upper right), and the noses in the first and third
rows are blurred and messy. In comparison, our results have
clear, sharp and continuous lines, demonstrating that using
HED edge extraction helps the model to generate clearer
and more complete lines.

As shown in Fig. 14(b), without the quality loss, the
results contain more artifacts including undesired dark re-
gions and parallel lines on the face (highlighted in red
boxes). In comparison, our results in Fig. 14(c) are cleaner
and of better quality.

The quantitative evaluation of the above ablation studies
are reported in Table 5. FID scores of our results are lower
(better) in all three styles than the ablated versions. We
further compute the average difference between our FID
and each ablated version, shown as “Avg ∆”.

Contributions of each component. (1) Qualitative and
quantitative results show that cycle consistency loss and
local discriminators are complementary to each other, and
work together to better preserve facial features:

• without both components, the average ∆ is larger
than without a single component;

• without a single component, the average ∆ is also
large, indicating these two components contribute
largely to the final results.

(2) In addition, the visual differences between results of
removing the quality loss and ours are easily visible, and the
quantitative difference is also large, indicating the quality
loss helps remove undesirable artifacts and improves qual-
ity. (3) Compared to these three components, HED itself has
smaller impact on the final results.

8 CONCLUSION

In this paper, we propose a method for high quality AP-
Drawing generation using asymmetric cycle mapping. Our
method can learn multi-style APDrawing generation from
web data of mixed styles using an additional style feature
vector input and a soft classification loss. In particular, our
method makes use of unpaired training data and improves
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(a) Input (b) w/o ℒ!"#$%&' [3] (style 1, 2, 3) (c) Ours (style 1, 2, 3)

Fig. 14. Ablation study on quality loss: (a) input photos, (b) results of removing quality loss, (c) our results. Artifacts are highlighted in red boxes.

upon [3] in the following four aspects: (1) a novel quality
metric for APDrawings is proposed; (2) based on the quality
metric, a new quality loss that is consistent with human
perception is introduced to guide the model toward better
looking drawings; (3) a “new” style APDrawing generation
mechanism is proposed; and (4) the model is dissected by
visualizing feature maps and exploring face semantics.
Experiments and a user study demonstrate that our method
can (1) generate high quality and distinctive APDrawing
results for the styles in training data and new unseen styles,
and (2) outperforms state-of-the-art methods.
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