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A1 OVERVIEW

This appendix includes the following material:

• detailed design of the network architecture (Sec-
tion A2);

• more style examples in the training set (Section A3);
• three more ablation studies and their quantitative

evaluation results (Section A4);
• all evaluation material used in the user study in

Section 7.4 of the main paper (Section A5.1);
• comparison with APDrawingGAN++ (Section A5.2);
• more test results on other face dataset (Section A5.3).

A2 DETAILS OF NETWORK ARCHITECTURE

In the main paper, we summarize the flowchart of the net-
work architecture in Figure 5 and introduce the architecture
design principle in Section 4.2. Here we present the fine
details of our proposed network architecture in Figure A7.
We denote the output channel as c, convolution kernel size
as k, and stride in a convolution layer as s. ‘Norm’ means
the instance normalization layer and ‘LReLU’ means the
leaky ReLU with α = 0.2.

A3 MORE STYLE EXAMPLES IN TRAINING SET

In the main paper, we introduce the selected three represen-
tative styles from the collected data and show three exam-
ples in Figure 2: (1) the first style is from Yann Legendre
and Charles Burns where thin parallel lines are used to
draw shadows; (2) the second style is from Kathryn Rathke
where few dark regions are used and facial features are
drawn using simple flowing lines; (3) the third style is from
vectorportal.com where continuous thick lines and large
dark regions are utilized. Here we provide more examples
in Figure A1.
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Fig. A1. More examples for three styles in the training set. Close-up
views are shown alongside.

A4 THREE MORE ABLATION STUDIES

In Section 7.4 of the main paper, we study some key factors
in our model, i.e., relaxed cycle-consistency loss, quality
loss, local discriminators, and HED edge extraction. Here,
we present three more ablation studies: (1) the first focuses
on the style feature and style loss, (2) the second focuses on
the truncation loss, and (3) the third focuses on how face
region information is utilized in the discriminator.

In our method, when inputting a face photo and a style
feature vector, the system outputs an APDrawing with style
specified by the style feature vector. If we remove the style
feature vector input and style loss from our system, when
inputting a face photo, the model can output an APDraw-
ing, but cannot generate APDrawings of different styles.
Since the network is trained with mixed data, the output
frequently exhibits different or mixed styles in different
facial regions in an unpredictable way. Three examples are
illustrated in Figure A2, in which all three photos contain
a man face with beards. On the top of Figure A2(b), the
generated APDrawing shows a parallel line style in the
beard and hair regions (similar to style 1). In the middle of
Figure A2(b), thick line and dark region style appears near
the eyes, hair and jawline regions (similar to style 3). At the
bottom of Figure A2(b), the generated APDrawing shows
mixed styles. In comparison, as illustrated in Figures A2(c-
e), after introducing style feature vector and style loss, our
method can generate APDrawing results for each distinctive
style, specified by the input style feature vector.
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(a) Input (b) w/o style feature (c) Ours (style1) (d) Ours (style2) (e) Ours (style3)

Fig. A2. Ablation study on style feature vector input and style loss. From
left to right: input photos, results of removing style feature input and style
loss, our results in styles 1, 2 and 3.

(a) Input (b) w/o truncation loss (style1, 2, 3)                                    (c) Ours (style1, 2, 3)

Fig. A3. Ablation study on truncation loss. From left to right: input photos,
results of removing truncation loss (style1, 2, 3), and our results (style1,
2, 3).

We also study the role of truncation loss: two examples
are shown in Figure A3. The truncation loss is designed to
prevent the generated drawings from hiding information
in small values. Without the truncation loss, the results
sometimes do not draw full outlines of facial features (e.g.,
nose). As shown in Figure A3b, the nose in the first row lacks
the middle outline and the nose in the second row lacks the
right outline. In comparison, by adding the truncation loss,
our system can generate complete outlines of different facial
features.

We further perform a comparison by replacing local
discriminators with a single discriminator which uses a new
channel containing face region information. Our experiment
shows that the results of this ablation are worse than those
by our method, e.g., with partial facial features missing or
messy (Figure A4). Also note that the face parsing masks are
computed by an off-the-shelf face parsing network, with the
parsed eyes/nose/lips regions dilated to make them cover
the facial features. Some examples of the face parsing masks
are shown in Figure A5. The results show that our system
does not require accurate parsing masks.

The quantitative evaluation of the above ablation studies
and comparisons are reported in Table A1. The FID values
of these ablation studies are worse than ours:

• without style feature and style loss, the generated
results are not of a uniform style, so the distance to
each style is much larger than ours;

• without truncation loss, the FID also increases
(worse).

(a) Input (b) replace local discriminators with a new channel (style1, 2, 3)                                    (c) Ours (style1, 2, 3)

Fig. A4. Comparison of results with our local discriminators (c) and
replacing them with a new channel (b) for input photos (a).

Fig. A5. Examples of face parsing masks.

These results show that the ablated components (style
feature, truncation loss) are essential for our model. The
comparison of replacing local discriminators with a single
discriminator using a new channel has much larger FID
value than ours, indicating a single discriminator using a
new channel is harder to train, and our design of introduc-
ing local discriminators for important facial regions is more
effective. Avg ∆ shows the average difference between our
method and each ablated version.

A5 MORE RESULTS

A5.1 Material in the User Study

In Section 7.2 of the main paper, we compare our method
with state-of-the-art methods in neural style transfer and
image translation. In Section 7.3 of the main paper, we
conduct a user study in which users sort the results of four
methods (CycleGAN [1], ComboGAN [2], our conference
version [3] and our method). Each time, users compare
different methods’ results of a single style. We denote 1
input photo and 4 generated drawings of a single style
as a group. In total, 60 groups are evaluated in this user
study. Among them, 20 groups are for style1 comparison, 20
groups are for style2 and 20 groups are for style3. We show
all 60 groups in Figures A8-A13. For a more comprehensive
comparison, we show results of all the 3 styles for the multi-
modal methods (ComboGAN, our conference and ours) and
highlight the compared group in the user study in green
boxes. Note that all these 60 groups are randomly chosen
from the test set. Our method outperforms the other three
methods in most groups in terms of style similarity, face
structure preservation and image visual quality. The results
of the user study summarized in Section 7.3 of the main
paper also demonstrate the advantage of our method, where
43.0% votes chose our method to be the best among the four
methods, higher than the best vote percentages of the other
three methods.

A5.2 Comparison with APDrawingGAN++

APDrawingGAN++ [4] is a deep neural network model spe-
cially designed for APDrawing generation by using a hierar-
chical structure and a distance transform loss. However, this
method requires paired training data and cannot adapt well



SUBMITTED TO IEEE T-PAMI 3

TABLE A1
Fréchet Inception Distance (FID) of more ablation studies and

comparisons. The FID values are computed between the set of
generated APDrawings of each style and the collected true drawings of

the corresponding style.

Methods Style1 ↓ Style2 ↓ Style3 ↓ Avg ∆

w/o style feature 114.3 122.1 111.5 20.90
w/o truncation loss 81.7 120.1 99.2 5.27

replace Dl∗ with a single D 93.6 152.8 124.0 28.40
Ours 81.2 114.3 89.7 /

Input APDrawingGAN++ Ours(style1, 2, 3)

Fig. A6. Comparisons of APDrawingGAN++ and our method on chal-
lenging photos with arbitrary head orientation. From left to right: input
photos, APDrawingGAN++ results, and our results (styles 1, 2, 3).

to face photos with unconstrained lighting in the wild due
to the limited availability of paired training data. In com-
parison, our method only uses unpaired training data, which
makes it possible to include more challenging photos into
the training set. Therefore, our method can generate high
quality APDrawings for challenging photos under various
conditions. We compare the visual quality of APDrawing-
GAN++ and our method using some challenging examples
as illustrated in Figure A14. These challenging examples
include unconventional lighting conditions (1st-4th rows),
unconventional expression or taking accessories like sun-
glasses (5th-7th rows), or blurry looking (8th-9th rows, zoom
in to check). APDrawingGAN++ generates messy results for
these challenging photos, while our method generates high-
quality APDrawings with much better visual effect.

Moreover, APDrawingGAN++ uses a hierarchical net-
work structure that feeds local rectangle regions around
eyes, nose and mouth centers into local generators and dis-
criminators. This setting cannot tolerate a large head tilt and
requires that its input photos are in the upright orientation
(i.e., the photo needs to be rotated so that the two eyes are on
a horizontal line). Then the local regions of eyes, nose and
mouth can be covered by rectangle regions. In comparison,
although our model also has local discriminators, we use
face masks (obtained from a face parsing network [5]), and
the inputs to local discriminators are the masked eyes, nose,
mouth regions. Therefore our method does not need the

input images to be adjusted into the upright orientation.
Comparisons of APDrawingGAN++ and our method on
face photos with arbitrary head orientation are shown in
Figure A6. The results show that APDrawingGAN++ often
generates messy results and some boundaries of rectangle
local regions are clearly visible, whereas our results are clean
and have good visual quality.

A5.3 More Tests on the CelebAMask-HQ Dataset

In the main paper, we test our model on photos collected
from Internet. Here, we further test our method on photos
from the CelebAMask-HQ Dataset [6]. The results are sum-
marized in Figure A15, showing that our method generates
high quality results with good image and line quality on the
CelebAMask-HQ Dataset.
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Fig. A7. Detailed network architecture of our model. We denote the output channel number as c, convolution kernel size as k, and stride in a
convolution layer as s. ‘Norm’ means the instance normalization layer, and ‘LReLU’ means the leaky ReLU with α = 0.2.
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Input CycleGAN ComboGAN (style 1, 2, 3) Ours-pre (style 1, 2, 3) Ours (style 1, 2, 3)

Fig. A8. More qualitative comparisons (user study material). From left to right: input face photos, CycleGAN [1] results, ComboGAN [2] results (style
1, 2, 3), results of our conference version (Ours-pre) [3] (style 1, 2, 3), and our results (style 1, 2, 3). In the user study, users compared each time
the results of a single style. 60 groups are evaluated and there are 20 groups for each style. We show results of all the 3 styles and highlight the
compared group in green boxes.
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Input CycleGAN ComboGAN (style 1, 2, 3) Ours-pre (style 1, 2, 3) Ours (style 1, 2, 3)

Fig. A9. More qualitative comparisons (user study material). From left to right: input face photos, CycleGAN [1] results, ComboGAN [2] results (style
1, 2, 3), results of our conference version (Ours-pre) [3] (style 1, 2, 3), and our results (style 1, 2, 3). In the user study, each time users compared
results of a single style. 60 groups are evaluated and there are 20 groups for each style. We show results of all the 3 styles and highlight the
compared group in green boxes.
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Input CycleGAN ComboGAN (style 1, 2, 3) Ours-pre (style 1, 2, 3) Ours (style 1, 2, 3)

Fig. A10. More qualitative comparisons (user study material). From left to right: input face photos, CycleGAN [1] results, ComboGAN [2] results
(style 1, 2, 3), results of our conference version (Ours-pre) [3] (style 1, 2, 3), and our results (style 1, 2, 3). In the user study, users compared each
time the results of a single style. 60 groups are evaluated and there are 20 groups for each style. We show results of all the 3 styles and highlight
the compared group in green boxes.
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Input CycleGAN ComboGAN (style 1, 2, 3) Ours-pre (style 1, 2, 3) Ours (style 1, 2, 3)

Fig. A11. More qualitative comparisons (user study material). From left to right: input face photos, CycleGAN [1] results, ComboGAN [2] results
(style 1, 2, 3), results of our conference version (Ours-pre) [3] (style 1, 2, 3), and our results (style 1, 2, 3). In the user study, users compared each
time the results of a single style. 60 groups are evaluated and there are 20 groups for each style. We show results of all the 3 styles and highlight
the compared group in green boxes.
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Input CycleGAN ComboGAN (style 1, 2, 3) Ours-pre (style 1, 2, 3) Ours (style 1, 2, 3)

Fig. A12. More qualitative comparisons (user study material). From left to right: input face photos, CycleGAN [1] results, ComboGAN [2] results
(style 1, 2, 3), results of our conference version (Ours-pre) [3] (style 1, 2, 3), and our results (style 1, 2, 3). In the user study, each time users
compared results of a single style. 60 groups are evaluated and there are 20 groups for each style. We show results of all the 3 styles and highlight
the compared group in green boxes.
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Input CycleGAN ComboGAN (style 1, 2, 3) Ours-pre (style 1, 2, 3) Ours (style 1, 2, 3)

Fig. A13. More qualitative comparisons (user study material). From left to right: input face photos, CycleGAN [1] results, ComboGAN [2] results
(style 1, 2, 3), results of our conference version (Ours-pre) [3] (style 1, 2, 3), and our results (style 1, 2, 3). In the user study, each time users
compared results of a single style. 60 groups are evaluated and there are 20 groups for each style. We show results of all the 3 styles and highlight
the compared group in green boxes.
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Input APDrawingGAN++ Ours(style1) Ours(style2) Ours(style3)

Fig. A14. Comparison of APDrawingGAN++ [4] and our method on face photos under some challenging situations. From left to right: input face
photos, APDrawingGAN++ [4] results, our results (style1), our results (style2), our results (style3). The face photos in the 5-7th rows are from
NPRportrait1.0 Benchmark [7]. The face photo in the 8th row is from LFW Dataset [8].
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Input Ours(style1) Ours(style2) Ours(style3) Input Ours(style1) Ours(style2) Ours(style3)

Fig. A15. More test results on CelebAMask-HQ Dataset [6]. From left to right: input face photos, our results (style1), our results (style2), our results
(style3), input face photos, our results (style1), our results (style2), our results (style3).


