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Abstract—Natural image statistics is an important area of research in cognitive sciences and computer vision. Visualization of statistical

results can help identify clusters and anomalies as well as analyze deviation, distribution and correlation. Furthermore, they can

provide visual abstractions and symbolism for categorized data. In this paper, we begin our study of visualization of image statistics by

considering visual representations of power spectra, which are commonly used to visualize different categories of images. We show

that they convey a limited amount of statistical information about image categories and their support for analytical tasks is ineffective.

We then introduce several new visual representations, which convey different or more information about image statistics. We apply

ANOVA to the image statistics to help select statistically more meaningful measurements in our design process. A task-based user

evaluation was carried out to compare the new visual representations with the conventional power spectra plots. Based on the results

of the evaluation, we made further improvement of visualizations by introducing composite visual representations of image statistics.

Index Terms—Image statistics, image visualization, usability study, visual design.✦
1 INTRODUCTION

Natural image statistics are collections of statistical measure-

ments that characterize, in some way, certain visual attributes

of images captured from nature. It has been an area of

interest in cognitive science and computer vision for over three

decades (e.g., [7], [13], [23], [28], [32], [33]). Since humans

have little difficulty in classifying scenes [33] and recognizing

objects, Rosch et al. [28] hypothesized that there might be

basic processes in the human vision system corresponding

to gathering particular statistical measurements. The research

of these statistical measurements has led to natural image

statistics, which are found to have applications in many areas

including content-based image retrieval [16], object detection

[10], image compression [1], realism of computer synthesized

imagery [26] and visualization of image databases.

Statistics can often benefit from effective visualization and

in this paper we investigate the visualization of natural image

statistics. Typical visualization techniques used to display

image statistics, include bar charts, scatter plots, line plots,

pixel-based visualization and 3D surfaces (Fig. 1). Such visual

representations can support analytical tasks (e.g., cluster and

anomaly identification; deviation, distribution and correlation

analysis) and provide visual abstractions and symbolism. As

an example, Fig. 2 shows ten line plots for different categories

of images. Such plots are commonly referred to as spectral sig-

natures [32] (for more on spectral signatures, see Section 2.1),

one of the important statistical properties of images.
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In this work, we will address the following two questions.

(a) How well can such abstract visualizations support the

above mentioned analytical tasks?

(b) Can we design more effective visual abstractions and

symbolism for natural image statistics?

To answer (a), we use several conventional visualization

techniques to study the correlation between the spectral

signatures and the underlying classification of images. We

show that spectral signatures encode very limited statistical

measurements and cannot support identification of clusters

and anomalies nor analysis of deviation, distribution and

correlation (see Section 4). To answer (b), we first establish

a set of criteria for designing the visual representations. We

then employ the ANOVA statistical procedure, in conjunction

with visualization, to identify informative statistical measure-

ments (see Section 5). This enables us to select a subset of

measurements to be encoded in the new visual representations.

Our new visual representations exhibit compactness in visual

display, facilitating visual abstraction and symbolism as well

as richness in information content, providing more effective

support for analytical tasks (see Section 6). A task-driven

user study was carried out to evaluate the new representations,

confirming the relative merits of these designs. In Section 7

we introduce a further collection of new composite designs

based on the outcomes of the user study. A subsequent user

study shows that these modified visualizations provide even

better support for a variety of analytical tasks. We present our

concluding remarks in Section 8.

2 RELATED WORK

In this section, we survey the related research and show how

our work differs from existing approaches in the literature.

2.1 Natural Image Statistics

Natural image statistics uses methods and measurements to

discover particularly interesting regularities and patterns in
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(a) Images (b) Histogram (c) Gradient hist (d) Lab space (e) FFT, 2D (f) FFT, 3D

Fig. 1: Typical visualizations of image statistics for a single image (top row) and a category of images (bottom row). For

the images in (a), the techniques shown are: (b) area plots of intensity histograms, (c) pixel-based gradient histograms (with

magnitude and orientation as axes), (d) scatter plots of color distribution in Lab space, (e) pixel-based visualization of Fourier

power spectra, and (f) 3D surface representations of power spectra.

(a) Building (b) City view (c) Street (d) Highway (e) Man-Made

(f) Coast (g) Field (h) Mountain (i) Forest (j) Natural

Fig. 2: Contour representations of Fourier power spectral signatures.

sets of images. A recent survey [23] provides an up-to-date

review of the state of the art. Image statistics can be obtained

from many different sources, such as gray-level images, color

images, range images or videos [8]. The simplest statistical

descriptions are extracted from gray-level images. Although

they include less information compared to that from color

images, for many human or computer vision tasks (e.g.,

navigation, recognition) gray scale images contain most of the

salient information. In many color-space transforms (e.g., Lab,

YUV, YCbCr) greater emphasis is often made, via chroma

subsampling, of the luminance (gray scale) component over

the color components (e.g., in JPEG/MPEG compression).

The Fourier power spectrum is a popular transform space for

statistical analysis. It has been shown that the spectral power,

averaged over many images, varies as a power of the inverse

frequency (1/ f n) [34]. In [11], the power spectra of Fourier

spatial frequencies is visualized by using tree maps to show

this pattern. In [32], Torralba et al. found that, for different

classes of scenes, the contour plots of the energy of power

spectra at a series of thresholds have different (and sometimes

distinctive) shapes. These contours can be used as symbolic

glyph representations to help with scene classification [32]. In

[31], Principal Component Analysis (PCA) coefficients, based

on Fourier power spectra, are employed as features for scene

depth estimation. Although the usefulness of these findings

has been demonstrated, spectra of individual images are much

more irregular as is mentioned in [32], but there has been little

work on analyzing these variations.

Several analytical methods have been adopted to obtain

statistical properties of images usually based on different

assumptions. PCA assumes the data obeys a Gaussian distribu-

tion. Kernel Principal Component Analysis (KPCA) assumes

a Gaussian distribution in a higher dimensional feature space

where a kernel is applied to the data. Independent Component

Analysis (ICA) assumes a non-orthogonal 2nd order statis-

tics distribution of the underlying data (super-Gaussian). The

choice of kernel can be critical. Where the data characteristics

are not well known, this can be problematic. Different ana-

lytical methods can reveal different statistical characteristics

inherent in the data. It is therefore desirable to depict multiple

characteristics in appropriate visual representations.

2.2 Applications and Challenges

The most extensive use of image statistics is to help computer

vision scientists discover the statistical descriptors for a spe-

cific category of objects or scenes (e.g., [28], [32], [33]). Image

statistics have proved invaluable in gaining insight in computer

graphics and image analysis. By computing and analyzing the
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statistics of different image ensembles, researchers have not

only made discoveries about the correlation between a specific

set of statistical indicators and the desired perceptual quality

of an image, but also have used these discoveries to develop

advanced image manipulation techniques. For example, an

improved understanding of the first order statistics of image

ensembles enabled the transfer of statistical moments between

images using histogram matching or color transfer (e.g., the

color “atmosphere” of one image can be transferred to another)

[25]. Understanding of the relationship between second order

statistics and plant images led to improvement of graphical

synthesis of plants [4]. The same is true for the synthesis of

landscapes [27]. Analysis of image statistics helped discover

the statistics that specify the reflectance of an object [5], while

statistics about image blur and image noise were used in image

de-blurring and denoising [6], [22].

In many situations, gaining insight from statistics is a non-

trivial task. In image inpainting, for example, knowing what

important statistics the missing texture should have is critical

[18]. In transferring image characteristics, better understanding

of image statistics and the correlation would help design better

algorithms to capture and transfer those aesthetic properties

[24]. Despite cultural prominence as canonical “stimuli”, sci-

entists only recently began to conduct more rigorous inves-

tigations into the statistics of imagery properties of artworks

[9]. An important need is to allow quantification of artistic

styles, which can lead to new tools for identifying forgeries

or determining the source of a work of art [12].

Visualization has played a role in the analysis of image

statistics. However, similar to earlier visualization in statistics,

most researchers concentrated on primitive visual representa-

tions such as line plots and bar charts, and most are used

to convey a specific form of simple statistics such as means,

which provides limited support for the analysis of complex

relationships between image ensembles and image statistics.

Through our literature studies and our research experience on

image statistics, we believe that the identification of complex

statistical patterns of image ensembles in many applications

can only become possible, or will at least be more effectual,

by using novel visualization tools.

2.3 Visual Abstraction

Visualization has been used in image statistics. Fig. 1 shows

a number of commonly-used visual representations. The first

row shows five different visual representations of statistical

properties of the image in (a). The histogram in column (b)

shows the distribution of pixel intensities in the image. The

pixel-based visualization in (c) is a 2D gradient histogram

with magnitude and orientation as its two axes. In (d), the

pixels in the source image are randomly sampled and the

three Lab color space components of these pixels are paired

up and plotted as red, green or blue. In (e) and (f), magnitudes

of Fourier power spectra are visualized using a 2D pixel

representation and a 3D surface respectively. The second row

of Fig. 1 shows the average features, over all images in a class,

computed from different transformed spaces corresponding to

individual columns.

The most commonly-used visualization (e.g., [32]) for de-

picting a class of images is contour-based abstraction as shown

in Fig. 2, where contours represent different power spectra

energies. They are considered as spectral signatures serving

as a form of symbolism. In [29], a radar graph approach is

used to illustrate the image patterns in both low-frequency

and high-frequency Gabor responses. If we draw an analogy

between a radar graph and a bar chart (one of the most basic

form of statistics visualization), each plot in Fig. 2 would be

similar to a bar chart showing three statistical attributes of

the sample population. When two populations are shown to

have three similar (or different) scalar attributes, it may not

be sufficient for one to say that the two populations are similar

(or different). This leads to the need for an understanding about

the effectiveness of such visualization in providing visual

abstraction image categories and in supporting visual analysis

of images and image classes.

As mentioned in [35], statistical inference can be achieved

visually through visual representations containing statistical

stimuli, such as tag clouds, tree maps, histograms and scatter

plots, etc. In their work, two protocols, Rorschach and Line-

up, are introduced to find the correct statistical inference

with proper calibration and constraints. In our work, more

attention is paid to how better visual designs can provide more

information for comprehending image statistics.

3 IMAGE STATISTICS

Let A = {a1,a2, . . . ,an} be a very large collection of uncat-

egorized images. We will use X ⊆ A, to denote any specific

category of images that share a common set of attributes. For

example, X may be a class of images that are predominated

by a human face, or may be a class of forest scenes, etc.

Viewing the elements ai in A as sets of numbers, many

statistical functions could be applied to them, from simple

summary statistics, such as mean, range and standard devia-

tion, to more complex analytical operations (e.g., regression

and correlation, etc.). Since each image, ai, may be composed

of thousands or millions of numbers, it is advantageous to

map each image to a few representative quantities, where

these mappings are usually statistical. Hence the term image

statistics is used in two different contexts, that is, class-level

statistics for examining the relationships between individual

images and image classes, and image-level statistics for map-

ping an image to several quantities. In some cases, such as

PCA, the statistics in these two levels are related to each

other. We use M , with one or two arguments, to denote

a function that maps an image or a class of images to a

statistical measurement, which will be used later for producing

visual representations. When M is applied to an image x ∈ X

independently of other images, we denote this mapping as

M (x). When M is applied to an image x ∈ X in relation to

all other images in the class, we denote such a mapping as

M (x,X). In addition, we use function T (x) to denote an image

transform that is not considered as a statistical measurement.

3.1 Intensity, Color and Gradient Histograms

Histograms are simple image statistic measurements showing

the distribution of values in an image. The function Mh
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transforms an image x to a small set of statistical quantities,

[b1,b2, . . . ,bm], which are the numbers of the values in each

of the m bins. Intensity histograms focus on the luminance of

pixels and count the number of pixels in each bin representing

a luminance range. Color histograms extend the intensity

histogram by encoding more distinctive information in three

color channels. To compute a gradient histogram [2], first

transform an image x into a gradient image Tg(x), typically

by computing central differences at each pixel position. The

resultant gradient image Tg(x) can then be mapped to a

1D histogram of gradient magnitudes in the image, a 1D

histogram of gradient orientation, or a 2D histogram where

bins are sorted by both magnitude and orientation. Hence,

[b1,b2, . . . ,bm] = Mh(Tg(x)).

3.2 Fourier Power Spectral Signatures (FPSS)

Fourier power spectral signatures [32] are used in image statis-

tics research. Given an image x, a 2D Fourier transformation

is first applied to the image, resulting in a frequency domain

representation Tf (x). In the Fourier domain, the magnitudes of

Fourier coefficients are calculated as a power spectral signature

of the image x. The power spectrum, M f pss(Tf (x)), is a

statistical measure of the power of the signal (energy per unit

space) falling in different frequency bins. We will examine

Fourier power spectral signatures in details in Section 4. It

is assumed that FPSS in different resolutions may contain

different useful information. We subdivide each image in

a hierarchical manner and obtain FPSS contours for each

subdivided image. This is referred to as a scale space Fourier

transform.

3.3 Statistical Descriptors of Textures

Texture descriptors are a family of methods that capture

statistics from textural patterns in images. Typically, an image

x is subdivided into a collection of n pixel blocks, [t1, t2, . . . , tn].
A measurement of some visual features (e.g., homogeneity,

orientation) is made on each block tk(k = 1,2, . . . ,n), resulting

in a quantity qk that characterizes the block. The collection of

these quantities, [q1,q2, . . . ,qn], yields a statistical descriptor

of the image.

A commonly-used texture descriptors is based on Gabor

filters [3]. An image x is subdivided into n texture blocks, de-

noted by the transformation Tdiv(x). Each block tk is convolved

with a set of Gabor filters, gi, j, i= 1, . . . ,r, j = 1, . . . ,s, covering

r different orientations and s different scales. For each i, j,k the

values in gi, j(tk) are summed to produce a real value and these

values yield a final image statistic [γ1,γ2, . . . ,γrsn] =Mγ(x). In

our work, we used 4× 4 image blocks, and a set of Gabor

filters covering 8 orientations and 4 scales yielding, as a

statistic, a vector of 4×4×8×4 = 512 real values.

3.4 Principal Component Analysis (PCA)

PCA [15] is typically applied to a collection of data, for

example, a class of images X = {x1,x2, . . . ,}. It linearly

transforms X to a new coordinate system so that the greatest

variance of the data is encoded by the variance on the first

few axes. The transformation requires the computation of a

mean image X , which can be considered a class-level statistics.

The difference between each image xi and X , is then encoded

by coefficients [ρ1,ρ2, . . . ,ρc] = MPCA(x,X) corresponding to

different eigenvectors.

Eigenvectors are typically sorted in descending order ac-

cording to the corresponding eigenvalues. Thus, the first few

eigenvectors of PCA are expected to capture the significant

variance of the processed data and non-significant signals (pos-

sibly noise) lie on those eigenvectors with smaller eigenvalues.

As a result, PCA is able to remove the noise from the data,

while making use of fewer quantities (e.g., using only ρ1 and

ρ2), to describe the images.

3.5 Kernel Principal Component Analysis (KPCA)

KPCA is an extension of PCA [17] obtained by introducing

different kernels, such as linear kernels, radial basis function

(RBF) kernels or polynomial kernels. The use of kernels

allows one to solve only the eigenvectors and eigenvalues of a

kernel, instead of a very high-dimensional feature space where

other projection methods are used to map the data. In our work,

a linear kernel is adopted as it is the only kernel that does not

require any parameters to be tuned, so is a fully unsupervised

statistical method.

3.6 Independent Component Analysis (ICA)

ICA [21] transforms a multivariate signal into a set of additive

subcomponents which exhibit mutual statistical independence

of non-Gaussian source signals. This is a form of blind source

separation of a set of mixed signals into a set of statistically

independent signals. A class of images, X = {x1,x2, . . . ,} is a

typical set of mixed signals. The goal of ICA is to obtain a

mapping MICA so that a signal x ∈ X can be transformed to a

set of quantities [η1,η2, . . . ,ηc] = MICA(x,X). Typically one

estimates MICA by minimizing mutual information, maximiz-

ing non-Gaussianity, or a combination of both [14].

4 LIMITATIONS OF SPECTRAL SIGNATURES

Fourier power spectral signatures (FPSS) are widely used

in semantic clustering tasks. High-frequency components of

FPSS indicate sharp changes and texture details in images,

while low-frequency components represent the main image

structure, so FPSS can reflect different types of image patterns.

When original images are decomposed into Fourier space,

geometrical structures are obtained by keeping certain amounts

of energy in the frequency domain. Let pi represent a point in

the Fourier domain, and f (pi) the frequency response at this

position. The total energy of an image is thus E = ∑
n
i=1 f (pi).

If τ is the percentage of energy to be retained, we can find

a subset of points, {p′1, p′2, . . . , p′m}(m ≤ n) in the Fourier

domain, such that τE = ∑
m
k=1 f (p′k). To determine the subset,

one typically sorts pi(i= 1,2, . . . ,n) in the descending order of

the values of f (pi), resulting in a sorted list {p′1, p′2, . . . , p′n}.

One then adds each f (p′i) in the sorted list into a sum until

the total sum equals or exceeds τE. The last value f (pm)
added becomes a cut-off value c for τ . The plots in Fig. 2
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(a0) A mean (a1) A1 (a2) A2 (a3) A3 (a4) A4 (a5) A5 (a6) A6

(b0) A FPSS (b1) A1 FPSS (b2) A2 FPSS (b3) A3 FPSS (b4) A4 FPSS (b5) A5 FPSS (b6) A6 FPSS

(c0) B mean (c1) B1 (c2) B2 (c3) B3 (c4) B4 (c5) B5 (c6) B6

(d0) B FPSS (d1) B1 FPSS (d2) B2 FPSS (d3) B3 FPSS (d4) B4 FPSS (d5) B5 FPSS (d6) B6 FPSS

Fig. 3: Images from two different classes are not easily distinguishable using their Fourier power spectral signatures.

(a) building (b) mountain (c) coast (d) highway

(e) FPSS of (a) (f) FPSS of (b) (g) FPSS of (c) (h) FPSS of (d)

Fig. 4: Similar Fourier power spectral signatures.

show three contour lines representing cut-off points, c1,c2,c3,

corresponding to τ = 0.7,0.8,0.9 respectively. The red line, c1,

consists of all points with their frequency responses f (pi)= c1,

and the energy of all points on and inside the contour totals

up to 70%E. Similarly, the green line corresponds to c2 and

80%E, and the blue line corresponds to c3 and 90%E.

Contours of an individual image are obtained when the

image is transformed into frequency space, while contours of

a class of images are calculated using the average frequency

response over all images in the class.

In previous work, [20], [31], [32], such contours have been

used to represent different classes of images (Fig. 2). However,

contours of an image class are not representative for individual

images in the class. We can see this from the wide variation

of the contours in Fig. 3. Here images are randomly selected

from two distinct classes [32]. Set A, (a1-a6), in are from

the class City View and set B, (c1-c6), in are from the class

Forests. The corresponding FPSS plots (b1-b6) and (d1-d6)

are for 90% energy contours for individual images. (b0) is an

FPSS plot for the average Fourier power spectra of the images

in (a1-a6), while (d0) is that for (c1-c6). Note that (a0) and

(c0), averages in the spatial domain, are not used in computing

(b0) and (d0). Based on the plots in Fig. 3, it would be difficult

to say, for example, A1 is in the City View class and B4 is

in the Forest. On the other hand, two images from different

classes may have similar contours if the main structures of the

images bear a similarity with each other as shown in Fig. 4.

Distinctive FPSS contours for different classes (Fig. 2) could

give a misleading impression that images in these classes

would have rather different FPSS contours. It is difficult

to define statistical criteria for classifying images in large

image collections. For example, the class of Building has very

distinctive FPSS contours in comparison with those of the class

of Forest. However, the FPSS contours for individual images

in the two classes are much less distinguishable. Using parallel

coordinates with axial scatter plots (Fig. 5), we can visualize

various statistical attributes of these two classes, including

the first five PCA coefficients for several image statistics,

including histogram, texture descriptor, gradient histogram and

scale space Fourier transform. From the scatter plots, we see

that the values of most attributes of the two classes have large

overlaps, suggesting that to separate the two classes would

require using statistical information based on several attributes.

Fig. 5 suggests that FPSS contours may mislead users into

over-estimating how each image class is clustered and how

it is separated from other classes. This is similar to plotting

the means of different data sequences in a bar chart, without

associating each bar with any information about data range,

deviation, or distribution. Taking an FPSS contour plot for a

single image, it is often difficult to correctly assign the image

to its class. So, such visualizations offer limited support in data

analysis, especially in supporting identification of clusters and

anomalies, and analysis of deviation, distribution and corre-
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Fig. 5: Parallel coordinates with axial distribution plots show that it is difficult to separate images in the Building class from

those in the Forest class, even though the FPSS contours for the two classes are distinctive as shown in Fig. 2.

lation. This led us to design more informative visualizations,

based on combining several statistical measures, to overcome

some of the shortcomings of FPSS contours.

5 VISUAL DESIGN PROCESS

The dataset used in our visual designs contains 2,688 images

accessable from [30]. It has been widely employed as a

benchmark dataset for scene categorization in the literature.

Images are categorized into 8 scene classes: Building, City

View, Street, Highway, Coast, Field, Mountain and Forest.

Each of these classes has 356, 308, 292, 260, 360, 410,

374 and 328 pictures, respectively. The first four classes

collectively form a superset Man-Made with 1216 images, and

the other four form a superset Natural with 1472 images.

The visual design process in our work consisted of several

stages: (i) the problem mentioned in Section 4 was identified

and solution spaces discussed in a number of brainstorming

sessions; (ii) visual designs were suggested starting with a

study of the literature, followed by a large collection of design

options; (iii) in several cases, analysis of variance (ANOVA)

was used to optimize our designs (see Section 5.4); (iv)

a user study was conducted to evaluate these options; and

(v) refinement and enhancement with additional composite

designs were proposed and evaluated (see Section 6).

As the criteria for guiding the design process and filtering

design options, good visual representations should ideally:

(a) be a visual abstraction or glyph helping users identify and

memorize common characteristics in each class;

(b) be capable of showing variations, deviation and distribu-

tion within each class;

(c) indicate relationships between classes, e.g., subset rela-

tionship, similarity and correlation;

(d) provide information to guide users to find the best classi-

fication based on properties, such as shape or size;

(e) make efficient use of space and different visual channels

to convey more information;

(f) be aesthetically pleasing.

With these criteria in mind, over ten design options were

proposed initially and finally narrowed down to three designs,

which are detailed in the following subsections.

5.1 New Designs for FPSS

FPSS contours in [32] provide reasonable visual symbolism

for representing different categories and they demonstrate

some variability as required by criterion (b). However, they

fail to satisfy criterion (c), and the variability of contours

can be misleading. Several design options were thus proposed

for visually fusing contours of all images in the class in a

distribution map. A distribution map is a form of visualization,

where a number of geometrical shapes that represent different

data entities are spatially mapped to a shared domain. When

there are a large number of such shapes, the shapes are usually

displayed as translucent objects (e.g., in parallel coordinates

visualization). The placement and density of these shapes

hence indicate the distribution of the data entities.

Fig. 7 shows the distribution maps of the same 10 classes

as in Fig. 2. For each class of images, instead of showing

a representative contour in Fourier space, we display the

contours of all images in the class using translucent black

lines. In addition, we plot a representative contour in blue for

the class at the 90% energy level.

Due to the symmetric characteristics of FPSS, signatures in

the 1st quadrant are the same as those in the 3rd quadrant, and

the 2nd quadrant is the same as the 4th. In addition, signatures

in the 1st quadrant are usually quite similar to those in the 2nd.

In some of our initial designs, such spatial redundancy was

removed. For our main designs based on FPSS contours we

choose the design with all 4 quadrants as it provides a balanced

amount of information compared to other designs and is more

aesthetically pleasing. In a later section, we also show the use

of a design option without the redundant information.

5.2 New Designs for PCA, KPCA and ICA

PCA, KPCA and ICA are statistical methods which can be

used for reducing dimensionality. Such methods result in sta-

tistical measurements in a parameter space. We experimented

with several design options. The first option is a scatter

plot, where each image is represented by a 2D point whose

coordinates are two parameters of the chosen method. With

different colors and different levels of transparency, the image

points of a class (i.e., focus) are plotted against all other image

points in the database (i.e., context).

This was evolved into the second option that uses a filled

circle to enclose the whole data space (i.e., all images in the

database), and further to the third option where the image

points of the focus class was replaced with an ellipse. In

addition, we introduced a circular grid as a spatial representa-

tion to support more effective comparison with other classes.
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(a) PCA (b) Gabor (c) FPSS & partial Gabor (d) Gabor, PCA & FPSS (e) Gabor & quantized FPSS

Fig. 6: (a)-(b) PCA- and Gabor-based designs; (c)-(e) Three new combined visual designs proposed after the first user study.

As shown in Fig. 6(a), the circular data space is defined by

its center 1© (the average of all points), and 110% of the

maximum radius 2©. The ellipse is defined by the principal

eigenvectors (spread) of a class, with its length equal to twice

the standard deviation 3©. The class center 4© is the average of

all points in a specific class. The three design options represent

a transformation from a scatter plot to an an elliptic bubble

plot. The visualization of 10 different classes using the third

option is shown in Fig. 8.

5.3 New Design for Texture Descriptors

Ross et al. [29], use radii length representations to visualize

Gabor-based texture descriptors. When an image is filtered by

a set of Gabor filters, the mean response values are plotted

in a radar graph. [29] claims that each image category has a

distinctive pattern compared to each other. Similar to FPSS

contours, it does not depict variations and distribution in a

class, and the mean response values can be misleading.

Similar to the new design for FPSS, we display the texture

descriptors of all images as a distribution map for an image

class. As illustrated in Fig. 6(b), each of the 8 × 4 Gabor

descriptors are plotted along the 32 radial axes. The descriptors

of each image are connected circularly using translucent lines

in a manner that is similar to parallel coordinates.

The full set of visual representations for the 10 classes

is given in Fig. 9, where the characteristics of each class

are more distinctive and noticeable in most cases. From the

visualization, for instance, we can observe that the Coast

and Highway classes have similar statistical properties. This

confirms the existence of dominant horizontal structures in

both types of images as exemplified by Figs. 4(c,d).

5.4 Steering Visual Designs using ANOVA

There are many methods for computing image statistics (see

Section 3) and normally consist of two stages: an image

feature space transform, e.g., histogram, FPSS and Gabor

filters, followed by dimension reduction, such as PCA, etc.

In our work, several sets of combinations are investigated.

For example, MPCA(Mγ(x),Mγ(X)) is used for represen-

tations based on PCA applied to Gabor texture descriptors

and MPCA(Mh(x),Mh(X)) for representations based on PCA

parameters extracted from histogram vectors. However, PCA-

based visual designs (in Section 5.2) are only suitable for de-

picting two parameters and there is a desire to avoid 3D visual

designs for the design criterion (a) on abstraction and symbol-

ism. It is therefore desirable to choose the most representative

statistical attributes to create our visual representations. We

thus turn to using Analysis of Variance (ANOVA) [19], which

is capable of measuring the distinctive power and correlations

between data sets or parameter sets. For our design process, we

use ANOVA to help select two most representative statistical

attributes from a large pool of measurements.

Fig. 10 shows a heatmap, depicting the ANOVA F-values

of different statistical measurements. We considered applying

ICA, PCA and KPCA to the vector results of the different

methods (columns) mentioned in Section 3, taking the first

twenty parameters in all cases. We found that when the Gabor

descriptors are combined with PCA or KPCA, we can obtain

parameters with high discriminative power. For PCA applied to

Gabor descriptors, we see from Fig. 10 that p1 and p3 are the

preferred choice and for KPCA the choice is p2 and p4. The

design option shown in Fig. 8 depicts the values of p1 and p3

as the results of applying PCA to Gabor descriptors. Because

the ordering of ICA, PCA or KPCA components depends on

the variance between images, it does not correlate exactly with

the order given by the ANOVA F-values that depend on the

variance between different image classes.

6 EVALUATION

After filtering various initial design options for visualizing

image statistics based on the criteria discussed in Section 5,

we arrived at three designs as shown in Figs. 7, 8 and 9.

We conducted a user study to see if any can be more

informative and effective in supporting users’ analytical tasks.

In particular, we wanted to compare the three new designs

with the original design based on FPSS contours as shown in

Fig. 2.

Our pre-experiment hypotheses are:

• All three new designs (Figs. 7, 8 and 9) will be more

helpful in determining set memberships of images than

FPSS contours in Fig. 2.

• The PCA-based design (shown in Fig. 8) will be most

effective in supporting the analysis of set relationship

(e.g., subset and distance), while the other two new

designs may marginally improve upon FPSS contours.

6.1 Participants

Twelve participants (5 female, 7 male) took part in this exper-

iment in return for a £5 book voucher. All participants were
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(a) Building (b) City view (c) Street (d) Highway (e) Man-Made

(f) Coast (g) Field (h) Mountain (i) Forest (j) Natural

Fig. 7: New visual representation of Fourier power spectral signatures.

(a) Building (b) City view (c) Street (d) Highway (e) Man-Made

(f) Coast (g) Field (h) Mountain (i) Forest (j) Natural

Fig. 8: New visual representation of PCA measurements with highest ANOVA values.

(a) Building (b) City view (c) Street (d) Highway (e) Man-Made

(f) Coast (g) Field (h) Mountain (i) Forest (j) Natural

Fig. 9: New visual representation of texture descriptors.
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Fig. 10: Visualization of the discriminative power of a pool of

statistical measurements.

FPSS Contour vs Task 1 Task 2 Task 3 Task 4

FPSS Distribution Map .004 .109 .001 .85
PCA-based Design .001 .002 .043 .256
Gabor-based Design .002 .021 .032 <.001

Combined Design 1 <.001 .004 <.001 .005

Combined Design 2 <.001 .005 .005 <.001

Combined Design 3 <.001 .001 <.001 <.001

TABLE 1: Pair-wise p-values of the old design vs. each of the

new designs (values < 0.05 are in bold).

recruited from the Swansea University community, 8 were

students or post-doctoral researchers in Computer Science and

4 from the Business School. Their ages ranged from 19 to

41 (Mean=25.6, SD=5.83), and all had normal or corrected

to normal vision. As the tasks of the user study involved

some understanding of the purpose of image statistics (but not

algorithmic details), it was justifiable to have basic technical

knowledge, such as understanding the meaning of ‘subset’ and

‘parameter’. This was also a reasonable representation of the

potential user groups of image statistics. All participants were

informed about the purpose of the study at the beginning of

the session, but not about any of our hypotheses. In particular,

they were not made aware of whether any visual design is

from the literature or newly created in this work.

6.2 Tasks and Variables

Participants were required to answer 112 questions (trials). The

112 questions were divided into four task groups, each with

28 questions. The four groups represented four different tasks.

The 28 questions in each task group were further divided in

4 design groups, i.e. 7 questions for each of the four designs

as shown in Figs. 2, 7, 8 and 9.

For Task 1, participants were given a set of stimuli consist-

ing of visual representations of two image classes, A and B

and one image X . Each participant was asked to determine if

image X belongs to class A or B. All 28 questions in this task

group were standardized as ‘Which Image Class does Image

X most likely belong to?’ The answers were either ‘(a) Class

A’ or ‘(b) Class B’.

For Task 2, participants were given a set of stimuli con-

sisting of visual representations of one image class, A, and

two images X and Y . All 28 questions in this task group

were standardized as ‘There is only one image, either X or

Y, belongs to Class A. Which one?’ The answers were either

‘(a) Image X’ or ‘(b) Image Y’.

For Task 3, participants were given a set of stimuli consist-

ing of visual representations of two image classes, A and B.

All 28 questions in this task group were standardized as ‘Is

Image Class B a subset of Image Class A?’ The answers were

either ‘(a) B *IS* a subset of A’ or ‘(b) B *IS NOT* a subset

of A’.

For Task 4, participants were given a set of stimuli consist-

ing of visual representations of three image classes, A, B and

C. All 28 questions in this task group were standardized as

‘Are images in Class C more similar to Images in Class A or

B?’ The answers were either ‘(a) A and C are more similar’

or ‘(b) B and C are more similar’. This is a difficult task,

as the similarity between image classes is not well-defined.

We included this task as a wild-card related to our second

hypothesis. One common claim in the literature is that image

statistics can separate the superset of Man-Made scenes from

that of Natural scenes (e.g., [32]). The two reference classes

(A and B) are chosen from two different supersets, one each.

C is an image class from either superset.

All tasks represent typical use of natural image statistics.

Tasks 1 and 2 are set membership determination, Task 3 is

concerned with subset relationship, and Task 4 with set-based

distance between different classes. Ground truth values of all

tasks were based on the annotated classification in the database

[30]. The independent variables are thus the four different

visual designs as illustrated in Figs. 2, 7, 8 and 9, and the

four different tasks mentioned above. The dependent variable

is the correctness of the answers given by the participants.

6.3 Stimuli, Apparatus and Procedure

There were a total of 112 sets of stimuli, and each set consisted

of 2 or 3 visualization images depending on individual tasks.

The visual stimuli (i.e., visualization images) were created

using software written in C++ and VTK. In addition to those

shown in Figs. 2, 7, 8 and 9, a collection of visual represen-

tations were created for individual images to be used in Tasks

1 and 2. For Task 3, additional visual representations of two

extra super-classes were created; Land (Field ∪ Mountain ∪
Forest), and City (Building ∪ City View ∪ Street).

Stimuli were saved as static images and presented to partic-

ipants via custom software written in C++, with Qt as graphics

library. We shuffled the 112 sets of questions to remove the

natural grouping by either task or design. Because of the large

number of questions of a similar nature, the order of the
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Fig. 11: The performance of the participants in the four tasks. The figure shows the average number of correct answers from

the participants and error bar indicates the standard deviation of each task.

questions appears to be random. The placement of the correct

answer also appears to be random in the trials.

Participants took part in the user study in groups of 2-

4 people per session. Each experiment began with a brief

overview read by the experimenter using a predefined script.

This took about 10 minutes. Detailed instructions were then

given through a self-paced slide presentation. Each participant

completed a total of 112 trials. This took about 30-40 minutes.

When all tasks were completed, each participant completed a

short debriefing questionnaire and an evaluation sheet; partic-

ipants were then informed about the visual designs’ related

hypotheses.

6.4 Results and Discussions

Fig. 11 summarizes the average performance of the partici-

pants in relation to the four tasks mentioned in Section 6.2.

(For each task, here we consider only the first four bars in

the bar chart, the other three bars will be discussed in the

next section.) We can observe that the performance of all

new designs (i.e., FPSS distribution map, scale-space FPSS

distribution map, PCA parameter boundary and Gabor-based

distribution map) are on average better than the old design (i.e.,

FPSS contour). From Fig. 11, one may assume the relative

merits of the four designs. To evaluate such assumptions,

we carried out ANOVA analysis of the study results. The p-

values obtained are shown in Table 1, and indicate that most

comparisons between the FPSS contour and new designs are

considered statistically significant. The comparisons among

new designs are mostly statistically insignificant, except for

Gabor vs. PCA. If we choose the p-value cutoff at 0.05, the

experiment indicates the following:

• It is reasonable to conclude that all three new designs

are more effective than FPSS contours (i.e., the reference

design) in support Task 1, which involves deciding if an

image belongs to one of the two optional classes. This is

consistent with our first hypothesis.

• It is reasonable to conclude that the PCA-based and

Gabor-based designs are more effective than FPSS con-

tours in supporting Task 2, which involves deciding if an

image class includes one of the two optional images. But

one cannot draw conclusion regarding the FPSS distribu-

tion maps. This partially supports our first hypothesis, but

indicates that questions with two image options may be

harder than those with two class options. When a FPSS

distribution map covers a wide range of contours, it is

not so easy to exclude an image from a class.

• It is reasonable to conclude that the basic FPSS distribu-

tion map, PCA-based design and Gabor-based design are

more effective than FPSS contours in supporting Task 3,

which involves a decision on whether a class is a subset of

another. The results however do not show that the PCA-

based design is significantly better than others.

• It is reasonable to conclude that the Gabor-based design

are more effective in supporting Task 4, which involves

a judgment of whether images in two classes may be

considered similar, while the PCA-based design appears

to be less effective (contrary to our second hypothesis).

In general, this user study is helpful, showing the strength

and weakness of each new design. The overall improvement

of the new design upon the old design is evident.

7 FURTHER RESULTS

The results of the above-mentioned user study also suggest

that each of the proposed designs have certain strengths and

weaknesses, and they may perform better jointly. This led us

to further experimentation of composite visual representations

that convey different types of statistics.

7.1 Combined Visual Designs

After considering many different ways of combining the visual

designs discussed in Section 5, we settled on three combined

designs. The first arises from the observation that FPSS is

symmetric on opposite quadrants, hence we can remove half

of the redundant information and free the space for displaying

other types of statistics. Gabor descriptors are shown to be

effective in all four tasks. As we can observe from Fig. 9,

the 1st scale (top right quadrant) and the 4th scale (top left

quadrant) show most of the distinct information. This gives us

the first combined design in Fig. 6(c), where the upper half

of the original design for Gabor descriptors 2© are combined

with the lower half of the FPSS distribution map 1©.

The second combined design is composed of four compo-

nent regions. As shown in Fig. 6(d), the left region depicts

the Gabor descriptors in the 1st and 4th scales. The right

depicts 7 PCA coefficients in a manner similar to the left
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Combined Design 1 Combined Design 2 Combined Design 3
Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

FPSS Distribution Map .009 .12 .071 .067 .107 .239 .358 .022 .001 .019 .012 .068
PCA-based Design .071 .777 .169 .009 .491 1.0 .339 .001 .004 .025 .015 .001

Gabor-based Design .015 .266 .002 .275 .18 .515 .034 .02 .004 .005 <.001 .096

TABLE 2: Pair-wise p-values for the comparisons between the three Combined Designs and the three individual Designs

discussed in Section 5 (values < 0.05 are in bold).

region to maintain certain symmetry for aesthetic reasons. The

two variants of FPSS are plotted on the top and bottom regions.

The bottom region is the 1st quadrant of the FPSS distribution

map, except it is rotated by 135◦ clockwise. The top region

shows a new design for FPSS that was formulated after the

first user study. One drawback of the FPSS distribution map

is that its stochastic and amorphous visual patterns do not

convey multi-level structures effectively. We thus introduce a

quantization method that first smooths the map by applying a

5×5 Gaussian filter three times and then quantizes the pixels

into 4 bins. This quantized FPSS distribution map reveals

some multi-level structures that are not visible in the original

distribution map.

The third combined design attempts to reinstall the full

set of Gabor descriptors at all four levels. As illustrated in

Fig. 6(e), we plot all the Gabor lines in the outer ring 1©,

with a radial range [0.3, 1.2]. This allows us to use the inner

circle 2© of radius 0.3 for FPSS. In this case, we depict FPSS

using the quantized design of distribution maps.

Figs. 12, 13 and 14 show the visualization of our 10 test

classes using these three combined visual designs respectively.

Fig. 15 shows the representations of 6 individual images from

different image classes. The two types of statistics jointly

provide visual cues to differentiate these images. For example,

(i), (j) and (k) have similar Gabor patterns but FPSS sets

them apart. (h) and (l) have similar FPSS patterns but Gabor

descriptors sets them apart.

7.2 Further Evaluation and Discussions

With the three sets of combined visual designs as shown in

Figs. 12, 13 and 14, we conducted a further user study to see if

any of them can achieve better analytical performance. Follow-

ing the previous user study, we compare the three Combined

Designs with the original design based on FPSS contours. We

adopt the same set of tasks and user interface design as in the

previous user study. The same group of participants of the first

experiment took part in this study. Since there was a six month

gap between the two experiments and the tasks were very

simple, the learning effect is insignificant. They were required

to answer 84 questions, i.e., 4 tasks × 3 designs × 7 trials. The

results of the study are juxtaposed with those of the first user

study in Fig. 11. By comparing the last three bars with others

in each task group, we can observe that the performance of all

combined designs are on average better than the designs in the

previous user study. We also used ANOVA analysis to evaluate

assumptions about the performance of the Combined Designs

that may result from Fig. 11. The last three rows of Table

1 show the p-values for comparing the Combined Designs

with the FPSS contour, indicating that the relative merits

of Combined Designs are conclusive. The p-values for the

comparisons between the three combined designs and the three

initial designs with individual statistical indicators are given

in Table 2. We can observe that it is statistically significant to

consider that Combined Design 3 is more effective than the

three initial designs in Tasks 1, 2 and 3, and Combined Design

2 is more effective in Task 4. Among the three Combined

Designs themselves, most p-values are ≥ 0.05, except Design

1 vs. Design 3 in Task 2 and Design 2 vs. Design 3 in Tasks

2 and 4. The experimental results further indicate:

• It is reasonable to conclude that all three Combined De-

signs are more effective than FPSS contours in supporting

all four tasks.

• For Tasks 1 and 3, in particular, Combined Design 1 and

3 featuring FPSS and texture measurements outperformed

other designs. The average of Combined Design 2 is

higher than the three new individual designs considered in

the previous study, but the comparison is not statistically

significant except in Task 4. One possible reason is that

extra information in this design may be slightly more

confusing than Combined Designs 1 and 3.

• For Task 2, the advantages of Combined Designs 1

and 2 are not clear. Similar to the previous user study,

this suggests that questions with two image options are

harder than those with two class options. Nevertheless,

Combined Design 3 shows noticeably better performance

in supporting Task 2.

• For Task 4, which involves a judgment of whether images

in two classes may be considered similar, Combined

Design 2 achieved the best result. It suggests that extra

statistical information may offer better support to partic-

ipants in assessing the distance between classes.

In general, this further study indicates that jointly presenting

different image statistics through effective visual representa-

tions can bring benefits to analytical tasks. In addition, aes-

thetically pleasing designs may be more effective for guiding

analytical reasoning and interaction.

8 CONCLUSIONS

In this work, we have revisited the problem of visualizing

image statistics with a number of new visual designs. We

have followed a rigorous design process, including criteria

formulation, initial designs, qualitative analysis, evaluation,

further design and further evaluation. We have shown that the

conventional design based on FPSS contours are not effective

in supporting analytical tasks, and can sometimes be mislead-

ing, though they serve as an effective form of symbolism for

image classes. It is both useful and feasible to design more

effective visualization of image statistics in order to provide

better support for basic analytical tasks, such as determining
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(a) Building (b) City view (c) Street (d) Highway (e) Man-Made

(f) Coast (g) Field (h) Mountain (i) Forest (j) Natural

Fig. 12: Combined Design 1 features FPSS and 8×2 Gabor descriptors.

(a) Building (b) City view (c) Street (d) Highway (e) Man-Made

(f) Coast (g) Field (h) Mountain (i) Forest (j) Natural

Fig. 13: Combined Design 2 is composed of Gabor descriptors, PCA parameters, and two forms of FPSS.

(a) Building (b) City view (c) Street (d) Highway (e) Man-Made

(f) Coast (g) Field (h) Mountain (i) Forest (j) Natural

Fig. 14: Combined Design 3 features 8×4 Gabor descriptors and quantized FPSS.
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(a) Building (b) City view (c) Mountain (d) Forest (e) Field (f) Coast

(g) for image (a) (h) for image (b) (i) for image (c) (j) for image (d) (k) for image (e) (l) for image (f)

Fig. 15: Visualizing six images from different images classes using Combined Design 3.

set memberships, subset relationships and distance between

image classes. The evaluation through these basic analytical

tasks suggests a more general implication in visual analysis

of imagery data, for example, in terms of classification, iden-

tification of clusters and anomalies, and analysis of deviation,

distribution and correlation. The visual designs proposed in

this paper do not require a large display space, and can easily

be presented in tabular forms for various comparative tasks,

or be used as visual abstraction and symbolism.

As discussed in Section 2.2, visualization of image statistics

can potentially assist in many different applications of image

analysis, such as categorization of painting styles, content-

based image retrieval, image and video editing and so on. We

plan to conduct further investigation into the use of image

statistics visualization in practical applications.
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