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Abstract Generating high-quality, semantically con-

sistent images from text descriptions remains a chal-

lenging task in computer vision. Current methods of-

ten struggle with effectively integrating textual infor-

mation into the image generation process, resulting in

images that lack realism or contain significant artifacts.

To address these issues, we propose SDeep, a novel

framework utilizing a Generative Adversarial Network

(GAN) architecture with a channel-attention mecha-

nism. SDeep deepens the text-to-image fusion process

through Staked Deepening Blocks (SD Blocks) and en-

hances image detail through Multilayer Channel At-

tention (MLCA Attention). Extensive experiments on

the CUB and COCO datasets demonstrate that SDeep

outperforms state-of-the-art methods in terms of image

quality and semantic alignment with text descriptions.

Our approach not only generates more realistic images

but also better preserves the semantic consistency be-

tween text and generated images, marking a significant

advancement in text-to-image synthesis. Code can be

found at https://github.com/zxcnmmmmm/SDeep.

Keywords Text to Image, Image Generation,

Generative Adversarial Network, Feature extraction.

1 Introduction

With a great deal of attention, the field of vision pro-

cessing is growing by leaps and bounds. In terms of ap-

plications, deep learning techniques have been used by
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Fig. 1 Simplified architecture of a GAN for text-to-image
generation. The Generator and Discriminator in the figure
can be one or more groups.

many researchers to accomplish tasks such as natural

language processing [1], semantic segmentation [2,3],
remote sensing [4] and model compression [5,6]. Among

them, image synthesis, as a research direction with

great potential, has absorbed the attention of many re-

searchers.

Text to Image (T2I) is achieved by using techni-

cal methods to produce real images that match a given

text description. After the first T2I generation using

a GAN in 2016 was implemented by Reed et al. [7],

GANs occupy an important place in the work on im-

age generation. Regardless of the type of GAN used,

text description is first processed into textual features,

which are then used to constrain the subsequent image

generation process. As shown in Fig. 1, random noise

and text information are used as the original inputs to

determine the generation of the images, and then the

real images and fake (synthesized) images will be iden-

tified in the discriminator. Based on the discriminated

results, the generator then creates a more realistic im-

age again, and the discriminator discriminates the new

results once again. This process iterates until the net-
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work converges. The generator and discriminator are

updated based on the adversarial loss. Up to now, T2I

models using GANs as frameworks have been able to

synthesize high-resolution images. However, further im-

provements are required for complex scene datasets, as

the generated images still lack fine-grained detail and

clarity.

In T2I works, a key research focus in T2I works

is the fusion of text and image information. In the cur-

rent models, three common approaches are feature con-

catenation, cross-modal attention [8], and Conditional

Batch Normalization (CBN) [9]. Feature concatenation

is a linear transformation of text information into the

feature vector size required for image information, fol-

lowed by a simple concatenation operation of the two.

Cross-modal attention achieves the mapping of a word

to a sub-region in an image through a fusion approach

based on an attention mechanism. Thus different re-

gions of the image are generated. CBN is a specialized

scaling and shifting operation applied to the general fea-

ture map, enhancing its visual semantic embedding.The

current methods still cannot deeply and effectively fuse

textual information with image information, producing

a situation where the generated image does not match

the textual information.

To study the above problems, we propose a new ap-

proach to text-to-image synthesis. In general, we make

the following contributions:

(1) We propose a new framework called SDeep. We

use it to accomplish the transformation of text and im-

age information and generate high-quality realistic im-

ages.

(2) We propose the Stakced Deepening Block(SD

Block) for deepening text and image feature fusion.

This block makes the generated images more relevant

to the textual descriptions and also results in a better

fusion of textual information and image features.

(3) We propose Multilayer Channel Attention

(MLCA), a novel channel attention mechanism, for ef-

fective channel feature learning. It is used in the gener-

ator and enhances image feature aggregation to achieve

images with richer detail.

The structure of this article is as follows. In Sec-

tion 2, the work related to the Text to Image task is

presented. In Section 3, the general framework of the

proposed model is introduced. In Sections 4 and 5, the

relevant features and details of the proposed method are

clearly defined as follows. In Section 6, experiments on

various aspects of the proposed method are conducted.

Finally, our conclusions are given in Section 7.

2 Related Work

Text to Image. In T2I works, the main objective

is to transform the descriptive text into a realistic

image that matches its semantics. This process uses

natural language processing and image synthesis tech-

niques to first extract text features containing impor-

tant details from textual descriptions, and then trans-

form the text features into visual image pixels. The

final image information obtained should be authentic

in nature. The current methods are Variational Auto-

Encoder (VAE) [10], Deep Recurrent Attention Writer

(DRAW), Generative Adversarial Network (GAN) [11,

12], Diffusion Model [13,14], Cross-modal pre-training

model based on contrast picture-text: CLIP [15], etc.

VAE is a variant of the self-encoder that can be used

to learn data generation distributions as well as ran-

dom samples from the latent space to generate similar

images containing the features of the training network.

DRAW utilizes recurrent neural networks to generate

images by focusing on sequences of regions of visual

attention based on a variational autoencoder. The dif-

fusion model is an emerging network model that starts

with an image composed entirely of noise, predicts the

noise filtered out at each step, and iteratively denoises

to obtain a high-quality image sample. The contribu-

tion of CLIP [15] is the ability to generate correspond-

ing text descriptions based on image content or to use

text descriptions to match images without having to

tune the model to the new category.

Text to Image based on Generative Adver-

sarial Network. As a powerful deep learning model, a

GAN generates a complete set of real data by learning

the data distribution of the original real sample set. In

2016, Reed et al. first applied a GAN to T2I. After this,

Reed et al. built on the previous work by proposing the

GAWWN model [16], which improved the image reso-

lution from 64×64 to 128×128. The ability of GANs to

generate specific and attractive images has captured the

attention of many researchers. And the field of T2I has

also gained many development opportunities. In 2017,

PPGAN [17] generated 227×227 high-resolution images

by training the GAN and then iteratively optimizing it

to get a better result. The same year, Zhang et al. suc-

cessively proposed StackGAN [18] and StackGAN++,

which introduced a stack structure in the GAN and

used multiple GAN architectures to generate 256× 256

images with realistic details. The improvement also pro-

vided some basis for much subsequent work. In 2018,

Xu et al. sparked attention with AttnGAN [8] using an

attention mechanism that pays more attention to the

details of the generation situation between text and im-

ages. In 2019, the concept of a mirror structure was also
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Fig. 2 The network structure of SDeep. It is a single-stage GAN structure combined with CLIP. Among them, the FC Layer
is the fully connected layer used to reconstruct the dimensions of the random noise vectors. T is the sentence vectors generated
by the pre-trained CLIP text encoder.

introduced into GANs. MirrorGAN [19] used a cyclic

structure to propose a ’text-image-text’ framework to

regenerate text descriptions from the generated images,

enhancing the consistency of text descriptions and vi-

sual content. In the same year, DMGAN [20] used dy-

namic memory networks to select text content and in-

troduced dynamic storage modules to refine blurred im-

age content. In 2020, CookGAN [21] investigated the

synthesis from recipes to images from a causal perspec-

tive, using cooking recipe descriptions to generate food

images. In 2022, DFGAN [22] used conditional affine

variation to propose deep fusion generative adversar-

ial networks to synthesize high-resolution images di-

rectly in a more efficient way. Most of the above meth-

ods continue to evolve by enhancing image resolution

and quality, yet they still have certain limitations. They

tend to focus on the synthesis of single objects, such as

birds and flowers. For complex image synthesis tasks,
the synthesized objects can easily be placed in various

unreasonable positions in the image, which means the

layout structure can be easily confused. The generated

image scenes for complex tasks suffer from incoherence,

disharmony, and discrepancies between the image con-

tent and the proposed text.

Fusion of text to image information. The ini-

tial way of processing textual and image information

is feature stitching, such as GAN-INT-CLS [7], Stack-

GAN [18], StackGAN++ [23]. They both combine tex-

tual information in the depth direction with the feature

vectors obtained by convolving the original image, but

this approach only achieves integration by simple ma-

nipulation and the connection between the parameters

is very loose. The fusion approach based on attention

mechanisms, represented by AttnGAN [8], implements

a mapping of words to a sub-region in a picture at the

word level. MirrorGAN [19] reintroduces global atten-

tion on the basis of AttnGAN, combining it with the

local attention in the previous AttnGAN so as to focus

on the details of the image and semantic generation.

In DRGAN [24], both sentence features and image fea-

tures go through a separate layer of self-attention to

extract key information to enhance image semantic co-

herence. SDGAN [25] first applied CBN to image gen-

eration, embedding word-level and sentence-level CBNs

in image feature maps. In addition, DFGAN [22], DT-

GAN [26], SSAGAN [27] and RATGAN [28] also em-

ploy CBN and CIN to integrate textual information

into the synthesized image. This is accomplished by en-

coding the text into a vector representation and subse-

quently embedding it into the image feature map. The

process involves scaling and shifting the visual features

to enable the merging of text and image attributes.

While CBN methods are effective for localized, inde-

pendent fusion of textual and visual data, they have

limited utility in capturing global distributions. Addi-

tionally, there exists a significant structural disparity

between text and image modalities. Cross-modal image

generation models are susceptible to challenges such as

overfitting or instability, often resulting in irregular ob-

ject shapes or poorly rendered details.

3 Model Overview

As shown in Figure 2, the proposed SDeep is a single-

stage text generation image backbone. First, the text

encoder processes the text information, and the genera-

tor generates images. Then, the Match-Aware Gradient

Penalty [22] strategy is used to improve the discrimina-

tive ability of our model. Through iterative training, the

generator and discriminator are continuously updated

until the network converges.

First, the pre-trained CLIP text encoder is used

to extract sentence vectors from text descriptions. The

text description is encoded in the text encoder and then
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fed into the generator together with noise vectors sam-

pled from a Gaussian distribution. In the generator,

images are generated using Feature Predictor [29], Clip-

VIT [29], SD Blocks, MLCA Attention, and a convolu-

tional layer. The fully connected layer resizes the noise

vectors, and then processing image features is achieved

by Feature Predictor, Clip-VIT, and SD Blocks, as well

as the information fusion of the text vectors and the

image features. Then MLCA Attention is used to learn

the importance of different feature channels in the fea-

ture map. Finally, the image features are converted into

an image.

The discriminator aims to be capable of discerning

the authenticity of the input image. In the discrimina-

tor, the fake image is first converted into image features

by the CLIP-VIT and Dis Blocks. The fake image and

real image are then discriminated and the adversarial

loss is generated, which drives the generator to contin-

uously improve and generate outputs that are closer to

the true image distribution. Through iterative training

in this way, the discriminator’s power to discriminate

and classify is continuously improved, thus providing a

better direction for the generator to optimize.

In SDeep, the loss function of the generator is (1).

LGen =− EG(n,tv)∼Pgen
[D(C(G(n, tv)), tv)]

− λEG(n,tv)∼Pgen
[S(G(n, tv), tv)]

(1)

where n is a noise vector sampled from a Gaussian dis-

tribution. tv is a vector of textual information. G is the

generator of SDeep. D is the discriminator and C is the

CLIP-ViT in the discriminator. S denotes the cosine

similarity between the encoded visual features and the

text features. λ is the text image similarity coefficient.

Pgen denotes the synthetic data distribution.

In the discriminator, the loss function is calculated

by (2).

LDis =− Ex∼Preal
[min(0,−1 +D(C(x), tv))]

− (1/2)EG(n,tv)∼Pgen
[min(0,−1−D(C(G(n, tv)), tv))]

− (1/2)Ex∼Perr [min(0,−1−D(C(x), tv))]

+ bEx∼Pr

[(∥∥∇C(x)D(C(x), tv)
∥∥+ ∥∇tD(C(x), tv)∥

)d]
(2)

where Pgen denotes the synthetic data distribution. Pr

denotes the true data distribution. Perr denotes the

mismatched data distribution. b and d are the two pa-

rameters that balance the gradient.

The entire training process of SDeep is shown in

Algorithm 1.

Algorithm 1 Training Algorithm of SDeep.

Required: input text description t; random noise n;

Generator G; Discriminator D.

n← random noise, n ∼ N(0, 1);

tw ← pretrained CLIP text encoder for t;

n′ ← fully connected layer(n);

// Generate initial image in G

Img = G(n′, tw);

Obtain bridge fea in Feature Predictor;

vis c← CLIP-ViT-G(n′, tw, bridge fea);

for each SD Block i in 1 to 6 do

Fea sd← UpSample(n′, tw, vis c, bridge fea);

Fea sd← Conv(Fea sd);

Fea sd← SD Layer(n′, tw, Fea sd);

end for

F attn← MLCA Attention(Fea sd);

generated image← Conv2D(F attn);

// Evaluate loss from D

Loss = D(tw, generated image);

feature e← CLIP-ViT-D(generated image);

for each Dis Block j in 1 to 6 do

Fea dis← Conv(tw, feature e)

Fea dis← ReLU(Fea dis)

end for

Total Loss← lossg(n, tw) + lossd(Fea dis, tw)

Output generated image, Total Loss

4 SD Block

4.1 Staked Deepening Block

Many researchers have proposed valuable ap-

proaches [30] to address the problem of better

fusion of features from different perspectives [31].

Initially, text and image information was processed

by direct feature concatenation, and the fusion effect

became increasingly effective with the development of

approaches based on attention mechanisms. Later, this

further improved with the use of CBN and CIN to

achieve the fusion of text information into image gener-

ation. In the SDeep we propose the SD Block, which is

an extension of the use of text fusion blocks to achieve

text-to-image fusion using the affine transformation

method. Compared to previous fusion approaches, SD

Block can further deepen the fusion process for T2I.

As shown in Figure 3, there are six SD Blocks in

the generator, each of which is made up of an upsam-
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Fig. 3 There are six SD Blocks in the generator. An SD Block contains two SD Layers. An SD Layer consists of three affine
transformation layers and ReLU layers stacked alternately, followed by a convolution layer.

pling, two convolution layers, and two SD Layers. Each

SD Layer utilizes the Affine Transform layer, ReLU

layer, and convolution layer, with a total of three Affine

Transform and ReLU layers stacked. We accomplish the

fusion of textual information to images by means of su-

perimposed affine transformations.

4.2 The introduction of nonlinear transformations

In particular, for the Affine Transformation layer, two

Multilayer Perceptrons (MLPs) are used to complete

the key processing steps. MLPs learn and generate scal-

ing parameters α and the shifting parameters β for lan-
guage conditional channels from input text information,

which are used to guide the transformation of image fea-

tures. These two parameters are represented as Eq.(3)

and Eq.(4) respectively, used to characterize the calcu-

lation process of scaling and shifting. Specifically, when

inputting the feature map X, the scaling parameter α

is first used to scale each channel of the feature map X

to adjust the importance of the channels. Subsequently,

the shift parameter β is used to perform a translation

operation on each channel of the feature map X to fur-

ther enrich the expressive power of the features. This

series of processing procedures is represented by Eq.(5).

By combining text information with image information

in the above way, text information can directly guide

the representation learning of image features. This not

only enhances the diversity results of visual features

but also dynamically expands the representation space

based on different text descriptions by adjusting scaling

and shifting parameters, effectively capturing different

visual features.

α =MLP1(t) = ϕ(W1t+ b1) (3)

β =MLP2(t) == ϕ(W2t+ b2) (4)

Affine(xi|t) = αi · xi + βi (5)

where t is the textual information, α is the scale factor

and β is the shifting factor. Affine denotes the affine

transform, and xi is the i-th channel information of the

feature map.

Affine transformation is essentially a linear opera-

tion, and although it can change the distribution of

input, its representational power is limited. Adding a

ReLU layer (non-linear activation function) after affine

transformation can introduce non-linear characteristics,

thus compensating for the shortcomings of simple lin-

ear transformation. This allows for more flexible learn-

ing of complex feature relationships when fusing text

and image information, reducing the constraints of lin-

ear limitations on the fusion effect. Using only a sin-

gle affine transformation layer significantly restricts the

generator’s conditional representation space, limiting

its ability to map text descriptions to image repre-

sentations. This constrained representation space is in-

adequate for distinguishing diverse text descriptions,

and therefore cannot generate images with significant

differences. Stacking three layers of affine transforma-

tions and alternately adding ReLU layers in the middle

can significantly expand the conditional representation

space. This enhances the adaptability of the generator
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Fig. 4 The architecture of MLCA Attention. This module uses the channel attention mechanism to learn the importance of
each feature channel of the feature map, suppressing ineffective information and making the generated images more detailed.

to complex text descriptions, enabling it to generate

more diverse and semantically relevant images. Mean-

while, this also deepens the fusion process of text and

image features. Deep fusion helps capture finer semantic

features, thus improving the quality and authenticity of

the final image generation.

5 MLCA Attention

5.1 Channel feature learning for avoiding

dimensionality reduction

In previous works on the text-to-image task, many ap-

proaches used a stack structure to ensure image quality

and resolution, using multiple generators and discrimi-

nators divided into multiple stages to generate images.

However, the stacking structure partially depends on

the image generated in the first stage. In other words,

when poor images are generated in the initial stage, the

subsequent refinement stages struggle to function effec-

tively. This often leads to a final output that resembles a

mere patchwork of disconnected fragments rather than

a cohesive image. While discarding the stacking struc-

ture, it is important to investigate how to improve the

sharpness and fine-grained detail of the resulting im-

ages.

In SDeep, we propose MLCA Attention, specifi-

cally designed as a channel attention approach. The

structure is illustrated in Figure 4. In MLCA Atten-

tion, the process begins by taking the feature map of

size H × W × C, followed by applying both global

maximum pooling(GMP) [32] and global average pool-

ing(GAP) [33] to produce two distinct feature maps.

Then they are concatenated based on channel dimen-

sion to increase the number of channels. We obtain a

feature map with more feature representations. The re-

sulting feature maps are then subjected to spatial fea-

ture compression after GAP to produce feature maps of

size 1×1×C. Next, the compressed feature map under-

goes channel-wise learning, where a 1 × 1 convolution

is applied to capture the importance of each channel.

This results in a 1× 1×C output feature map. Finally,

the channel attention feature map is combined with the

original input feature map, and element-wise multipli-

cation is performed across the channels. The final out-

put is a feature map enhanced with channel attention.

5.2 Use of Dynamic Convolutional Kernel

In the previous attention mechanism, global learning

occurs when the input channel feature maps are pro-

cessed through a fully connected layer. When 1×1 con-

volution is used, the information learned is limited and

only the information between the local channels can be

acquired. After considering the fact that different input

feature maps will extract different ranges of features,

and also in the operation of convolution, the sensory

field is affected by the size of the convolution kernel.

MLCA Attention leverages a dynamic convolution ker-

nel to perform 1 × 1 convolution, enabling the model

to learn the relative importance of different channels.

The dynamic convolution kernel adjusts its size adap-

tively based on a predefined function. For layers with a

higher number of channels, the convolution kernel be-

comes larger, facilitating enhanced cross-channel inter-

actions during the 1 × 1 convolution process. In layers

with a smaller number of channels, a smaller convo-

lution kernel is used to do 1 × 1 convolution, making

fewer cross-channel interactions. MLCA Attention ob-

tains the kernel size by expanding the linear function to

a nonlinear function, and since the number of channels

usually is set to the power of 2, there is the following

formula:

C = ϕ(k) = 2(γ∗k−b) (6)

where C denotes the channel dimension and ϕ is the

mapping relation between k and C expressed as a non-

linear function.
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The convolution kernel adaptive function is as fol-

lows:

ks = ψ(C) =

∣∣∣∣ log2 (C)η
+
d

η

∣∣∣∣
odd

(7)

where ks denotes the convolutional kernel size, C de-

notes the number of channels, | · |odd means ks takes an

odd number, and η and d are set to 2 and 1.

Compared with SE-Net [34], we use 1×1 convolution
to learn the channel information, avoiding the loss of a

part of the feature expression caused by dimensional-

ity reduction. Compared with ECA-Net [35], the opera-

tions of GMP Eq.(8) and GAP( Eq.(9))are added based

on the H and W dimensions when compressing spatial

features, where F ∈ RC×H×W representing input fea-

ture maps. The joint use of the two poolings can im-

prove the representation of the network. In contrast, we

utilize MLCA Attention to focus more on local features

compared to the way that focuses on global features. In

the process of generating images, MLCA Attention ac-

quires feature maps with more feature representations.

It is able to perform channel feature enhancement on

the input feature maps and does not change the size

of the input feature maps. It mainly uses the channel

attention mechanism to learn the importance of each

feature channel of the feature map, captures the infor-

mation between different channels, and highlights the

significant feature channels while suppressing the inef-

fective information. This makes the details of the gener-

ated image richer and improves the quality of the gen-

erated images.

yc = max
i=1,...,H

max
j=1,...,W

F[c, i, j] (8)

where yc denotes the maximum value of the c-th chan-

nel output after the pooling operation. F[c, i, j] denotes

the value of the c-th channel in the input feature map

at position (i, j). H andW denote the height and width

of the feature map.

yc =
1

H ×W

H∑
i=1

W∑
j=1

F[c, i, j] (9)

where yc denotes the average value of the c-th channel

of the output. F[c, i, j] denotes the value of the c-th

channel in the input feature map at position (i, j). H

denotes the height of the input feature map.W denotes

the width of the input feature map.

6 Experiments

In this section, we will introduce the datasets, train-

ing details, and evaluation metrics used in the experi-

ments, and perform quantitative evaluation, qualitative

evaluation, and ablation study on the proposed model,

respectively.

Datasets. To evaluate our method, we used two

challenging datasets for our experiments, CUB [36] and

COCO [37]. The CUB bird dataset [36] contains 200

bird subclasses and 312 attribute descriptions, with

11788 bird images, each of which corresponds to 10 lin-

guistic descriptions. The dataset is divided into 8,855

training images and 2,933 test images. The COCO

dataset [37] consists of more than 80,000 training im-

ages and more than 40,000 test images, with a total of

80 annotated classes, each of which corresponds to five

linguistic descriptions.

Training details. In this study, we use pytorch to

build the framework of our model. We use a pre-trained

model based on CLIP as a text encoder to extract se-

mantically rich text features and ensure high-quality

expression of text features. In the generator, the ran-

dom noise with an input dimension of 100 is a vector

sampled from a standard Gaussian distribution, used

to initialize the generation process and introduce di-

versity. In addition, our network optimization uses the

Adam optimizer, where β1 and β2 are set to 0.0 and 0.9

respectively to ensure model stability and convergence.

During training, all models are experimented with a

Nvidia RTX 4090 GPU (24gb memory). The batch size

is set to 32, the dimensionality of the noise vector is

set to 100, and the size of the generated images is set
to 256 × 256. The models are trained on the CUB and

COCO datasets until the models converge. The maxi-

mum training epoch on the CUB dataset is 1300 and the

training time is about 1.5 days. The maximum training

epoch on the COCO dataset is 1500 and the training

duration is about 16.5 days.

Evaluation indicators. We employ the widely

used Fréchet Inception Distance (FID) [43] and CLIP-

SIM (CS) [44] to evaluate the performance of the model.

FID relates to the problem of comparing the distribu-

tion between real images and generated images, eval-

uating the quality of the generated image. It is used

to measure the distance between the distribution of

real images and the distribution of generated images.

The covariance is used to take the diversity into ac-

count when computing the distance. When the score of

FID is lower, it shows that the two distributions are

more similar and the quality of the generated image is

higher. CLIPSIM is a method for measuring the rele-

vance of images and text. It consists of a CLIP model
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Table 1 Comparison of metrics with alternatives on the
CUB and COCO. The best results are shown by bolding the
data in black.

Model
FID↓ CS↑

CUB COCO CUB COCO

DMGAN [20] 16.09 32.64 – –

DAEGAN [38] 15.19 28.12 – –

XMC-GAN [39] – 9.33 – –

DFGAN [22] 14.81 19.32 0.2920 0.2972

DR-GAN [22] 14.96 27.80 – –

SSAGAN [27] 15.61 19.37 – –

LAFITE [40] 10.48 8.12 0.3125 0.3335

ALRGAN [41] 15.14 29.04 – –

GigaGAN [42] – 9.09 – –

Ours 10.49 7.84 0.3188 0.3297

that extracts image and text features and computes the

semantic similarity between them. This metric is typ-

ically used for text-conditioned generation or editing

tasks.

6.1 Quantitative Evaluation

We compared our method with various current state-

of-the-art methods, including DMGAN [20], DAE-

GAN [38], XMC-GAN [39], DFGAN [22], DR-

GAN [22], SSAGAN [27], LAFITE [40], ALRGAN [41],

GigaGAN [42]. As shown in Table 1, our method was

compared with other methods on the CUB and COCO

datasets. The FID scores indicate that the images gen-

erated by our method on both datasets demonstrate

excellent authenticity. In addition, our method has also

achieved significant advantages in the semantic rele-

vance index CS score. Especially on the CUB, our

method achieved a performance of 0.3188, significantly

higher than the other methods. This indicates that our

method not only generates high-quality images, but also

better preserves semantic consistency between text and

images.

From the computational perspective, we compare

the number of parameters between the SDeep and diffu-

sion models and the autoregressive model. As shown in

Table 2, the results are derived from relevant paper data

and replication validation. Based on a large number of

predictions from autoregressive models and diffusion,

they require a much larger GPU cluster for retraining

and development. Compared to them, SDeep is lower

Table 2 Comparison of our method with autoregressive
models and diffusion based models. Displayed the number
of parameters and FID score based on the COCO.

Model Type FID↓ params(B)↓
DALL-E [45] AR 27.50 12

CogView [46] AR 27.10 4

CogView2 [47] AR 24.00 6

Parti [48] AR 7.23 20

GLIDE [49] DM 12.24 3.5

DALL-E2 [50] DM 10.39 3.5

Imagen [51] DM 7.27 3.4

SDeep GAN 7.84 0.18

than the number of parameters by one or two orders of

magnitude. However, SDeep’s FID score is very close

to them. Therefore, SDeep has a better learning rep-

resentation with fewer parameters, which will be more

user-friendly and flexible.

6.2 Qualitative Evaluation

For qualitative evaluation, we conducted experi-

ments with five models, AttnGAN [8], DMGAN [20],

SSAGAN [27], DFGAN [22] and GALIP [29], and pre-

sented multiple sets of experimental results for compar-

ison based on visualization results.

The experimental results of the COCO are shown in

Figure 5. In the nine sets of experiments presented, the

results of AttnGAN, DMGAN, and SSAGAN are sim-

ilar to the collocation of some simple objects. The im-

age subject is not clear, and even the content to be ex-

pressed cannot be recognized, nor can the content of the

text description be effectively expressed. DFGAN and

GALIP, compared to these three methods, can express

the image scene more effectively and embody the main

object of the image. They all have their problems with

the presentation of the image contents. The generated

image has only a rough frame outline, and the specific

content is ambiguous. Our proposed method, however,

has significantly improved results, which expresses the

image subject more effectively and is more appropriate

to the text description, such as ’white tile’ in column

(1), ’lake’ in column (4), ’street sign’ in column (6),

’cows’ in column (7), and ’boat’ in column (9). All in

all, compared to other methods, our method generates

images with better textures, more relevant colors, less

distorted shapes, and more relevant content. Moreover,

from a visual perception perspective, the generated im-
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Fig. 5 Qualitative comparison between our method and AttnGAN [8], DMGAN [20], SSAGAN [27], DFGAN [22] and
GALIP [29] on some of the test set of the COCO dataset. The text description and the generated image correspond to
the same numeric label. The text descriptions corresponding to different numeric labels are given in the boxes below, and the
corresponding images generated by the same text description using different methods are shown in the same column.

ages exhibit a well-balanced color distribution, greater

overall coherence, and enhanced realism.

Figure 6 shows the experimental results of the

CUB dataset. It can be seen that the experimental re-

sults of AttnGAN, DMGAN, and SSAGAN contain the

subject-object of ’bird’, but there are differences in the

text descriptions. In the text descriptions corresponding

to the experimental results, ’dark brown’, and ’speck-

led’ in column (1), ’brown with black’ in column (2),

’short’, ’stout’, and ’curved’ in column (3), ’black bill’

in column (4), ’blue and white’ in column (5), ’white

with grey’ in column (6) and (7), ’white belly’ in column

(8), ’red with black’ in column (9), and none of them

are shown. However, our method can significantly solve

these problems, and the relevant text descriptions are

present in the resultant images. Although they are also

able to be represented in DFGAN and GALIP, the qual-

ity of ours is clearly superior to DFGAN and GALIP,

The results generated by our method have clear de-

tails such as feathers, beak, eyes, and feet. In addi-

tion, the background is also more regular in our re-

sults, especially the tree branches, and their textures

are also naturally generated. While presenting the bird

as a subject-object, it can reflect the relevant specific

details in the textual description and the presented im-

ages are superior.

In Figure 7, the experimental results of our method

and the large model methods (Stable diffusion [13] and

Genmo) are shown. On the whole, it is obvious that the

images generated by Stable diffusion [13] and Genmo

lack realism. In the large model methods, such as the

images in the first, third, fourth, and fifth columns, the
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Fig. 6 Qualitative comparison between our method and AttnGAN [8], DMGAN [20], SSAGAN [27], DFGAN [22] and
GALIP [29] on the test set of CUB bird dataset. The text description and the generated image correspond to the same
numeric label. The text descriptions corresponding to different numeric labels are given in the boxes below, and the corre-
sponding images generated by the same text description using different methods are shown in the same column.

backgrounds of the images they generate appear very

rough in the virtualization, and the artistic sense is too

strong to lose authenticity. In addition, the generated

images also have the problem of semantic inconsistency

and error. For example, the images in the second and

third columns fail to generate ’orange bill’, and even

generate multiple beaks. The ’lake’ in the fifth column

image is also not well presented. In our approach, the

generated images are able to contain the main elements

and are more in line with the text description. For ex-

ample, ’red with black’ in the first column, ’orange bill’

in the second and third columns, ’people’ in the fourth

column, ’beach’ in the fourth column, and ’cattle’ and

’lake’ in the fifth column. In addition, the images gen-

erated by our method are also more realistic than the

large model.

Table 3 Ablation studies of each component on the CUB
and COCO dataset. ✓indicates that the component is used
in the experiment. We compare the FID scores for each ex-
periment as follows.

Architecture exp0 exp1 exp2 exp3

baseline ✓ ✓ ✓ ✓

SD Block ✓ ✓

MLCA Attention ✓ ✓

CUB-FID↓ 11.33 11.14 11.24 10.49

COCO-FID↓ 8.12 7.98 8.03 7.84
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Fig. 7 Results of qualitative experimental comparisons with
the large model methods Stable diffusion, and Genmo on the
COCO and CUB datasets. The top side shows the input text
descriptions. The left side shows the model methods. The
generated experimental images are shown on the right side of
the model method.

6.3 Ablation Study

We conducted ablation experiments on the CUB [36]

and COCO dataset [37] to evaluate the performance

of each component in our approach, and to show ex-

perimental comparisons under different component set-

tings. The components tested include SD Block and

MLCA Attention. The FID for each experiment demon-

strates their effectiveness compared to the baseline.

Based on the baseline method, we added SD Block

and MLCA Attention. The results of the ablation ex-

periments are shown in Table 3. On the CUB, the FID

score for the baseline is only 11.33. In exp1, with the

addition of SD Block in the baseline, the FID score

drops to 11.14. In exp2, when we add MLCA Atten-

tion, the FID score drops to 11.24. On the COCO, the

FID score for the baseline is only 8.12. In exp1, with

the addition of SD Block in the baseline, the FID score

drops to 7.98. In exp2, when we add MLCA Attention,

the FID score drops to 8.03. These two experiments

demonstrated the effectiveness of the two components

respectively. Finally, we experimented with all the com-

ponents together. The FID score drops to 10.49 on the

CUB and 7.84 on the COCO.

The results of the ablation experiments demonstrate

the superior performance of SDeep, with each compo-

nent contributing effectively to the fusion of text and

image information, thereby improving image quality.

Overall, we also compared the visualization results of

these four sets of experiments for the visualization re-

sults on the CUB and COCO, and the experimental

results are displayed in Figure 8.

To demonstrate the individual validity of the two

components, we show the experimental results for both

Table 4 Ablation study of the number of layers stacked in-
side the SD Block. Comparison of FID and CS scores for
stacking two, three, and four layers, respectively.

Architecture 2 Layers 3 Layers 4 Layers

CUB-FID↓ 11.75 10.49 13.47

CUB-CS↑ 0.3127 0.3188 0.3117

components. The SD Block is implemented using cross-

stacking of three affine transform layers and ReLU lay-

ers. Their stacking allows the generator to hierarchi-

cally learn different levels of abstract features of the

data for a more textually relevant image representa-

tion. Moreover, by introducing nonlinear transforma-

tions, the model can adapt more flexibly to the higher-

order features and complexity of the data. When there

is only one layer of affine transformation, the condi-

tional representation space of the generator is very lim-

ited. By appropriately multiplying the layer count, the

performance can be improved while avoiding the in-

troduction of excessive complexity. We experimentally

compare the effect of superimposing two, three, and

four layers, and the experimental results are displayed

in Table 4. According to the experimental results, both

FID and CS achieved the best results when we stacked

the number of layers as 3. With the consideration of too

many layers leading to overfitting and computational

parameters, we determined the number of stacked lay-

ers to be 3.

For the component MLCA Attention, we added vi-

sualization results for comparison. As shown in Fig-

ure 9, the quality of the first row of images is poor

without MLCA Attention. All seven images appear to

overemphasize the background and ignore the details

of the subject. And the relevant parts of the bird are

seriously missing or distorted. The second row is the

result of the experiment with the addition of MLCA

Attention. In comparison, all seven images were able to

maintain good visual effects. The main body and spe-

cific parts of the bird are relatively intact, especially the

beak, eyes, and tail. In addition, the image as a whole

is also very natural, and the generation of backgrounds

like tree branches and rocks is also coordinated.

6.4 Limitations

Although our experimental results are competitive,

there are still limitations in some cases. Firstly, our vi-

sual results are still not comparable to large models

such as stable diffusion [13]. Our method can also only

generate realistic images in the two current datasets and
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Fig. 8 Comparison of visualization results for ablation experiments on the CUB and COCO datasets. The top shows the input
text descriptions. The left side shows the component composition of each experiment. Each column shows the experiment results
generated by different models for the same text description.

Fig. 9 Comparison of visualization results for MLCA Attention ablation experiments. The first row shows the experimental
results generated by the model without the MLCA Attention component. The second row is the experimental results generated
by the model with the MLCA Attention component.

cannot creatively generate stylized high-quality images.

Secondly, we also need to address the issue of utilizing

compressed models to improve model performance. Al-

though it is possible to extend the model by adding ad-

ditional conditions, the model will become larger and

require more computational power than the ordinary

user can afford. Thirdly, we also need to continue to

investigate the effective fusion of cross-modal informa-

tion. Although the fusion of the current model works

well, it is not yet able to be applied to more modal in-

formation. In our subsequent work, we will extend the

model to dictionary learning [52] and try efficient fea-

ture representation to achieve better feature fusion and

representation between textual descriptions and image

information.

7 Conclusion and Future Work

In this paper, we introduce a GAN-based network archi-

tecture named SDeep. Our primary objective is to gen-

erate more detailed and realistic images while ensuring

a strong semantic alignment between text and images.

To achieve this, we address the challenge of efficiently

integrating textual information into the image synthesis

pipeline. First, we propose MLCA Attention, a channel

attention mechanism designed to enhance feature ag-

gregation, emphasize important feature channels, and

facilitate the integration of text features with image

data. Furthermore, we present the SD Block, which

strengthens the fusion of text and image features, en-

abling a deeper integration of textual information. By
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combining these strategies, we thoroughly evaluate our

method on the challenging CUB and COCO datasets,

comparing it with existing techniques. Experimental re-

sults demonstrate that our approach delivers substan-

tial performance improvements.

Our proposed method builds upon the application

of GANs in text-to-image generation tasks, further ad-

vancing their use by extending the capabilities to sup-

port more efficient and effective text-to-image synthe-

sis. The experimental results we present confirm both

the feasibility and the practicality of our approach.

In future work, we hope that our models can be im-

proved much more in terms of performance. As more

and more powerful models become available, the gen-

eration results have been drastically improved and ex-

tended. However, the larger the model, the higher the

computational requirements are required. Generating

images faster and better under limited resource con-

ditions is a challenging problem. At the same time,

converting textual descriptive content into images more

aptly needs further research. Effective fusion of image

information and text information is also one of the key

issues that constantly needs to be overcome. In addi-

tion, we are also concerned with applying attention to

3D scenes [53], which our approach is not yet able to

extend to.
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