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Abstract— In this paper, we present a novel Siamese graph 

convolution network (GCN) for face sketch recognition. To build a 

graph from an image, we utilize a deep learning method to detect the 

image edges, and then use a superpixel method to segment the edge 

image. Each segmented superpixel region is taken as a node, and 

each pair of adjacent regions forms an edge of the graph. Graphs 

from both a face sketch and a face photo are input into the Siamese 

GCN for recognition. A deep graph matching method is used to share 

messages between cross-modal graphs in this model. Experiments 

show that the GCN can obtain high performance on several face 

photo-sketch datasets, including seen and unseen face photo-sketch 

datasets. It is also shown that the model performance based on the 

graph structure representation of the data using the Siamese GCN is 

more stable than a Siamese CNN model. 

Keywords— Siamese network ; graph convolution network 

(GCN) ; superpixel ; graph structure    

I. INTRODUCTION 

A suspect’s image on an announcement or the news may be 

not a captured photo of the criminal, but a facial sketch which 

is drawn from the description of victims or witnesses. These 

sketches as a unique clue are used to retrieve the corresponded 

photos from the police’s face photo dataset, or to search for 

the suspect by publishing the sketch. The portrait sketch which 

is drawn from a frontal human photo can express the quality of 

human skin, the structural features arising due to different 

ages and genders, etc. However, for forensic sketch artists, the 

suspect’s sketch is generated by a simple description from 

victims or witnesses. Since victims or witnesses cannot 

remember all face attribute details, such as the shape of the 

nose or ears, or eye colour, the painter has to draw the sketch 

through a combination of their imagination and experience. 

This means that standard face recognition systems cannot be 

used to search a face sketch from a face photo dataset. The 

earliest algorithm [1] is designed to directly generate a pseudo 

photo or sketch according to the corresponding image using 

the Karhunen–Loeve Transform for face photo-sketch 

recognition. Subsequently, a nonlinear dimension reduction 

method [2] is proposed to generate more real looking sketch 

photos for increasing recognition accuracy. A feature 

descriptor called local feature-based discriminant analysis 

(LFDA) [3] to extract features from the face photo and face 

sketch. Then the extracted features are used to compare the 

distance between the target sketch and a set of photos. The 

multi-view discriminant analysis method maps face photos 

and sketches into a common space to increase the 

generalization of the classifier. 

Instead of traditional methods, deep learning is used to 

reduce the effect of sketch distortion and noise. Galea and 

Farrugia proposed a DCNN model [33] for face verification 

based on a triplet network to extract feature representations 

from face sketches and face photos. Due to the weight-shared 

triplet structure, this model allows flexibility in the variation 

of the facial features.  

The existing face photo-sketch recognition methods based on 

deep learning avoid spatial topology structure from face 

images, such as skin, race, or hair colour. A new loss function 

[4] which combine a transformation and mapping function is 

used to fuse the facial attributes and the geometrical properties 

of sketch from  a deep two-channel coupled CNN framework. 

The new loss function consists of three parts, one is to 

minimize the intra-class distances of photos or sketch-attribute 

pairs, the middle is for intra-class separability, last one is to 

keep a maximize distance behind the similarity inter-class 

samples. Generative Adversarial Network (GAN) [5] is a 

novel strategy to improve recognition accuracy based on the 

synthesis-based method. It designs a new loss function that 

combines with the advantages of CycleGAN and the 

conditional GANs method to ensure the pseudo image’s 

quality for recognition. These methods all get better results on 

the face photo-sketch dataset. However, in order to use the 

spatial relationship of face attributes to show a realistic face 

image, some basic facial features will be discarded to avoid 

distortion which is produced by rich facial local changes and 

special illumination. This causes the feature extractor to fail to 

extract valid features which are similarity features with face 

photo for recognition. Moreover, the variations in the 

thickness and lightness of the lines increases the sketch’s 

noise. It leads to the similarity for the extracted features 
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between different persons being higher than between the same 

person. 

In this paper, we propose to extract graphs from images to 

reduce the effect of uncontrollable factors, such as 

illumination, expression. Then, a Siamese graph convolution 

network (GCN) is designed to learn an embedding space. 

Finally, we use the contrastive loss function to optimize the 

node and edge information and compare the similarity 

between each pair of graphs. The contributions of our paper 

are as follows: 

(1) We utilize a CNN and two types of superpixel methods to 

generate a graph structure from face photos and face sketches. 

Firstly, a full convolution network is used to extract image 

edges from photos and sketches. The superpixel methods are 

then used to cluster similar pixels into small regions. After the 

features are extracted from each cluster region, a graph is built 

that contains face contour information. 

(2) A Siamese GCN is designed to transfer a graph structure 

into an embedding space with the intrinsic structural 

properties of graphs. In addition, this Siamese GCN can 

capture the topology of the graph and the relationship among 

nodes with shared weights and keep similar graph structure 

and node information for recognition. 

(3) We combine a deep graph matching method with GCN and 

the MoNet network to extract more similar cross-modal graph 

features than that extracted by the original weight-shared 

Siamese network. The proposed method uses the contrastive 

loss function to measure the graph distance based on the 

Euclidean distance. It can reduce the difference between two 

graphs of the same class from different modalities. 

II. RELATED WORK 

A. Siamese Networks  

Deep convolutional networks extract features using filters 

and generated model samples from the same probability 

distribution. The advantage of convolution networks for 

recognition is that they utilize sparsely connected methods to 

transfer information into the next layer, so that it can avoid the 

extracted features being affected by other regions, and ensure 

that each image has unique features. However, because of 

variations in illumination and viewpoint, it leads to the extracted 

features being different, which is problematic for recognition. 

Meanwhile, convolution networks are used on datasets of 

different modalities, such as face photo and face sketch images. 

Due to the differences in imaging principles between different 

types of images, the data distribution of different modalities 

varies greatly. To extract corresponding features from data of 

different modalities, a Siamese network is usually used, which 

consists of two identical convolution networks and extracts 

similarity features from two channels of neural networks with 

shared parameters to learn the distribution of similarity features 

from the same object.  

The first Siamese network [6] was proposed to learn a 

similarity metric from pairs of input face images. The main idea 

of this model is that pairs of input face images are mapped into 

a target space which can minimize the distance between intra-

class data and maximize the distance between inter-class data. 

The advantage is that the Siamese network, label represents 

same sample or different sample and can achieve high 

performance for small datasets using deep learning. An 

improved Siamese convolution network model [7] was built for 

face verification. This model fuses the convolution and 

subsampling operations to reduce the complexity and the 

number of parameters. It is difficult to learn a suitable feature 

using deep learning method for small datasets. The Siamese 

network model [8] adopts a score system to rank similarities of 

nonlinear features between input data using shared-weight 

CNNs. After training the model, the powerful discrimination 

function of this model is applied not only for new data, but also 

for new categories in unknown class data. However, the margin 

in the contrastive loss function must be a constant value for 

every inter-class samples, which restricts the ability of further 

improving recognition accuracy. 

B. Graph Convolution Network 

The target of the GCN model is to extract spatial features 

from a graph which is built using the relationship between 

nodes and edges. The first GCN was proposed by [11]. The 

advantage of this GCN is that it extracts features from various 

graph structure data, especially from weakly connected graphs. 

However, this design cannot achieve shared weight strategy for 

different position on a graph. Different from the first GCN [11], 

a set of parameters is added into the convolution kernel in the 

GCN proposed [12] to reduce the complexity of parameters. 

GCNs can be used to extract information on first-order 

neighbours in the graph [13]. Meanwhile, for each node, the 

principle of graph convolution filters is similar to the filters on 

CNN model. The s-GCN [14] utilizes graph Siamese network to 

reveal the relationship between a specific disease and brain 

structure using graph representation. A novel SGCN [15] utilize 

graph convolution network to learning the similarity between 

each image which is represented by the region adjacency graph 

(RAG). Then, PCA-GM model [16] adopts graph structure 

based on embedding to seek the relationships between nodes for 

matching. 

A graphical representation based on markov networks [17] is 

proposed for face photo-sketch recognition. They use Markov 

networks to select a set of nearest image patch from overlapping 

photo image patches and overlapping sketch patches based on a 

coupled representation similarity metric. The advantage is that 

the Markov network extracts the spatial features for recognition. 

The deep sparse graph neural network (DSGNN) [18] extracts 

an undirected graph G from the face photo image for 

recognition. The graph nodes are the divided blocks for each 

face image. Undirected edges are generated using the Euclidean 

distance to calculate the correlation between pairs of image 

patches. After learning features using deep sparse graph neural 

networks, the recognition accuracy reaches 99.5% on the LFW 

dataset. However, this method is sensitive to the effects of 
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occlusion and illumination when extracting features using the 

CNN model to generate the graph structure data. The GCN 

model [19] is utilize to predict a new node from existed graph 

model. They utilize a KNN to build a graph structure after 

extracting face features using CNN model. Then the similarity 

nodes are clustered by GCN using the weighted average 

between adjacent nodes and neighbour nodes. This method 

supposes that if two face images have the same ID, there is a 

connectivity after inference from graph. A hierarchical 

multigraph network [20] is built to improve the graph 

classification accuracy on image datasets. In the first step, the 

graph for an image is built by superpixels of the images. This 

method builds a three-layers graph convolution network on 

graph data to extract node information for increasing 

recognition accuracy of low-resolution image dataset. 

III. METHODOLOGY 

 

This paper utilizes graph structure data as input to reduce the 

modality gap between photos and sketches for face recognition 

based on a Siamese network. The architecture of our model is 

shown in Fig. 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Architecture of the Siamese graph network model. Each branch of our 

model consists of two graph layers for extracting graph features. 

The input graph structure data is generated from images using 

superpixel methods [21] [22]. Firstly, the holistically-nested 

edge detection (HED) method [23] is used to generate an edge 

image for image information simplification. Then the superpixel 

method is used on the edge image to segment the image into 

regions. A graph is generated by taking the centre of each 

region as a node and the distance between each pair of the nodes 

as the edge feature. After that, a set of input data which is 

composed of two graphs, including one from the sketch image 

and one from the photo image, is input into our Siamese 

network model. Each channel in the Siamese network model 

consists of two graph convolution layers to extract features from 

the graph on an embedding space. Finally, Euclidean distance is 

used in the contrastive loss function to measure the distance 

between each reconstructed graph for recognition. The aim of 

our model is to measure the similarity between the graphs for 

increasing recognition accuracy.  

A. Graph Structure Data for Images 

Photos are generated by optical imaging principles. A face 

photo uses the relationship between pixels to describe all 

features of the real human face on a two-dimensional space. In 

contrast, a face sketch uses the geometric deformation and the 

line density to represent the illumination and the characteristics 

of the real face. Since the representations are different between 

photos and sketches, convolutional networks can only capture 

the local structure of the sketch, but cannot fully extract colour 

and texture information. It fails to represent the same model 

features as the photo, because the formation of sketch leads to 

the extracted features from sketch lack ‘sense of feature’. 

Therefore, we propose to build a graph structure based on the 

image features and structure information, as is shown in Fig. 2.  

In the first step, we utilized an edge detection method to 

extract the contour of the face image and reduce the background 

noise. It not only keeps the image structure properties, but also 

reduces the weakly relevant information.   

Traditional edge detection methods, such as Sobel, Prewitt, 

Canny, HOG, utilize local region changes, including colour 

changing and illuminations, to search image edges. However, 

sketches use lines of different widths to represent texture 

features, which leads to that some facial details cannot be 

represented. The low-level features extracted by traditional 

methods do not reflect the real sketch edges. Moreover, it is 

difficult to extract colour, illumination, and gradients from 

sketch images to detect edges because texture features in sketch 

images have weak edge distribution patterns.  

CNN-based methods [24] utilize kernels of large receptive 

fields to extract global feature and details from images and 

pooling layers to increase the recognition accuracy. Large 

receptive fields and pooling layers in the low convolution layers 

remove more details than the high convolution layers. Hence, 

the low convolution layers focus on extracting the edge features, 

and the high convolution layers focus on global semantic 

features. Thus, we can use deep learning method on face photo 

and sketch images to obtain the image contours from a high 

convolution layer which includes more semantic information 

than a low convolution layer.  

Meanwhile, the HED network [23] combines multi-scale 

features with a multi-level feature to map several multiple side 

output layers on the main convolutional network. It obtains a set 

of edges from different scales. The drawback of the HED 

network is that this model adopts many downsampling layers 

and does not fully fuse multi-scale features, producing rough 

and fuzzy lines as edge detection results. 
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Fig. 2. The pipeline of creating graph structure data from an image. The first 
step is to extract image edges using the holistically-nested edge detection 

method. Next, a superpixel segmentation of the edge image is generated. 

Then, a region adjacency graph is built based on the superpixel segmentation. 

Then we use the superpixel method to segment image as for 

build graphs, such as Quickshift [21] and SLIC [22] method, to 

cluster adjacent pixels with similar features into the same 

region. The superpixel methods aggregate similar image pixels 

to several sub-region blocks with regular shapes and consistent 

local structure, according to the similarity criteria of image 

visual features and spatial distance. This method tends to global 

representation using the image’s local features and structure 

information to reduce data redundancy. According to the 

correlation between each pixel, the pixel colors, and the 

similarity of brightness in the image edge, we use superpixel 

methods. 

Each superpixel region is used as a node in an undirected 

graph structure. The relationships between adjacent regions, 

which is obtained using feature’s information, is mapped as 

graph edge. The image is mapped as a weighted undirected 

graph ( , )G V E . In graph G , {1,2, }, Nv =  is the regions 

using superpixels for image. E  is the similarity between 

adjacent regions. The weights of corresponding edges 

( , )i jW v v are the difference between the region features. 

B. Graph Convolution Network 

We adopts two strategies: GCN and MoNet [25] on our graph 

data for recognition. For the input undirected graph data 

( , )G V E with N nodes V and edge E , we utilize Graph 

Convolutional Layer on graph-structure data to extract features. 

The core of GCN for convolution is to use the Fourier transform 

on a graph as:  

* * ( )T Tf g U diag U g U f =                    (1)               

where g  is the convolutional kernel, TU g  and T
U f  

represent the Fourier transformation of g and f  respectively, 

induced from the Laplace matrix of the graph. 

1 2
( , , , )

n
U U U U= are the orthonormal eigenvectors of the 

Laplacian matrix. The core of GCN is that the eigenfunction of 

the Laplacian is transferred to the eigenvector of the Laplacian 

matrix calculated from graph G . The node feature of each layer 

in the GCN network is composed by the convolution of signals. 

Then an activation function is used to perform a nonlinear 

transformation to obtain a matrix that aggregates features of 

adjacent vertices for generating a new node representation. 

According to the principles of convolutional networks, GCN 

utilizes some overlapping convolution layers to achieve multi-

order neighbourhood information for update. In our model, we 

adopt GCN to extract the first-order neighbourhood information 

from graphs using graph topology directly. For the thl  layer of 

GCN model, the extracted message 
( 1)l

message
f

+

from this layer is 

represented as: 

  
( 1)

( )0 1

l

i N Vmessage I

l l l l

Ei if w f w f
+


= +                      (2) 

where ( )
i

N V is a set of nodes which connect with 
i

V  in 

graph ( , )G V E , 
0

lw and 
1

lw  are weights of nodes.  

The original Siamese network uses the contrastive loss 

function to calculate the similarity between two graphs in an 

embedding space. Instead of mapping graph into a vector space, 

we use the graph matching networks [26] to update nodes of our 

graph network model. It receives and clusters the information 

between neighbouring nodes for each selected node, and fuses 

the local graph structure information. This method not only 

aggregates messages on the edges of each graph, but also 

changed the way of update for nodes in each propagation layer 

using a cross-graph matching vector. This cross-graph matching 

vector can measure the matching degree between nodes in one 

graph with several nodes in another graph. 

Another strategy is to build graph layers based on the MoNet 

method [25]. MoNet introduces node pseudo-coordinates to 

determine the relative position between a node and its 

neighbours in D-dimensions. The convolution calculation of a 

node x is defined in MoNet as: 

1( * )( ) ( )J
j j jf g x g D x f==                          (3) 

where f is the signal on the graph, g is the convolutional 

kernel with dimension J , 
i

g is the thj element of g , and 

( )
j

D x f is a weighted sum of the signal on x ’s neighbouring 

nodes, where the weight is dependent on the pseudo-

coordinates of each neighbour. 

IV. EXPERIMENT SETTING 

We utilize the MTCNN model [27] to detect the location of 

face images and crop all face images to size 128*128. After 

extracting image edges, the contours of the images are 

represented by grayscale images. After that, we build and test 

four models, including two Siamese networks based on GCN 

using SLIC and Quickshift, and two Siamese networks based on 

MoNet using SLIC and Quickshift, respectively. 

In detail, we use SLIC and Quickshift to build graphs for all 

face photos and face sketches respectively. For SLIC, we 

extract N<100 superpixels; each superpixel region can be 

represented as a node, an edge value is computed as the spatial 
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distance between the superpixel regions. For Quickshift, the 

kernel size is 2. Then we build GCN and MoNet as layers in our 

Siamese network. For MoNet, we use (4) to compute the 

pseudo-coordinate between two nodes. 

 
1 1

( , ) ( , )
deg( ) deg( )

u x y
x y

=                      (4) 

In our model, two graphs from a sketch and a photo 

respectively, are input into the Siamese network. Then loss 

function in our model is contrastive loss which compares the 

similarity between pairs of input graph data.  

2 2 2

( 1)

1
(1 ) ( ,0)

2

N
n n n n nLoss y d y max L d

N
== + − −          (5)                                       

where 
n

y  is the label for each input pair. 0ny =  represents the 

pair in the same class, while 1
n

y =  represents the pair in 

different classes. L is a margin to measure the distance 

between same class and different class data. In order to 

increase the distance between different class data, we use the 

squared Euclidean distance to measure the difference of two 

samples. We train this Siamese graph network using the Adam 

optimizer. The learning rate is set as 1e-6. 

V. RUSULTS 

Because composite face sketches are widely applied in 

forensics for face recognition, we use three composite face 

photo-sketch datasets which have different characteristics 

(UoM-SGFSA, UoM-SGFSB, and e-PRIP dataset) to test our 

models. The UoM-SGFS dataset [28] contains two types of face 

colour sketches, UoM-SGFSA and UoM-SGFSB. The 

similarity between photos and sketches in the UoM-SGFSB 

dataset is higher than that in UoM-SGFSA, where SetA is 

created using Corel Paintshop Pro X7 with EFIT-V software to 

reduce the similarity with the corresponding photo than SetB. 

The viewed face sketches in e-PRIP dataset [29] are generated 

by the corresponding photograph which is from the AR dataset 

using FACES software. The quality of the generated sketch 

from the FACES software is closer to photo quality. The 

categories of face attributes are limited in the software. The 

generated viewed sketch can be recognized from the shape and 

proportional difference between face attributes. 

We compare the performance of our models with some 

state-of-the-art models ([33], [30], [29]). Tables I ~ III show 

the performance comparison on the three different composite 

face sketch datasets. Compared with all the other methods, the 

Siamese model with GCN and Quickshift gets the best Top-1 

accuracy on UoM-SGFSA and e-PRIP datasets, where its 

recognition accuracy achieves 74.16% and 55.28%, 

respectively. However, the recognition accuracy of our models 

is lower than the result in [30] on UoM-SGFSB dataset. 

 

 

 

 

 

TABLE I.  EXPERIMENTAL RESULTS ON UOM-SGFSA DATASET 

Method Top-1 accuracy Top-10 accuracy 

[30] 64.80% 92.13% 

[31]  68.3% 

[32]  96.7% 

DCNN [33] 31.60% 66.13% 

Siamese GCN (Quickshift) 74.16% 76.66% 

Siamese MoNet (Quickshift) 64.17% 74.17% 

Siamese GCN (SLIC) 68.33% 72.25% 

Siamese MoNet (SLIC) 66.65% 73.33% 

TABLE II.  EXPERIMENTAL RESULTS ON UOM-SGFSB DATASET 

Method Top-1 accuracy Top-10 accuracy 

[30] 72.53% 94.80% 

[32]  96.13% 

DCNN [33] 52.17% 82.67% 

Siamese GCN (Quickshift) 65% 80.83% 

Siamese MoNet (Quickshift) 62.5% 80% 

Siamese GCN (SLIC) 60.83% 77.5% 

Siamese MoNet (SLIC) 59.1% 79.17% 

From the tables we can see that the performance using the 

Quickshift method is better than that using the SLIC method. 

The SLIC algorithm uses K-means clustering to obtain 

superpixel regions under an average distribution of cluster 

centres. Because of ignoring the image edge information, it 

leads to inaccuracy in the segmentation results of superpixel 

blocks. Compared with Quickshift algorithm which makes 

superpixels segmentation based on the image’s Color density, 

the advantage of SLIC method does not only segment color 

image, but also compatible to implement on a grayscale image. 

Different regions are classified into the same superpixel block, 

producing under-segmented superpixel blocks. From the tables 

we can also see that the performance of GCN is better than that 

of MoNet. The GCN trains all the nodes in the graph to obtain a 

new graph representation in the embedding space. A new graph 

presentation is extracted using the generated graph from the last 

graph convolution layer and the optimized node embedding. 

However, the representation of each node is affected by all 

related nodes. It may lead to the effect that the graph 

convolution network is worse than the convolution network. 

 

 

 

 

 

 

 

 

8012

Authorized licensed use limited to: Cardiff University. Downloaded on May 18,2021 at 16:00:27 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III.  EXPERIMENTAL RESULTS ON E-PRIP DATASET 

Method Top-1 accuracy Top-10 accuracy 

[29] 52% 60.20% 

DCNN [33] 54.90% 80.80% 

AADCNN with attributes [34]  76.4% 

AADCNN without attributes [34]  69.1% 

[35]   91.73% 

Siamese GCN (Quickshift) 55.28% 73.9% 

Siamese MoNet (Quickshift) 50.4% 67.48% 

Siamese GCN (SLIC) 47.15% 63.4% 

Siamese MoNet (SLIC) 48.78% 61.78% 

We also test our model performance on a hand-drawn face 

photo-sketch dataset. The sketches in the CUFS [36] and 

CUFSF [37] datasets are all drawn by artists according to the 

corresponding front photos. Hand-drawn sketches utilize the 

facial contour and the ratio between the locations of facial 

features to depict the intrinsic features. The drawn images 

typically have some distortions and inaccuracies on a 

character’s position, illumination and pose, because of natural 

limitations of the artists. We use graph structure to obtain the 

relationship between pixels on the image edge to avoid the 

effect of image’s distortion. However, HED method cannot 

extract suitable image edges to build graph data. The 

performance achieves 87.71% and 82.25% for the CUFS 

dataset and CUFSF dataset, respectively. Although the results 

all exceed 80%, the dataset is too small for recognition. The 

results on hand-drawn face photo-sketch datasets do not show 

the real performance of our model. 

TABLE IV.  EXPERIMENTAL RESULTS ON CUFSF DATASET 

Method Top-1 accuracy 

[38] 80.80% 

DCNN [33] 82.80% 

[29] 52% 

Siamese GCN (Quickshift) 82.25% 

Siamese MoNet (Quickshift) 80.75% 

Siamese GCN (SLIC) 77.5% 

Siamese MoNet (SLIC) 75.5% 

TABLE V.  EXPERIMENTAL RESULTS ON CUFS DATASET 

Method Top-1 accuracy 

Siamese GCN (Quickshift) 87.71% 

Siamese MoNet (Quickshift) 85.9 % 

Siamese GCN (SLIC) 82.4 % 

Siamese MoNet (SLIC) 78.9% 

VI. CONCLUSION 

In this paper, we present a Siamese network based on graph 

structure data for face photo-sketch recognition. This model 

constructs two graph convolution layers for each channel to 

learn a set of graphs on an embedding space. In order to 

reduce the modality gap between face photos and sketches, we 

utilize a superpixel method on the contour images obtained 

from the HED model to extract a similar graph structure data 

from the sketch and the correspond photo. Experiments show 

that the similarity is higher between graph data of face photos 

and sketches using the Quickshift method than using SLIC. 

We test our methods on composite face photo-sketch datasets 

and hand-drawn face photo-sketch datasets. For composite 

face photo-sketch datasets, the Top-1 recognition accuracy for 

the UoM-SGFSA dataset is better than the state-of-the-art 

methods and reaches 74.16%. For hand-drawn face photo-

sketch datasets, the performance is better than the results on 

composite face photo-sketch datasets 
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