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Real-time content-aware image resizing
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Content-aware image resizing is a kind of new and effective approach for image resizing, which pre-
serves image content well and does not cause obvious distortion when changing the aspect ratio of
images. Recently, a seam based approach for content-aware image resizing was proposed by Avidan
and Shamir. Their results are impressive, but because the method uses dynamic programming many
times, it is slow. In this paper, we present a more efficient algorithm for seam based content-aware im-
age resizing, which searches seams through establishing the matching relation between adjacent rows
or columns. We give a linear algorithm to find the optimal matches within a weighted bipartite graph
composed of the pixels in adjacent rows or columns. Therefore, our method is fast (e.g. our method
needs only about 100 ms to reduce a 768x1024 image’s width to 1/3 while Avidan and Shamir’s method
needs 12 s). This supports immediate image resizing whereas Avidan and Shamir’s method requires a
more costly pre-processing step to enable subsequent real-time processing. A fast method such as the

one proposed will be also needed for future real-time video resizing applications.

content aware, image resizing, video resizing, real time, matching

1 Introduction

With the development of network and computer
hardware technology, many mobile media devices
such as cell phones, PDAs or MP4s are develop-
ing quickly, and have a large impact in people’s
lives. There is now a large consumer market in
which people use these devices to browse images
and play videos. However, a problem that needs
to be overcome is that different devices often have
different resolutions, and so it is necessary to resize
images or videos efficiently and effectively in order
to adapt well to these devices.

Although uniform scaling can be used to change
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the size of images and videos easily, the results
are often unsatisfactory. Since all parts of the im-
age are treated equally, it is impossible to preserve
certain important areas, which may therefore be-
come unacceptably degraded at the lower resolu-
tion. Moreover, changing the aspect ratio will dis-
tort the image content, which is generally undesir-
able.

An approach taken by many authors is to per-
form cropping, which involves finding the best rect-
angular sub-window in the image. Generally, this is
determined using a salience map such as that pro-
posed by Itti and Koch!!l which measures local con-
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trast in intensity, color, orientation, etc. at several
scales and then combines them into a single mea-
Some authors use alternative or additional
saliency measures provided by face, skin and text

sure.

detection. Having computed salience, cropping can
be carried out either by selecting the smallest rect-
angle that contains a specified proportion of the
image’s salience, or else given a fixed size rectan-
gle, its position is found to maximize the contained
salience. Examples of this approach are given by
Sue et al.?) and Chen et al.l. Suel® noted that if
the saliency threshold approach is used, then the
proportion of the image saliency contained by the
cropping rectangle should be adapted to the image
content, and described an algorithm for selecting
the proportion at a value such that adding fur-
ther small amounts of additional saliency requires
a large increase in the rectangle size.

Ciocca et al.l) proposed applying different crop-
ping methods to different types of images. They
trained a classifier to identify images as being
one of the three categories: landscapes, close-
ups, or other. Landscapes were resized rather
than cropped; close-ups were cropped using Itti
and Koch’s salience map; remaining images were
cropped using face and skin salience maps. Instead
of relying on bottom-up computation of salience
maps, Santella et al.’) used eye tracking to identify
regions of interest and find the optimal cropping
window with respect to these regions. However, it
is not convenient to rely on eye tracking for most
applications.

Although resizing images using cropping as de-
scribed above will not cause distortion, it is difficult
to guarantee that all important areas are included
in the cropping window. Thus some important ar-
eas may be discarded completely, which leads to an
unsatisfactory result. This led Liu and Gleicher!
to describe a different approach that they called fo-
cus+context. They attempted to retain a high level
of detail at areas of interest, while still retaining all
of the remainder of the image to provide context,
but with less fidelity. First, following standard im-
age cropping practice, the smallest rectangle was
found to enclose any identified objects and also to
contain a fixed proportion of the image saliency.

The image was then warped to give the effect of
a fish-eye lens, centred on the rectangle. Whilst
this distorted the image, Liu and Gleicher argued
that it is better to alert the viewer that part of
the image has been modified. In comparison, with
cropping, it may not be obvious to the viewer that
parts of the image have been removed.

Setlur et al.[”l took an ambitious approach to re-
targetting images that attempted to include all im-
portant regions without distorting the image. This
required extracting regions of interest (ROI), and
then pasting them back onto their corresponding
positions in the downsized background. Regions
are found by performing image segmentation (us-
ing the mean shift algorithm followed by region
merging), which requires several parameters. ROIs
are selected from the segments using saliency maps.
The remaining regions make up the background,
and gaps are filled using inpainting. A problem
with this approach is that even state of the art seg-
mentation algorithms are unreliable, which com-
promises the robustness of the proposed system.

Avidan and Shamirl®

approach to image resizing. Rather than cropping,

recently provided a new

they adjusted the image size by adding or removing
seams. Seams were defined as 8-connected paths of
pixels running along the image from top to bottom
or left to right, containing exactly one pixel in each
row or column respectively. They used dynamic
programming to find seams which pass through
unimportant areas in order to preserve the impor-
tant areas to the greatest extent. An advantage
of this approach is that it will not cause obvious
distortion when changing the aspect ratio. The re-
sults are impressive, but because the method uses
dynamic programming, it is slow. Processing a sin-
gle image often needs several seconds (for example,
it needs about 5 s to reduce a 600x800 image’s
width to half). Although they provide a solution
to facilitate fast image resizing, it still requires a
slow pre-processing step. This time may be unac-
ceptable, especially when many images need to be
resized.

A fast content-aware resizing algorithm is given
in this paper. We find all seams in parallel by per-
forming matching between the rows (or columns)
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in the image, which was proposed by Avidan and
Shamirl®!. The main contribution of this paper is
that we provide a novel method to establish the
matching relations that is very fast. We can obtain
results which are similar to standard seam carv-
ing’s (see Figure 1), but only about 100 millisec-
onds are needed to process a 768x 1024 image.

Such a fast method is useful for several applica-
tions. For example, some web servers may need a
content-aware image resizing application to adjust
the size of images embedded in web pages when
the pages need to be displayed at different resolu-
tions and/or aspect ratios. If the servers are pro-
viding personalized page content that is dynami-
cally generated, then suitable resizing of images is
even more important. Since the visitor traffic of
web pages can be huge, an efficient algorithm is
necessary.

We introduce how to find seams through match-
ing in section 3 and give our algorithm for solving

the matching problem in section 3.1. In section
3.2, we discuss the definition of the edge’s weights
between pixels in adjacent rows (or columns). Fi-
nally, we give several experimental results in sec-

tion 4.

2 Seam carving

Standard seam carvingl®! computes the energy of
each pixel in the image first before performing re-
sizing. The energy indicates the importance of
pixels. Avidan and Shamir suggest several energy
functions, the simplest being image gradient mag-
nitude, which is defined as follows:

B) B
e(I) = ‘%I‘ + ‘8_y1‘ . (1)

Not only can the gradient magnitude be calculated
more easily and quickly than the other energy func-
tions, but the quality of the results are comparable.

Figure 1 A part of image “Qingming shanghe tu (Ascending the River at Qingming Festival)”. We use standard seam carving and our

approach to reduce the image width to half. Note that results of these two methods are similar. (a) Original image; (b) our approach;

(c) standard seam carving.
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After defining the energy of each pixel, they can
remove or duplicate the lower energy pixels in order
to decrease or increase the image size. Of course,
when taking into consideration the continuity of
image content, they do not arbitrarily choose the
pixels to be removed or duplicated, but perform
removal or duplication in terms of seams. In an
n x m image I, a vertical seam is defined to be

s" = {Sf ?:1 = {(x(z)vl)}?:lv
s.t. Vi, |z(i) —z(i —1)] < 1, (2)
.,n]to [1,...,m].
Similarly, a horizontal seam is defined as follows:
s' = {57} = {0y},
st V5, ly(i) —y(G -1 <1, 3)

where y is a mapping from [1,...,m] to [1,...,n].

The energy of a seam is defined as the sum of all
8]

where z is a mapping from [1,..

pixels’ energy in this seam. Avidan and Shamirl
used dynamic programming to look for the seam
with minimal energy. Taking the vertical seam as
an example, they establish the cumulative energy
matrix M first:

M(i,j) = e(i, §) + min{M(i — 1,5 — 1),
M(i,j—1),M@Gi+1,j—1)} (4

and then find the pixel in the matrix M’s last row
whose cumulative energy is minimal. After that,
they backtrack from this pixel to obtain an opti-
mal vertical seam. Finally, the image width can be
adjusted by removing or duplicating this optimal
vertical seam.

Although using dynamic programming to find
the seam is effective, it is slow, requiring O(nm?) or
O(n®*m) time for all vertical or horizontal seams. In
order to accelerate the speed, Avidan and Shamir(®!
proposed creating a multi-sized image by a pre-
processing step, which stores the order of all seams
in the image and can be used to retarget images
continuously in real time. However, horizontal and
vertical seams can collide in more than one place.
For such inconsistent seams, their removal may de-
stroy the seams in the other direction. Therefore
this method only supports one dimensional seam
removal, while in the other direction only degen-
erate seams (i.e. rows or columns) are supported.
Furthermore, the pre-processing also needs a lot of

computing time (several seconds for a single im-
age) and memory space (hundreds of kbytes for a
single image).

In their appendix, Avidan and Shamirl®

give
an alternative method to overcome the problem
of inconsistent seams, which more properly sup-
ports two dimensional resizing. First, they es-
tablish matching relations between all neighboring
pairs of rows in the image. Next, by imposing some
constraints, they find consistent seams (such that
every horizontal seam intersects all vertical seams,
every vertical seam intersects all horizontal seams
and each intersection includes exactly one pixel),
which enables seam removal in both dimensions.
The drawback of their approach is that they opti-
mize the matches between rows using the Hungar-
ian algorithm!®, which is slow. Thus they are still
unable to provide proper two-dimensional resizing
in real time without substantial pre-processing.

3 Algorithm

Our algorithm is now presented. Without loss of
generality, only reducing or enlarging the width of
an image is described. Adjusting the height of an
image is similar.

We treat resizing of images as a three-step pro-
cess. First of all, the energy of each pixel in the
image is computed using the energy function (1).
Secondly, the matching relations are established
between all neighboring pairs of rows in order to
find all seams in parallel. Finally, we compute the
energy of each seam and remove or duplicate them
in ascending order.

Establishing the matching relations between
neighboring pairs of rows is the key to the entire
process. This matching consists of finding a one-to-
one correspondence between pixels in neighboring
pairs of rows. That is, every pixel has exactly one
matching pixel in the row above and also in the
row below. After establishing matching relations
between all neighboring rows, starting from any
pixel in the first row (or last row), we can obtain
a pixel sequence S through the image by following
the matches across the rows. In an n x m image I,
assume I(m(i,7),7+1) to be the matching pixel of
I(i,7) in row j+ 1. Then if the following constraint
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holds:

Vie[l,m|Ajeln), Im(i,j)—i <1, (5)
we can see that S is just a vertical seam accord-
ing to the definition (2). Because a pixel sequence
S can always be found starting at any pixel in the
first row (or last row), we can find all vertical seams
after establishing the matching relations between
all neighboring rows.

Now the problem is how to establish the match-
ing relations between neighboring pairs of rows.
Obviously, the matching relations between neigh-
boring pairs of rows are not unique, although some
constraints do exist, namely (5). In order to iden-
tify preferred matching relations, we introduce a
weight for each edge that connects two arbitrary
pixels in adjacent pairs of rows (defined in sec-
tion 3.2). After this, we also define a criterion
to evaluate various matching relations (in this pa-
per, this criterion is defined to be the sum of the
weights of matching edges, and the bigger the bet-
ter). Now the problem becomes finding the opti-
mal matches within a weighted bipartite graph, for
which the standard method is the Hungarian algo-
rithm. However, the time complexity of this al-
gorithm is O(m?), which is too expensive to allow
real-time image resizing. But because of constraint
(5), the weighted bipartite graph is a special one,
and so there is no need to solve it using a general
method. We can greatly reduce the computational
complexity by taking constraint (5) into account.
Our method for matching is described in section
3.1.

After establishing the matching relations be-
tween all neighboring pairs of rows, we find the
sequence from each pixel in the first row, also cal-
culating the summed energy of pixels in each se-
quence. Finally, we sort the vertical seams in as-
cending order according to their energy, and re-
move or duplicate them in order to adjust the
width of an image.

3.1 Optimal matching of a special bipartite
graph

Without loss of generality, for an n X m image, we
solve the optimal matching of the bipartite graph
which is composed of pixels in row k and row

k + 1. Suppose that w(i,j) represents the weight
of the edge which connects pixel I(i, k) with pixel
I(j,k + 1). Let F(z) represent the sum of the
weights of matching edges in the optimal match-
ing of the sub-graph which is composed of the first
x pairs of pixels.

We consider the pixel I(m, k) first (the red pixel
in Figure 2). Because of the constraint (5), there
are only two possible cases: pixel I(m,k) either
matches with pixel I(m,k + 1) or else with pixel
I(m — 1,k 4+ 1). So the optimal matching of the
bipartite graph also has two possible cases. We
consider these two cases respectively.

Firstly, when pixel I(m,k) matches with pixel
I(m,k + 1) (see Figure 2(a)), the edge which con-
nects I(m,k) with I(m — 1,k 4+ 1) and the edge
which connects I(m —1, k) with I(m,k+1) cannot
be matching edges any longer (because each pixel
can only connect to one matching edge). Conse-
quently the matching of the sub-graph composed
of the first m — 1 pairs of pixels must be a subset
of the optimal matching of the full graph. In this
case, the sum of the weights of matching edges is
Fy =F(m—1)+w(m,m).

Secondly, when pixel I(m, k) matches with pixel
I(m—1,k+1) (see Figure 2(b)), pixel I(m — 1,k)
must match with pixel I(m, k+1), since there is no
other pixel which satisfies the constraint (5) that
can match with pixel I(m,k + 1). Similar to the
first case, the four edges shown by black dashed
lines in Figure 2(b) cannot be matching edges and
the matching of the first m — 2 pairs of pixels must
be optimal. In this case, the sum of the weights of
matching edges is Fy = F(m —2) +w(m,m —1) +
w(m —1,m).

Because the optimal matches are those which
make the sum of the weights of matching edges
maximal, we can determine which case above is the
optimum by comparing F; and F,. More specifi-
cally, if | > Fj, the first case holds. So we have
F(m) = Fy = F(m — 1) + w(m,m), and pixel
I(m, k) matches with pixel I(m, k+1). In contrast,
if F} < F5, then the second case holds. So we have
F(m) = F, = F(m—2)4w(m,m—1)4w(m—1,m),
pixel I(m, k) matches with pixel I(m—1,k+1) and
pixel I(m —1,k) matches with pixel I(m,k+1).
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Figure 2 The two possible configurations of matches. The circles represent the pixels. The red thick lines represent the matching

edges. The black solid lines represent the possible matching edges. The black dashed lines represent the impossible matching edges.

We just draw the edges that satisfy the constraint (5).

We can summarize these two cases as the following
equation:

F(m) = max{F(m — 1) + w(m, m),
F(m —2) 4+ w(m,m — 1)
+w(m —1,m)}. (6)
Testing the value of F'(m) determines which of the
above two cases applies. Extending this to a more

general situation, for the first i pairs of pixels, we
have
F(i) = max{F (i — 1) + w(i, i),
F(i—2) +w(i,i—1)
+w(i—1,7)}. (7)
Similarly, we can use F'(i) to determine for the sub-
graph which is composed of the first i pairs of pixels
which case holds.

We define F(—1) = F(0) = 0 and w(0,1) = w(1,
0) = —o0, and use eq. (7) to solve F(i),1 <i<m
Now, to solve the optimal matching of a bipartite
graph which is composed of m pairs of pixels, we
first test F'(m) in order to determine which case
holds. If it is the first case, then pixel I(m,k)
has been matched, and now F(m — 1) is tested
on the remaining pixels. Otherwise pixels I(m, k)
and I(m — 1, k) have been matched and F(m — 2)
is tested. Iterating this process reduces z, the
number of pixels still to be matched. Eventually,
when x <0 the process terminates and the match-
ing pixel of each pixel in row k has been found.
That is, we have established the matching relation
between row k£ and row k+1 and this matching re-
lation is optimal.

3.2 Definition of edge weight

The discussion about solving the optimal match-
ing of a weighted bipartite graph above is based

on the assumption that all edges’ weights have al-
ready been defined. Now we discuss how to define
the weight function.

We again take pixels in row k and row k+1 as
Suppose that w(i,j) represents the
weight of the edge which connects pixel I(i, k) with
I(j,k+1) and e(i, j) represents the energy of pixel
I(i,7). The energy of a matching edge is defined
as the sum of the energy of two pixels attached to
it. That is, if we use E; to represent the energy of
the matching edge which connects to pixel I(i, k),
we have E; = e(i, k) + e(m(i, k), k + 1).

When we reduce the image size via removing

an example.

seams, we always choose the seam that has the
lowest energy in order to preserve the energy of
the image as much as possible.
sider the pixels in a given adjacent pair of rows,

If we only con-

when removing two pixels attached to a matching
edge we attempt to preserve the energy of these
two rows, that is, to make the total energy of re-
maining matching edges maximal. Notice that no
matter how they are matched, the total energy of
all matching edges between two rows is a constant
equal to > " e(i, k) + e(i, k + 1). One strategy is
to maximize the variance of the energy of matching
edges in order to make the removed matching edges
have a lower energy and also make the remaining
matching edges have a higher total energy. As-
sume that the average energy of matching edges is
E. The variance of the energy of matching edges is
defined as follows:

I & -
2:—-§ E — E;)?
7 m - ( )

Il
3|~
NE
=
|
3!1\3
=
NE
o
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Since C}, (5, Cs are all constants, we should maxi-
mize " e(i, k)-e(m(i, k), k+1) in order to max-
imize o02. Thus, we define the weight as follows:

1MQJ):{4@M-d$k+1%

—0Q,

|7: - ]| < ]-a
otherwise.

Examining the results, we find that the vertical
seam found under the weight definition w; is nearly
straight (see Figure 3(d)). For certain images, us-
ing this definition may cause bad results (see Fig-
ure 3(b)). This is mainly because we only consider

Figure 3 Two kinds of weight definition. (a) Original image; (b) image width reduced by 1/3 using weight wi; (c) image width

reduced by 1/3 using weight wg; (d) the vertical seams when we define weight as wi. The color goes from green (first seams) to red

(last seams); (e) the vertical seams when we define weight as wa.

178 HUANG Hua et al. Sci China Ser F-Inf Sci | Feb. 2009 | vol. 52 | no. 2 | 172-182



two rows when defining the weight. These two rows
are isolated from the whole image. Therefore this
definition only guarantees the variance of matching
edges between certain two rows is the biggest but
does not guarantee the largest variance between
vertical seams in the whole image. That is, it only
achieves a local optimum but not the global opti-
mum.

To solve this problem we define matrices A and
M. A(i,j) represents the cumulative energy along
the seam which passes through pixel I(i,j) from
row 1 to j. This matrix is computed incrementally
during the matching process. After establishing
the matching relation between row k£ — 1 and row
k, we can compute A(z,k),1 <z < m.

M (3, j) represents the cumulative energy of an
optimal seam which starts from pixel I(7,7) and
ends with a pixel in the last row. Matrix M is
established via using dynamic programming from
bottom to top (we only use dynamic program-
ming once for a single image and its complexity
is O(nm), which will not involve a high overhead):

M(i,j) =e(i,7) + min{M (i — 1,5 + 1),

MGG +1),Mi+1,j+1)}. (9)
We use A(i, k) and M(m(i,k),k + 1) to replace
e(i, k) and e(m(i,k),k + 1) in the above discus-
sion respectively. Then we have E; = A(i, k) +
M(m(i, k), k + 1), where A(i, k) represents the cu-
mulative energy between the first row and row k
and M (m(i, k), k+1) represents the cumulative en-
ergy between row k + 1 and the last row. That is
E; is the energy of the entire vertical seam. Max-
imizing the variance of FE; is also maximizing the
variance of vertical seams in the image. So we de-
fine the weight as follows:

The vertical seams found under this definition
(see Figure 3(e)) can preserve the energy of the
image better and avoid adverse effects brought by
local optima, yielding better resizing (see Figure

3(c))-

4 Results

In order to compare the effect and time efficiency
of different algorithms, we also implemented Avi-
dan and Shamir’s seam carving, their alternative
version of seam carving which is also based on
matching but uses the Hungarian algorithm, and
the optimal cropping, all of which were applied to
e(I) to perform rescaling in one dimension. Ta-
ble 1 gives the time needed by various seam-based
algorithms to reduce the image width to 1/3. Ob-
viously, our method runs substantially faster than
the other seam carving methods.

Table 2 gives the average frame rate when using
our method to process different sized videos. After
establishing matching relations between all neigh-
boring pairs of rows, we find all vertical seams in
parallel. In other words, we get a multi-sized video,
and so we do not need to give the target size of the
output video in Table 2. All processing was carried
out on an Intel 2.4 GHz Pentium IV Desktop with
512M memory.

Figures 4 and 5 visually compare reducing image
width using standard seam carving, our approach
and the optimal cropping respectively. From the
results, we notice that despite our approach being
much faster than standard seam carving it still pro-
duces similar results. Another example, this time
of image enlargement, given in Figure 6, confirms
its effectiveness.

LN A(i, k) - M5,k +1), [i—j] <1, Evaluating the relative effectiveness of different
(0] (27 .]) - . . .. . . .
—00, otherwise. image resizing techniques is difficult due to the sub-
(10)  jective nature of determining the quality of results.
Table 1 Speed comparison
Image size 240% 320 480% 640 600x800 768x1024
Standard seam carving 0.5s 3.3s 6.3 s 12.2 s
Hungarian algorithm 8.0s 1.8 min 4.0 min 9.5 min
Our approach 8 ms 39 ms 63 ms 137 ms
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Table 2 Frames per second on average (including decoding

time)

Video size 240x 320 256 x608 480640
FPS 32.6 25.1 15.8

For the more extreme cases of resizing using the
fish-eye lens warping/®! or cropping down to thumb-
nail sizel?, substantial differences between alterna-
tive methods was evident, and so in both these
cases the authors carried out user testing. In ref.
[6] a two-alternative forced choice methodology was
used: users were asked which of two resized im-
ages they preferred. In ref. [2] users were asked to
identify the contents of thumbnails, or to match a
thumbnail against a set of 100 images. Since we do
not claim that our results are perceptually better

than that from standard seam carving (just that
they are faster), it is not necessary to carry out
such user testing.

Instead, we follow Avidan and Shamir® who
provided a simple quantitative indication of the ef-
fectiveness of the seam carving approach by plot-
ting the energy remaining in the image after resiz-
ing. The energy should be maximized while pre-
serving the coherence of the image. We note that
in general there are many images that are resized
well by all the tested methods. This is exemplified
by the image in Figure 4 whose energy is plotted
in Figure 7(a). All the energy curves are close, al-
though it can be observed that seam carving does
the best job at preserving energy while the optimal
cropping does the worst. The proposed method is

Figure 4 Comparison of using several methods to reduce the image width by 1/3. (a) Original image; (b) standard seam carving; (c)

our approach (using weight definition w2); (d) optimal cropping.
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Figure 5 Comparison of using several methods to reduce the image width to three different sizes. (a) Original image; (b) standard

seam carving; (c) our approach (using weight definition w2); (d) optimal cropping — note the missing pagoda in the middle column.

(a)

Figure 6 Image enlargement using our method. (a) Original image; (b) enlarged image (using weight definition ws).

situated between these two methods, and as ex-
pected using weight w, outperforms w;. However,
there are other images where, as discussed previ-
ously, cropping is unable to capture all the desired
content, an example of which is shown in Figure
5. Small amounts of cropping are satisfactory, but
when the cropping window cannot entirely include
both pagodas then one is retained at the expense
of the other that is excluded, causing a large drop

(b)

in energy, which is clearly visible in Figure 7(b).
When more extreme resizing is applied such that
the output image is small enough to tightly enclose
just one pagoda, then the results of cropping are
satisfactory again and its energy is comparable to
seam carving. Note however, that the seam carving
methods have succeeded in squeezing both pagodas
into the image, although at the cost of eliminating
some of the peripheral details of the buildings.
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Figure 7 Comparison of energy preservation using different methods of resizing applied to (a) the image in Figure 4—all methods

produce similar energies; (b) the image in Figure 5—at intermediate levels of resizing cropping becomes ineffective.

5 Conclusions and future work

This paper has described an improvement of the
seam carving method of content-aware image or
We propose a novel method to
quickly determine the matching relations between
Thus the processing
speed is greatly improved; no slow pre-processing

video resizing.
neighboring pairs of rows.

step is required, making it possible to perform real-
time image or video resizing. Furthermore, we also
propose a good definition for the weights that con-
nect adjacent pixels, which gives satisfactory re-
sults as long as the energy function is appropriate
to the image.

There are many possible extensions to this work.
First, although the weight definition w, worked
well for the majority of images, there are still
noticeable artifacts in the results for some im-
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