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Abstract—We develop a framework to virtually unroll fragile
historical parchment scrolls which cannot be physically unfolded
via a sequence of X-ray tomographic slices, thus providing easy
access to those parchments whose contents have remained hidden
for centuries. The first step is to produce a topologically correct
segmentation, which is challenging as parchment layers vary
significantly in thickness, contain substantial interior textures
and can often stick together in places. For this purpose, our
method starts with linking the broken layers in a slice using
the topological structure propagated from its previous processed
slice. To ensure topological correctness, we identify fused regions
by detecting junction sections, and then match them using global
optimisation efficiently solved by the blossom algorithm, taking
into account the shape energy of curves separating fused layers.
The fused layers are then separated using as-parallel-as-possible
curves connecting junction section pairs. To flatten the segmented
parchment, pixels in different frames need to be put into
alignment. This is achieved via a dynamic programming based
global optimisation which minimises the total matching distances
and penalises stretches. Eventually, the text of the parchment is
revealed by ink projection. We demonstrate the effectiveness of
our approach using challenging real-world datasets, including the
water damaged fifteenth century Bressingham scroll.

Index Terms—X-ray, parchment, as parallel as possible, flatten,
blossom algorithm, dynamic programming, ink projection.

I. INTRODUCTION

PARCHMENT has been an important writing medium

for recording valuable information throughout history

because it is thin and stiff, but yet sufficiently flexible to roll.

However, over hundreds of years, parchment can convert to

gelatin, so that the layers of the scrolled parchments become

brittle and get stuck together. Figure 1 demonstrates a typical

parchment scroll, the Bressingham scroll, which is an account

from the manor of Bressingham, dated 1408-9 (NRO, PHI

468/5) [1]. The records on the scroll include: the income of

the lord from the manor and his expenditure, profits from

holding the manor court, sales of underwood, and leasing out

the fishing rights. The width of the scroll measures around

270 mm. The total length of the scroll is unknown, as it is

impossible to unroll completely: at approximately 100 mm

from the start of the parchment the scroll has become fused

together. The fusing of the scroll is most likely to have

been caused by exposure to moisture and damp storage. Any

attempt to physically unfold the parchment document will lead

to delamination of the surface of the parchment causing an

unacceptable level of damage. Consequently, image processing

is being applied to explore new means of accessing such

delicate parchments without physically unrolling them.

Digital document restoration technology develops new

methods for reconstructing such documents and recovering

information which cannot be accessed physically. This tech-

nology has been an extremely active area of research in recent

years. So far, much attention has been paid to the analysis

of regular photographic images of historical documents and

3D reconstruction and virtual flattening of deformed but non-

scrolled parchment documents. 3D reconstructions of docu-

ments can be grouped into three different classes [2]: single-

image methods, which reconstruct the shape of a document

based on their geometric and shading information [3], stereo-

image methods, which restore the 3D surfaces of documents by

stereo image pairs [4], and structured-light scanning methods,

which calculate the 3D shape of a document with a structured-

light scanner [5]. Based on the restored 3D surface, many

surface parameterization methods [6] have been proposed to

find a mapping from document surfaces to planar domains

with minimum distortion, which will enable the recovery of

the original flat shape of distorted documents. A new level

of accessibility has been provided for many valuable literary

works. However, such methods cannot cope with parchments

which cannot be physically unrolled. Virtual unrolling is

required for such documents, though only very few results

have been reported.

Recovering the information written on a fragile parchment

scroll is a difficult task since the characters are wrapped

inside the parchment, and thus cannot be photographed by

normal cameras. Therefore non-interventive methods have

been developed based on X-ray microtomography (XMT)

Fig. 1. The Bressingham scroll (1408-9), which cannot be physically fully
unrolled.
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scanning [7], [8] and virtual unrolling [1], [9], [10]. For an

XMT-based technique, the separation of fused parchment lay-

ers is the major problem for parchment scroll restoration [11],

[12]. Some widely used image segmentation methods, such

as snakes [13] and max-flow-based graph cut [14], are not

effective for this problem because while they can effectively

differentiate between the foreground and the background, they

cannot recognise fused regions and separate them into individ-

ual layers. For a different purpose, Samet et al. presented a

method to reconstruct the missing parts of contour lines by

automatically detecting the terminal points and then matching

and linking the related terminal points by line segments [15].

The matching was based on Euclidean distance and the di-

rectional information of the terminal points. Therefore the

prerequisite for this method is that the two related terminal

points are close enough, which is not generally satisfied by

the parchment scroll. The related endpoints of a missing

boundary in the fused region may not be close, nor can the

missing boundaries be reconstructed by line segments. Allegra

et al. [16] proposed an approach to semi-automatic virtual

unrolling of the papyrus scroll with X-ray tomography. Under

the assumption of few differences between adjacent slices,

the authors used the skeleton extracted from a single slice to

virtually unfold the whole papyrus scroll. However, despite the

considerable similarity between adjacent slices, the differences

accumulate dramatically over just a small number of slices.

This results in relatively large errors in the virtual unrolling.

Seales et al. [17] presented an algorithm to virtually unwrap

part of the En-Gedi parchment scroll. They first propagated

several chains through the volume by the local symmetric

tensor and a set of inner spring forces, thus tracing out several

surfaces of the scroll over time. Then the obtained surfaces

were textured, flattened, and manually merged to produce a

large reconstructed image for the scroll. The weakness of this

method is that the chain used for propagation needs to be

frequently manually corrected to prevent it from crossing over

itself and the surface boundaries if there exist many large fused

regions in the slices. Baum et al. [18] attempted to reveal

hidden text in rolled papyrus using an interpolation technique.

The authors manually initialised several skeletons across the

whole volume, and the remaining skeletons were produced by

interpolating between their two adjacent initialised skeletons.

The scroll was eventually reconstructed by applying texture to

the flattened mesh comprised of all the skeletons. However,

since the scroll is noticeably distorted along its long axis,

substantial slices needed to be initialised to achieve the good

final unrolling result.

The most relevant work was reported by Samko et al. [11],

[12], who automatically processed several parchment scrolls

which have similar local characteristics to the Bressingham

scroll. After preprocessing each slice by Coherence-Enhancing

Diffusion (CED) filtering [19], a shape prior using the parch-

ment layer thickness was incorporated into graph cut (GC) [14]

to robustly segment the parchment layers from the background.

Subsequently, the missing boundaries were recreated in the

fused region from the boundary of the opposite side of the

same layer or the closest preserved boundary. The shape-

prior-based graph cut will thin the parchment layers, produc-

Fig. 2. Image segmentation results. (a) Otsu thresholding algorithm [20] on
the small scroll. (b) Shape-prior-based graph cut [12] on the small scroll. (c)
Otsu thresholding algorithm [20] on the Bressingham scroll. (d) Shape-prior-
based graph cut [12] on the Bressingham scroll.

ing much fewer inter-layer connections between two layers.

Nonetheless, the major problems of this graph cut are that

it is difficult to choose the weight parameters for the data,

smoothness and shape terms, and for those parchments with

thin layers containing internal structure, the graph cut is likely

to fragment the layers into many small parts (Fig. 2). Further-

more, only a simple strategy was used to match the endpoints

of missing boundaries, which may lead to false reconstruction

of missing boundaries if the fused region consists of more than

three layers. Thus this method cannot cope with parchments

like the Bressingham scroll.

In this paper, we present a new method to separate parch-

ment layers fused together and to virtually unroll the parch-

ments, revealing the text. We first segment the foreground

parchment regions automatically, which is achieved by ap-

plying our segmentation algorithm to each individual image

frame. Unlike traditional approaches, we explicitly enforce

topological constraints, which means a parchment sheet in

each image frame forms a continuous (rolled) strip. The

skeleton is also extracted from the parchment in each image

frame. To flatten the segmented parchment, skeleton pixels

in different frames need to be put into alignment to form

an interior surface. This is achieved via an efficient dynamic

programming based global optimisation which minimises the

total matching distances and penalises stretches. Eventually,

the text of the parchment is revealed by ink projection. We

perform both qualitative and quantitative analysis and demon-

strate the effectiveness of our approach using challenging

datasets, including the 15th century Bressingham scroll which

is difficult to process using previous methods. This is an

extended version of our conference paper [21], and we have

substantially improved the pipeline with propagation based

layer connection, global optimisation for junction section

matching for fused region separation, dynamic programming

based flattening, and improved ink projection, as well as

additional evaluation with more experiments, both qualitative
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and quantitative.

II. PARCHMENT SEGMENTATION

Our processing pipeline starts with parchment images ob-

tained from X-ray microtomography, and these are first seg-

mented with the standard Otsu thresholding algorithm [20]

since it is simple and efficient. More sophisticated general

purpose segmentation algorithms were also considered for this

stage, but they are also prone to topological errors. More-

over, we considered following Samko et al. [12], and tried

applying Coherence-Enhancing Diffusion (CED) filtering [19]

to remove noise and fine texture. However, we found this to

be unnecessary for our processing pipeline. In most cases,

Otsu initialisation produces the best or close to best values

for the measures (see Sec. IV for detailed discussion) so

we use this by default in our pipeline. Following the initial

segmentation the foreground is processed by three main steps:

layer connection, refinement of segmentation, and skeleton

connection. The first step connects the broken layers of the

parchment by a strip with the width of the parchment layer.

At the next step, we find the fused regions by detecting

junction sections, and match them using global shape energy

optimisation effectively solved by the blossom algorithm. We

then separate the fused regions into parchment layers by

linking those matched junction sections using as-parallel-as-

possible connecting curves. Sometimes, the parchment layer

is so thin that it is likely to be cut off by our segmentation

method. Thus, after separating fused regions, we extract the

skeletons of the layers and link the skeletons which should

belong to one layer. The extracted skeletons are also useful

for flattening and ink projection.

A. Layer Connection

It is common that some areas of the historic parchments

have become scuffed and delaminated, so that in the X-ray

slice the parts of the layers corresponding to those areas

are missing. A typical example is shown in Fig. 3. In this

section, we will link the broken parchment layers by a strip

with the same width as the parchment layer. Because in the

slice sequence the two adjacent slices are very similar, the

broken layers in the current image can be correctly connected

according to the topological structure of the previous processed

slice [22]. Specifically, we first extract the skeleton of the

parchment layer from the previous processed slice using

morphological operations, and then obtain the skeleton parts

which are included in the background of the current slice.

As demonstrated in Fig. 4, the red segment represents a

skeleton part included in the background, which touches the

layer boundary at two points p1 and p2. Such two points are

potentially linked by the skeleton part with the width of the

parchment layer, if one of the following criteria are satisfied:

i) on the layer boundary no path can be found to connect

p1 and p2, or ii) the ratio of the skeleton part length to the

length of the shortest path between p1 and p2 on the layer

boundary (the blue curve in Fig. 4) is less than a threshold

value (we set as 0.5). The broken layers in Fig. 3 are linked

by the red segments. This approach guarantees the consistency

Fig. 3. The broken layers of the parchment are connected by the skeleton
segments (red segments) of the previous slice.

Fig. 4. The description of two broken layers which should be linked.

of the topological structure of the parchment layer, and with

the use of skeleton segments for linking, works well in our

experiments as such layer breaking is usually short.

B. Global Optimisation based Segmentation Refinement

In this section we aim to separate those fused regions into

several parchment layers to ensure topological correctness.

The main steps of our segmentation refinement include de-

tecting junction sections and fused regions, matching junction

sections, separating fused regions using as-parallel-as-possible

connecting curves, and missing boundary reconstruction based

on skeleton.

1) Junction Section Detection: A junction point is a demar-

cation point between fusing and separating of two adjacent

layer boundaries. In the vicinity of such a point exists a set of

points with large curvature. All these points constitute a so-

called junction section. Due to the property of large curvature,

we can use a purely geometric approach to detect each point

in a junction section. Given a point p0 on the boundary, we

take s pixels {p−s, p−s+1, ..., p−1} from the left neighborhood

of p0 on the boundary, and then take s pixels {p1, p2, ..., ps}
from its right neighborhood on the boundary (we set s = 15).

If the intersection angle of vector p0ps and p0p−s is less

than a threshold value (set as 120◦ in our algorithm), the

point p0 will be considered as a point of a junction section.

Figure 5 demonstrates all the detected junction sections. We

cannot precisely determine which point is the junction point in

a junction section, so the middle point of the junction section

is approximately considered as the junction point.

2) Fused Region Detection: A fused region is formed by

some parchment layers merged together. As long as the fused

regions are detected, the stuck layers can be immediately
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recovered by separating the fused regions. In fact, the junction

sections are caused by fused regions, so a fused region must

contain the middle point of at least one junction section. Given

a binary image of a parchment slice (Fig. 6(a)), we connect

the two endpoints of each junction section by a line, and then

cut off along this line the region where the junction section is

located. Now the binary image has been separated into some

small regions, as shown in Fig. 6(b). Consequently, the fused

regions are the unions of those small regions which contain

the middle points of junction sections (Fig. 6(c)).

3) As-Parallel-As-Possible Curve Generation: After detect-

ing all fused regions, we will separate the fused regions by

linking two junction sections with a curve which is as parallel

as possible to the closest preserved boundaries to the two

junction sections. Such curves naturally separate fused regions.

We first describe an algorithm to generate such curves and will

later explain how matching junction sections are identified.

Assume that c is an arbitrary curve and po, pe are two

arbitrary points in the plane, whose coordinates are (xo, yo)
and (xe, ye), as shown in Fig. 7. Note that we do not require

the direction or the distance between the endpoints of c and

those of the new curve to be identical. Our aim is to link po
and pe by a curve which is as parallel as possible to curve

c. This distinguishes our goal from the related work in the

CAD/CAM literature on offset curves [23]. Not only can the

latter only generate truly parallel curves (and hence cannot

in general pass through two given points), but moreover they

usually operate on parametric curves.

First of all we approximate the curve c by an n-sided

polygonal curve. The direction vector of each segment of the

polygonal curve is represented as (ai, bi), i = 1, 2, . . . , n. Sup-

pose that the curve connecting po and pe can be approximated

by an n-sided polygonal curve too, and the direction vector of

each of its segments is denoted as (ui, vi), i=1, 2, . . . , n, as

illustrated in Fig. 7. Therefore, the fact that the curve which

links po and pe is the most parallel to curve c is equivalent

to the fact that the polygonal curve which links po and pe is

the most parallel to the polygonal curve which approximates

Fig. 5. Junction section detection. (a) Determining the point of a junction
section. (b) Detected junction sections (indicated by green crosses).

curve c. Consequently, we obtain the cost function:

min

n
∑

i=1

(ui − ai)
2 + (vi − bi)

2

s.t.

n
∑

i=1

ui = xe − xo,
n
∑

i=1

vi = ye − yo. (1)

Equation 1 can be rewritten in the matrix form

minXTX+ 2PTX+PTP

s.t. AX = M (2)

where, X = [u1 v1 u2 v2 · · · un vn]
T , P = [−a1 −

b1 − a2 − b2 · · · − an − bn]
T , M =

[

xe − xo

ye − yo

]

, and

A =

[

1 0 1 0 · · ·
0 1 0 1 · · ·

]

. Using Lagrange multipliers, we

get
[

X

β

]

=

[

2I −AT

A 0

]−1 [ −2P
M

]

(3)

where β is the vector consisting of two Lagrange multipliers

and I is the identity matrix. By means of block matrix

inversion [24], the coefficient matrix can be further represented

as
[

2I −AT

A 0

]−1

=

[

0.5I− 0.5AT (AAT )−1A AT (AAT )−1

−(AAT )−1A 2(AAT )−1

]

.

(4)

Noting AAT = n

[

1 0
0 1

]

, we eventually obtain

X =

(

−I+
1

n
ATA

)

P+
1

n
ATM. (5)

Figure 8 shows a result of our as-parallel-as-possible curve

generation method. Here the black curve is an arbitrary curve,

the two green points are two arbitrary points, and the red curve

Fig. 6. Detection of fused regions. (a) The binary image of a parchment slice.
(b) the separated binary image. (c) The detected fused region.
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Fig. 7. c and the curve connecting po and pe are approximated by an n-sided
polygonal curve.

Fig. 8. The red curve connects the two green points, while being as parallel
as possible to the black curve.

connects the two green points and is as parallel as possible to

the black curve.

4) Shape Energy Calculation: To evaluate the quality of

connecting curves, we introduce a shape energy in this section.

The shape energy of a point in a parchment layer reflects the

closeness of the point to the estimated layer boundary. The

closer the point is to the layer boundary, the lower the shape

energy of the point is. Given an estimate of the parchment

thickness m, we define shape energy by means of a Gaussian

function. On the condition that there are interlayer connections

between some layers, the shape energy on the transverse

direction t of the connected part of those layers should have

the form demonstrated in Fig. 9.

Thus, given dx the perpendicular distance of each pixel x
in a layer to its closest boundary, the energy function has the

following form

E(x) = exp

{

−
(

dx − 2k−1
2 m

)2

2σ2

}

, (6)

where k is the parchment layer counter, k = 1, 2, 3 . . ., chosen

to satisfy the following constraint

(k − 1)m < dx < km, (7)

σ is the parameter which we estimate as σ = m/3, so

that almost 99.7% of the energy of Gaussian function will

lie within the layer. It can be easily seen from Eq. 6 that

0 < E(x) ≤ 1. A result of shape energy calculation is shown

in Fig. 10. It is evident that the shape energy reaches its peak

in the middle of layer, and diminishes progressively from the

Fig. 9. The form of the shape energy in the interlayer connections between
several fused layers.

middle of the layer towards the boundary. It works not only

for a single layer but also for cases when multiple layers are

fused together.

5) Junction Section Matching and Fused Region Separa-

tion: We now describe our method for recreating the missing

boundaries. Our strategy is to first identify all the junction

sections that can be potentially matched, without violating

topological constraints. We then work out the matching cost.

Then we treat junction section matching as a global optimisa-

tion that maximises the total matching weights. The matched

junction sections are then used to separate fused regions.

Provided there are r̂ junction sections in the image, we

initialise an r̂×r̂ cost matrix W with each element as negative

infinite and update connectable junction section pairs with

a cost reflecting the quality of connecting curves. We find

the closest preserved boundaries for each junction section as

follows. As depicted in Fig. 11, given a junction section Ri,

whose two endpoints are li and ri, a line which passes through

li and ri meets the left closest boundary at mi and the right

closest boundary at ni, then these two closest boundaries on

two sides of Ri are the closest preserved boundaries of Ri.

Topologically, two junction sections may be matched only if

they are located on different boundaries but on the same fused

region, as illustrated in Fig. 6. If two junction sections in

different boundaries and in the same fused region have the

same closest preserved boundary, we will check whether their

middle points may be linked to reconstruct missing boundaries.

Providing that there exist two junction sections Rj and Ri,

i > j, which are on different boundaries but in the same

fused region, and have the same closest preserved boundary

(Fig. 11), the two intersection points mi and mj respectively

corresponding to Ri and Rj separate the boundary L into two

parts, which are represented by the solid line and dashed line

respectively in Fig. 11. We only take into account the part

which completely lies between the two lines mili and mj lj ,

that is, the solid part in Fig. 11.

First of all, we use the solid line part to generate a curve

Q which connects the middle points of Ri and Rj using an

as-parallel-as-possible curve (section II-B3), and then check

whether Q intersects the existing boundaries at any places

other than Ri and Rj . If not, there is a possibility that the

region between Ri and Rj is an interlayer connection, so we

calculate the energy between Ri and Rj along curve Q by the

Fig. 10. The shape energy computed only within the segmentation mask.
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Fig. 11. Two junction sections on different boundaries but in the same fused
region have the same closest preserved boundary.

following form.

H =

[

1− 1

g

g
∑

s=1

E(xs)

]

+ λ
min(mili,mj lj)

max(mili,mj lj)
, (8)

where xs denotes the pixel of Q, g is the number of pixels in

Q, and E is the shape energy calculated by Eq. 6. In Eq. 8,
1
g

∑g

s=1 E(xs) measures the mean shape energy of Q, thus the

larger value of the first term means that the curve Q is closer to

the missing boundary; the second term
min(mili,mj lj)
max(mili,mj lj)

reflects

the similarity of the distances from Ri and Rj to their closest

preserved boundary. The more similar the distances from Ri

and Rj to their closest preserved boundary, the larger this term.

λ is a parameter which specifies the significance between these

two terms. Both terms have the same scale, and we choose in

all experiments to give them equal weight and set λ = 1. If

H > W(i, j), we will set W(i, j) = H .

After we apply the above method to all possible pairs of

junction sections, the fused region can be separated along

the parallel curve linking the middle points of two matched

junction sections. We match the junction sections by a global

graph matching algorithm. Let G = (V,E) be an undirected

weighted graph, where V denotes the set of nodes, which

consist of all of the junction sections; eij ∈ E represents

the edge linking two junction sections Ri and Rj with the

weight w(eij) = W(i, j); negative infinite W(i, j) means

Ri and Rj are disjoint. The required matching is a subset

of edges E′ ⊆ E such that each node in V has at most

one incident edge in E′ and the sum of the weights of the

edges in E′ is maximised. This can be solved efficiently using

Edmonds’ blossom algorithm [25], [26], which is based on the

following linear programming formulation, where x represents

the incidence vector of matching [27]:

max

r̂
∑

i,j=1

w(eij)x(eij) (9)

s.t. 0 ≤ x(eij) ≤ 1
r̂

∑

i=1

x(eij) ≤ 1, 1 ≤ j ≤ r̂

r̂
∑

i,j=1

x(eij) ≤ (|B| − 1)/2, eij ∈ E(B), ∀B ∈ νodd

where νodd is the set of all odd-size subsets of V . Ed-

monds [28] proved that with the third constraint, the basic

solutions to the resulting linear programming are integral. We

use the implementation in [25] to obtain the matching E′.
The fused region is then separated along the parallel curve

linking the middle points of two matching junction sections

Ru and Rv whose edge has the maximum weight among all

the edges in E′. Subsequently we eliminate the uth row, vth

column, uth column and vth row of matrix W, then update the

already existing fused regions and let the algorithm begin all

over again. The algorithm will terminate when the maximum

element of W is negative infinite, which means that there

are no junction sections to be matched, or there is a single

boundary in the image. Figure 12 illustrates a segmentation

result of our algorithm.

6) Skeleton Connection: After finishing segmentation, we

need to extract the skeleton of the parchment layer for virtual

unrolling. However, sometimes some parts of the parchment

layer are too thin to provide sufficient single pixel edges, and

then our segmentation algorithm will eliminate such very thin

parts to guarantee the junction section detection and missing

boundary reconstruction. The skeletons of these broken layers

will mislead the virtual unrolling method to generate a wrong

result. Thus before virtual unrolling, we need to link the

skeletons of the layers which are mistakenly broken. The

linkage method proposed in [22] is adopted to connect such

broken skeletons, since this method can effectively ensure

the correctness of the topological structure of the skeleton.

Figure 13 illustrates the effect of our skeleton connection.

III. VIRTUAL UNROLLING OF PARCHMENTS

Although Samko et al.’s approach [12] can achieve vir-

tual unrolling, the method is based on generating tetrahedral

meshes and nonlinear multidimensional scaling (MDS). As a

result, it is extremely slow, and takes 6.4 hours for the small

scroll in Fig. 2ab, and 4.5 weeks for the Bressingham dataset.

Thus in this section, we introduce an efficient high quality

virtual unrolling method based on the extracted skeletons,

which is 300-1, 000 times faster. We first extract a pixel

sequence from the skeleton of each slice. Then we formulate

the alignment problem of skeletons of adjacent slices as an

optimal matching problem, which can be efficiently solved

using dynamic programming. Based on the matching, we map

each skeleton to a row of pixels in the reconstructed image

after virtual unrolling such that the alignment is followed and

the overall scaling is minimised. Finally, the pixels in the

reconstructed image are recovered by ink projection.

A. Skeleton Sequence Extraction

We start from the skeleton images extracted in the previous

step. Based on 8-way connectivity, the skeleton in each slice

can be connected to form a graph with skeleton pixels as nodes

Fig. 12. The result of our segmentation for a parchment slice. (a) A fused
region in the original image. (b) The segmentation of the fused region.
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Fig. 13. Skeleton connection. (a) The segmented parchment slice. It can be
seen that a layer is mistakenly broken. (b) The skeleton image of the broken
layer. (c) The linked skeleton provided by our algorithm.

and edges connecting adjacent pixels. Such graphs however

usually contain branches, which make alignment difficult.

Since we know in advance that the skeleton of each slice

should contain a single sequence of pixels, we find the longest

path in each graph. The longest path problem for a general

graph is expensive. Since our graphs are typically graphs with

extra small branches, we use a simple heuristic to efficiently

find an approximate solution (which takes about 40 seconds

per image for the Bressingham scroll). Given a skeleton,

starting from an arbitrary pixel p̃0, we then find the furthest

point on the skeleton to it, giving p̃1, and the furthest to p̃1,

denoted as p̃2, etc. until convergence. The longest path is

obtained as the path connecting the last two points in this

process. The resulting sequence of pixels for the i-th skeleton

Si is denoted by {p(i)
k }, where k = 1, 2, . . . , ni, and ni is

the number of points on the i-th skeleton. Such a method

is effective in finding a path that represents each skeleton.

However, depending on the iterative process, the sequence may

be in reverse orders (clockwise or counterclockwise). Treating

virtual unrolling as a matching process, it is essential to choose

the order in a consistent way. To achieve this, we work out

the total turning angle γi for the i-th skeleton as:

γi =

ni−1
∑

k=2

γ(p
(i)
k − p

(i)
k−1,p

(i)
k+1 − p

(i)
k ),

where γ(v1,v2) is the angle between two vectors v1 and v2

with the minimum absolute value, and γ(v1,v2) is positive

if it turns counterclockwisely from v1 to v2 and negative

otherwise. If the total turning angle γi < 0, we simply reverse

the order of pixels for Si. For simplicity, we hereafter refer to

the adjusted skeleton point sequences as {p(i)
k }. Using total

turning angles makes the approach robust to local fluctuations

of orientation. To cope with jaggedness caused by skeleton

discretisation as well as inaccuracies in extraction, we apply

boxcar smoothing to the skeleton as a polyline, followed by

resampling the smoothed polyline with even spacing. The

resampled points are denoted as P̃(i) = {p̃(i)
k }.

𝑆𝑖:  
𝑆𝑖+1: 

Fig. 14. Illustration of matching between adjacent skeleton sequences. Each
point is matched to one or two points on the other curve, with the exception
of near end points.

	

Fig. 15. Illustration of edge lengths used for setting τ .

B. Parchment Slice Alignment

Although in principle it is possible to consider alignment

of all the slices simultaneously, for large datasets this can be

prohibitively expensive. We thus first consider alignment of

two adjacent slices, which is computationally manageable, and

then align them globally. Doing so also allows parallelisation

of matching for speedup. Assuming we are matching P̃(i)

with P̃(i+1) we aim to find a matching that minimises total

matching costs. As illustrated in Fig. 14, since we are matching

two sequences of points, it is reasonable to further require

such matching to be in sequence. Every point p̃
(i)
k should be

matched to at least one and at most two points in P̃(i+1).

Since sample points are equally spaced, ideally points should

be in one-to-one correspondence. In reality, to cope with local

stretching and shrinking, e.g. due to skeleton inaccuracies, we

allow one to two matching. This is more than adequate, as

that allows a skeleton to expand or shrink by a factor of 2

between adjacent slices, which is unlikely to happen. The same

rule applies to matching points in P̃(i) for points in P̃(i+1).

There is one exception to this general rule, which happens at

the ends of the sequences where a small number of sample

points (ñi set to 5% of ni in our experiments) can be ignored

in matching. This is useful to cope with cases where the

reconstructed image naturally has a non-rectangular shape. The

matching of two sequences can be represented using an edge

set E where each element (k, t) ∈ E means p̃
(i)
k is matched

to p̃
(i+1)
t . Given (k, t) ∈ E , the next matched pair can only

be (k + 1, t), (k, t+ 1) or (k + 1, t+ 1). Cases 1 and 2 have

only one matching point advanced, whereas case 3 has both

matching points advanced. For simplicity, we split E into two

subsets, E1 and E2 to refer to both situations. We define the

matching energy as the sum of total edge lengths, although

we use a different weight to penalise edges in E1 as they are

related to non-isometric scaling.

E(E) = τ
∑

(k1,t1)∈E1

‖p(i)
k1
−p

(i+1)
t1

‖+
∑

(k2,t2)∈E2

‖p(i)
k2
−p

(i+1)
t2

‖.

(10)

In an ideal scenario where two sequences are well aligned

(see Fig. 15), when all the edges are in E2, assume the total

energy is E0. If we instead take both the red and blue edges,
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making every edge in E1, the total energy will be τ(1+
√
2)E0.

To penalise E1 cases, we need to ensure τ(1 +
√
2)E0 > E0,

i.e. τ > 1
1+

√
2
≈ 0.414. In practice, we do not penalise this too

much to make sure E1 edges still happen to improve alignment.

τ = 0.45 works well and is used in all our experiments.

Global optimisation of E(E) can be efficiently achieved

using dynamic programming. To create a nested optimal

substructure, we denote by E∗
k,t,c the optimal solution to the

subproblem of matching two subsequences p
(i)
1 , p

(i)
2 , . . . , p

(i)
k ,

and p
(i+1)
1 , p

(i+1)
2 , . . . , p

(i+1)
t , with the last edge being of

case c (c = 1, 2, 3 as defined above). This is initialised as:

E∗
1,t,c = 0(1 ≤ t ≤ ñi+1), E

∗
k,1,c = 0(1 ≤ k ≤ ñi), ∀c (11)

to allow extensions at endpoints. The remaining E∗
k,t,c can be

worked out using the following

E∗
k,t,1 = min(E∗

k−1,t,2, E
∗
k−1,t,3) + τ‖p(i)

k − p
(i+1)
t ‖,

E∗
k,t,2 = min(E∗

k,t−1,1, E
∗
k−1,t,3) + τ‖p(i)

k − p
(i+1)
t ‖,

E∗
k,t,3 = min(E∗

k−1,t−1,1, E
∗
k−1,t−1,2, E

∗
k−1,t−1,3)

+ τ‖p(i)
k − p

(i+1)
t ‖. (12)

Based on the case c of the last edge, the previous edge can

be deduced. If the last edge is of case 3, the previous edge

can be of any case; otherwise, the previous edge cannot be

of the same case to ensure one point will not be matched to

more than two points. The optimal solution is the minimum

of E∗
ni,t,c

for ni+1 − ñi+1 + 1 ≤ t ≤ ni+1, ∀c and E∗
k,ni+1,c

for ni − ñi + 1 ≤ k ≤ ni, ∀c, to allow flexible extension at

endpoints. Given the minimum E∗, the optimal matching can

be obtained by tracing backwards based on optimal values. The

time complexity of the globally optimal matching algorithm

is O(nini+1) which is very efficient.

The above scheme is related to the dynamic time warping

(DTW) approach that is commonly applied to find a mapping

from one signal to another [29]. However, the standard DTW

scheme does not incorporate our preference for one-to-one

mapping, restriction beyond one-to-two mappings, or cope

with missing data at the ends of the sequences.

C. Image Formulation and Ink Projection

Once all the pairwise matchings between adjacent slices

are performed, we can map them to 2D image space where

the i-th skeleton is mapped to the i-th row in the image.

We start with the first skeleton S1 and first assume that no

distortion is involved, so the k-th point p
(1)
k is mapped to the

k-th column of the first row. Since in the majority of cases

the points have one-to-one correspondence, we can work out

the mapping of successive skeletons one by one, by aligning

those pixels with known correspondence at the same column

and interpolating the mapping in between. More specifically,

assuming for the i-th skeleton, point p
(i)
k is mapped to column

x
(i)
k . When considering the (i+1)-th skeleton, there are three

possibilities: 1) point p
(i+1)
t is mapped to a specific point

p
(i)
k , we set x

(i+1)
t = x

(i)
k . 2) p

(i+1)
t is not mapped to any

point in P(i), and it is between two points p
(i+1)
t1

and p
(i+1)
t2

which are mapped to p
(i)
k1

and p
(i)
k2

, respectively. We use linear

interpolation to work out the 2D image location as

x
(i+1)
t =

x
(i)
k1
(t2 − t) + x

(i)
k2
(t− t1)

t2 − t1
. (13)

3) If p
(i+1)
t is not mapped to any point in P(i) and only one

side in the sequence has a (nearest) point p
(i+1)
t1

mapped to

p
(i)
k1

. This happens when the point being considered is towards

one end of the skeleton. We use the mapping of p
(i+1)
t1

as

reference and assume isometric mapping:

x
(i+1)
t = x

(i)
k1

+ (t− t1). (14)

This process determines a mapping from the 2D image

space to the 3D volume space. For each pixel, assuming the 3D

location is p̂ with a normal direction n̂, we start from p̂ and

move along n̂ by a maximum of d̂ pixels, using a subvoxel step

size to avoid aliasing effect. 0.25 is used in our experiments;

smaller step size gives almost the same results, with slightly

longer running time. We take the maximum intensity of all

the sample points, obtained using trilinear interpolation from

voxels at neighbouring integer grid positions. The distance d̂
ideally can be chosen as m

2 where m is the layer thickness.

However, the skeleton may not lie exactly in the centre of each

parchment layer and the parchment thickness may vary. To

cope with this, we use a larger d̂: for single-sided parchment, it

is safe to set d̂ = m without mixing writing on two layers. We

also use the segmentation mask that separates layers and stop

sampling along the normal direction if the sampling process

enters the background.

Since the first skeleton S1 is not distortion free, we further

apply a global column-wise rescaling such that overall distor-

tion across all the slices are minimised. For each pair of pixels

in the k-th and (k+1)-th columns, we work out the distance for

the corresponding points in the 3D space (using interpolation

when needed). The average of such distances provides the

column-wise scaling s̄i, i.e. after mapping x̃k+1 − x̃k = s̄i.
The column is no longer in the integer position, so we apply

bilinear interpolation to obtain the intensity values.

The pixels of the obtained image are brighter if there is

ink. To make the image look more natural, we invert the pixel

intensities so that ink appears dark, and further apply intensity

scaling to enhance contrast.

IV. EXPERIMENTS

We demonstrate the performance of our segmentation

method to real parchments, which vary in size and complexity.

X-ray images of the parchments were acquired through tomo-

graphic development in the School of Medicine and Dentistry

at QMUL [7]. Our algorithm is tested on a desktop PC with a

2.9GHz processor. The method presented by Samko et al. [11],

[12] is adopted as a reference method, because this work

is the most relevant to parchment segmentation and virtual

reconstruction. The technique reported by Baum et al. [18] is

the most recent and effective algorithm for virtually revealing

text from rolled scroll that we found, and was thus used as

a further reference method for comparison. In addition, we
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also include the graph cut [14], snake method [13], and Otsu

thresholding algorithm [20] as reference methods since these

methods are widely cited in the literature and are often used

as baseline methods for comparison.

The first experiment is conducted to test our segmentation

method with three parchment scrolls from [11], [12]: the

small scroll, medium scroll, and large scroll. These scrolls

exhibit increasing complexity, and were used by Samko et

al. for testing their algorithm development. The first two

scrolls are straightforward, being relatively small without tight

connections or delamination, and their layers are relatively

thick, even and almost complete. The large scroll is also

without delamination, but contains more touching layers.

However, these are not physically fused, and therefore not as

tight or compressed as those in the Bressingham scroll. The

sizes of the three parchments are 708 frames with resolution

430 × 430, 700 frames with resolution 530 × 530, and 423

frames with resolution 1702 × 1732 respectively. The largest

fused region in those parchments consists of three layers,

and each layer is about 14 pixels wide (m = 14 in Eq. 6).

Figure 16 illustrates the stages of our segmentation method

on the three parchments. It can be seen that all the fused

regions are correctly separated into several layers. Because

the segmentation results for all the slices are quite similar, the

example in Fig. 16 represents the performance of our algorithm

for the whole data set. It is noteworthy that our segmentation

results look similar to Samko et al.’s results in [11], [12],

showing that our method can deal with the parchments which

Samko et al.’s method can process. Baum et al’s method is

applied to each scroll with two slices manually initialised by

the initialisation strategy in [18]. Figure 17 demonstrates the

segmentation results of Baum et al’s method. It can be seen

that Baum et al’s method can provide a correct estimation

of the skeleton of the parchment layer, which is highlighted

by the red lines. The segmentation results of other reference

methods can be found in [12].

To provide quantitative evaluation of all the segmentation

algorithms, we manually segment twelve images from each

set to obtain ground truth segmentations. These are compared

using multiple benchmark criteria: Rand Index (RI), which

is a measure of similarity of two data clusterings, Variance

of Information (VI) [30], which describes the distance of two

data clusterings, and three commonly used statistics: Precision

(P), Recall (R) and F-measure (F) [31]. Precision, recall and

the F-measure are applied directly to the segmentations and

provide an indication of the per-pixel classification accuracies

of parchment and air (background) segmentation. Low pre-

cision indicates that air is misclassified as parchment, while

low recall indicates that parchment is misclassified as air.

Since topological correctness is critical for the subsequent

reconstruction process we also perform a connected compo-

nent labelling on the segmented images (on both foreground

and background), and compare the labellings obtained by the

segmentation algorithms against the ground truth segmentation

to emphasise errors in connectivity. The Rand Index and

Variance of Information are appropriate measures to use since

they are invariant to permutations of the labels.

The averages of the five measures for all algorithms in

Fig. 16. The results of our segmentation method applied to three different
parchments. (a)(e)(i) the foregrounds extracted by Otsu thresholding, (b)(f)(j)
the segmented parchments by our method, (c)(g)(k) close-up views of some
areas, (d)(h)(l) skeleton images.

Fig. 17. The skeletons of (a) small scroll, (b) medium scroll, and (c) large
scroll estimated by Baum et al’s method, which are highlighted by the red
lines and superimposed on the foreground of the parchments.

this test are listed in Table I, which shows that Baum et al’s

method obtains the best segmentation accuracy for the small

scroll and medium scroll. This is because these two scrolls

perfectly meet the prerequisite of Baum et al’s method that the

consecutive slices show greatly similar spirals. Nonetheless,

our segmentation method results in close-to-the-best values for

the five measures of these two scrolls. In contrast, for the large

scroll, which is more damaged than the other two scrolls and

more tightly wound, our method achieves the most satisfactory

segmentation.

The next experiment deals with the Bressingham scroll,

which is much more challenging than the three scrolls used

above. Because of mistreatment, there are several areas of the

skin which have become scuffed and delaminated. In addition,

many layers have become physically fused. The part of the

parchment we are processing consists of 3070 frames, with

1256 × 816 pixels in each frame. The largest fused region

is comprised of more than six layers. In addition, not only

are the layers uneven, but also they are split into many

parts. The average thickness of the layers is only about six
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Fig. 18. Segmentation for Bressingham scroll. (a) original image, (b)
segmented image, (c) close-ups of some areas, (d) skeleton.

pixels. Furthermore, there exist artifacts in some frames. All

of these pose a serious challenge to the segmentation for this

parchment. Because the layers are so thin, we resize the image

to double the original width and height before processing. We

set m = 11 in Eq. 6 for this data. Figure 18 demonstrates

an example of the segmentation of a slice of the Bressingham

scroll by our method. This figure indicates that our method

can correctly divide the fused regions into several layers and

then obtain the complete skeleton. The comparison of our

method and Samko et al.’s method is illustrated in Fig. 19.

It is clear in Fig. 19 that our method can correctly match the

junction sections and separate the fused regions, while keeping

the parchment complete; by contrast, not only does Samko et

al.’s method break the layer which should be complete, but

it creates two false connections. The main reason for these

false connections is that the boundary linking approach of

Samko et al.’s method is based on the prerequisite that few

interlayer connections are left after the graph cut with shape

prior. However that precondition is not satisfied in the case

of the Bressingham scroll since if we choose the parameters

such that most of interlayer connections are removed, the

layers will be divided into many small parts. Hence we have

to make a trade-off between removing interlayer connections

and keeping the layers complete. As a result, some of the

junction points are relatively far away from each other, which

has a detrimental influence on the postprocessing of Samko

et al.’s method. In comparison, our shape-based cost function

Eq. 8 and matching using the blossom algorithm guarantee

the robustness of our segmentation method to the positions

of the junction sections. Therefore, it can be concluded from

Fig. 19 that our algorithm is effective to deal with the

complicated parchment which Samko et al.’s method cannot

cope with. In order to compare our method against Baum et

al’s method, 35 slices are manually initialised for Baum et al.’s

method following the initialisation strategy in [18], which is

a time-consuming task because the layer of this parchment is

considerably long, complicated, and non-spiral. The skeleton

of a cross section of the parchment obtained respectively by

our method and Baum et al.’s method is exhibited by the red

(a) (b)

Fig. 19. Our method compared with Samko et al.’s method. (a) The
segmentation of Samko et al.’s method, with the region containing faulty
segmentation highlighted. (b) The segmentation of our method.

(a) (b)

Fig. 20. Our method compared with Baum et al.’s method. (a) The skeleton
(the red line) from Baum et al.’s method, which is not completely contained
in the parchment layer. (b) The skeleton from our method. Note that Baum
et al.’s method needs substantial effort to manually initialise 35 key frames.

curve in Fig. 20. It can be observed that the skeleton estimated

by Baum et al.’s method is not completely contained in the

parchment layer. However, to improve the result of Baum et

al.’s method will inevitably cost much longer time on manual

initialisation. Therefore Baum et al.’s method becomes less

practical as the parchment complexity increases. Figure 21

shows the segmentation results by Otsu thresholding, graph

cut, and snakes. As observed, all these reference methods fail

to separate the fused regions into several layers.

We also compare our proposed global optimisation based

segmentation refinement with [21]. Liu et al. [21] are able

to produce correct segmentation for most frames, but fail to

produce topologically correct segmentation for a small number

of slices in the Bressingham dataset. An example is shown

in Fig. 22, where the method [21] has layers stuck in the

highlighted region (left) whereas our proposed global optimi-

sation produces topologically correct segmentation (right). Our

method is able to produce topologically correct segmentation

for the entire scan with 3, 070 slices.

We manually segment 14 slices of the Bressingham scroll

for a quantitative evaluation of all the algorithms in this ex-

periment, and the average values for each of the five measures

are listed in Table II. All methods have relatively similar P, R,

F values, but there are dramatic differences in RI and VI, as

these measures are sensitive to topological errors. In terms of
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Fig. 21. The results of (a) Otsu thresholding, (b) graph cut, (c) snakes.

(a) (b)

Fig. 22. Our method compared with Liu et al.’s method [21]. (a) The
segmentation of Liu et al.’s method, with the region containing faulty
segmentation highlighted. (b) The segmentation of our proposed method.

RI, VI, P, and F scores, our segmentation results outperform

those obtained by the reference methods, which shows that

the Bressingham scroll segmented by our method is the most

similar to the ground truth.

Table III provides a quantitative comparison of the al-

ternative approaches we have considered for initialising our

segmentation algorithm. As can be seen, in most cases the Otsu

initialisation without Coherence-Enhancing Diffusion (CED)

filtering was most effective and was therefore selected as the

default initialisation for our pipeline.

In order to verify the correctness of our segmentation and

ink projection methods, we extract the skeleton line from each

segmentation result, and then use them to flatten the parchment

scroll by the surface modelling and ink projection method to

recover the text written on the parchment. Our virtual flatten-

ing and ink projection method is much more efficient than the

method proposed in [12]. For the small scroll (Fig. 2a&b),

[12] takes 6.4 hours, whereas our method only takes 22.8
seconds, which is over 1, 000 times faster. For the large

Bressingham dataset with 3, 070 slices, our method takes 2.56
hours, whereas [12] takes 4.5 weeks. The flattened result of the

Bressingham scroll after contrast enhancement is illustrated in

Fig. 23. A representative part is illustrated in Fig. 24 which

exhibits the recovery of an unseen section of the Bressingham

scroll. Fig. 25a shows a photograph of a visible portion of the

Bressingham scroll along with corresponding reconstructions

obtained by applying several algorithms to the X-ray data.

To facilitate quantitative comparison the reconstructions have

been warped to align with the photograph (where possible)

and their histograms have been matched to the photograph.

Missing values in the reconstructions are coloured red, and it

can be seen that segmentations from both Samko et al. [12] and

snakes [13] produce poor reconstructions, making alignment

with the photograph impractical. The method of Baum et

al. [18] also results in many large holes. Table IV provides the

Pearson correlation values between the reconstructions and the

photograph of the visible section. The scores are generally low

since there are inevitable differences in appearance between

a photograph and a reconstruction based on X-ray density

values. We note that although the versions of our proposed

method achieve a slighter better score than that of Baum et

al. [18] the difference is small despite the latter’s holes. This

is because the holes, while perceptually significant, cover less

than 5% of the image, and so do not substantially reduce Baum

et al.’s correlation value. Moreover, the holes fortuitously

mostly occur in areas which do not contain text.

There are many blocks of text with clear visible letters

on the virtually unrolled parchment, despite the parchment

having many layers broken and stuck together. Thus Figs. 23–

25 are strong evidence that our method correctly segments the

parchment scroll for virtual unrolling.

V. CONCLUSION

We have presented a novel method to virtually restore

information from those parchments that cannot be manually

read by processing their X-ray images. Our method segments

images in five steps. First, we connect the layers of the

parchment which are broken. Second, the junction sections are

detected from the boundaries of the parchment. Then, the de-

tected junction sections are matched by the blossom algorithm.

Subsequently the fused regions are separated into several

layers by means of the missing boundary reconstruction and

parallel curve connection, and finally skeletons are connected.

To virtually unroll parchments, the extracted skeletons are

aligned using dynamic programming based global optimisation

and parchment images are reconstructed using ink projection.

Our method is tested on four different real scrolls: a small test

scroll, a medium scroll, a large scroll, and the Bressingham

scroll. The experimental results indicate that not only can our

method process the parchments which have been processed

previously, but it is capable of dealing with a more challenging

historical parchment – the Bressingham scroll – and can make

the physically unopenable scroll readable.
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Fig. 25. A visible part of the Bressingham scroll (a) and its recovered image (after warping and histogram matching) from the XMT scan using the following
methods: (b) Otsu + Our Method (c) Otsu + CED + Our Method (d) GC + Our Method (e) GC + Shape + Our Method (f) Baum (g) Samko (h) Snakes.
Missing values due to holes in the reconstruction are coloured red. Note that Baum et al.’s method needs substantial effort to manually initialise 35 key
frames.

TABLE IV
CORRELATION VALUES BETWEEN A PHOTOGRAPH AND

RECONSTRUCTIONS FROM DIFFERENT SEGMENTATION ALGORITHMS FOR

PART OF THE BRESSINGHAM SCROLL.

Otsu
+ Our Method

Otsu + CED
+ Our Method

GC
+ Our Method

GC + Shape
+ Our Method

Baum

0.3584 0.3553 0.3550 0.3577 0.3539

[25] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,”
ACM Computing Surveys, vol. 18, no. 1, pp. 23–38, 1986.

[26] V. Kolmogorov, “Blossom V: a new implementation of a minimum cost
perfect matching algorithm,” Mathematical Programming Computation,
vol. 1, no. 1, pp. 43–67, 2009.

[27] R. Duan and S. Pettie, “Linear-time approximation for maximum weight
matching,” Journal of the ACM, vol. 61, no. 1, p. 1, 2014.

[28] J. Edmonds, “Maximum matching and a polyhedron with 0, l-vertices,”
J. Res. Nat. Bur. Standards B, vol. 69, no. 1965, pp. 125–130, 1965.

[29] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intelligent Data Analysis, vol. 11, no. 5, pp.
561–580, 2007.

[30] M. Meilǎ, “Comparing clusterings: an axiomatic view,” in Proc. Int.

Conf. on Machine Learning, 2005, pp. 577–584.
[31] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural

image boundaries using local brightness, color, and texture cues,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 5,
pp. 530–549, 2004.

Chang Liu born in 1987 at Bejing, China, received
his Bachelor Degree in guidance, navigation, and
control from Nanjing University of Aeronautics and
Astronautics, and Ph.d degree in guidance, naviga-
tion, and control from Beihang University, in 2009
and 2016 respectively. He is currently a post-doctor
in aeronautical and astronautical science and tech-
nology at Beihang University. His research interest
is guidance and navigation of spacecraft based on
computer vision.

Paul L. Rosin is a Professor at the School of
Computer Science & Informatics, Cardiff Univer-
sity. Previous posts were at Brunel University, Joint
Research Centre (Italy), and Curtin University of
Technology (Australia). His research interests in-
clude the representation, segmentation, and grouping
of curves, knowledge-based vision systems, early
image representations, low level image processing,
machine vision approaches to remote sensing, meth-
ods for evaluation of approximations, algorithms,
etc., medical and biological image analysis, mesh

processing, and the analysis of shape in art and architecture.

Yu-Kun Lai received his bachelor’s and Ph.D. de-
grees in computer science from Tsinghua Univer-
sity, China, in 2003 and 2008, respectively. He is
currently a senior lecturer at the School of Com-
puter Science & Informatics, Cardiff University.
His research interests include Computer Graphics,
Geometry Processing, Computer-Aided Geometric
Design, Computer Vision and Image Processing. He
is on the editorial board of The Visual Computer.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

Weiduo Hu born in 1965 in Heihe, China, received
his Bachelor, Master and Ph.D at Beihang University
in 1986, 1989, 1993 respectively. He then worked as
an engineer in Beijing Institute of Control Engineer-
ing. In 1998, he went to the USA, and obtained his
Ph.D at the University of Michigan in 2002. Now
he is a professor at Beihang University, China. His
major research interests are navigation, control and
dynamics, especially for spacecraft.


