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Abstract

In this paper we introduce a framework for the segmentation of scanned scrolled
parchments, based on a novel graph cut based approach with an additional shape prior, in
combination with anisotropic diffusion and geometry-constrained postprocessing. This
problem has not been investigated by the computer vision community properly yet due
to the parchment scanning technology novelty, and is extremely important for effective
data recovery from historical scrolled documents whose content is inaccessible due to the
deterioration of the parchment. To date, parchment segmentation has required user inter-
action, which is very time consuming for such data. We demonstrate with real examples
how our algorithm is able to solve the major problem for scrolled parchment analysis,
namely segment connected layers, and process the data without user interaction.

1 Introduction
Digital document restoration has become an increasingly active area of research over the last
few years. Brown and Seales in [3] proposed a general de-skewing algorithm for arbitrary
warped documents based on 3D shape. Doncescu et al. in [7] reported a similar method,
where a laser projector is used to project a 2D light network on the document surface to
capture 3D shape, and then 2D distortions of the surface are corrected with a two-pass mesh
de-warping algorithm. Cao et al. in [5] presented an algorithm to rectify the warping of a
bound document image: they built a general cylindrical model, and then used the skeleton of
horizontal text lines in the image to estimate the model parameters. Pilu in [16] introduced
a novel method for distorted document restoration which is based on physical modelling of
paper deformation with an applicable surface. Yamashita et al. in [22] introduced a shape
reconstruction method by using a two-camera stereo vision system. Except for Cao’s work
[5] and a few others [24, 25], most of the current approaches require special setup to assist
in 3D shape discovery. Also they can only handle smooth distortion of the image surfaces.

The most related work was undertaken by the EDUCE project [10], which attempted to
read a scrolled document from a 3D scan. However, very few results on document unrolling
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Figure 1: A small cut sample from a historical parchment scanned with the high definition
XMT scanner. Left: cross-sectional tomographic slice with contrast enhanced to show ink on
the surface of the parchment. Right: volume rendered cutaway view with pseudo-coloring.

have been reported [13, 19]. The results were only shown on small contrived samples and
would not scale up to real parchment with many layers, which are tightly stuck together. The
segmentation stage of that work was performed semi-manually [13]. Apart from that, no
more results on virtual parchment unrolling have been reported. X-ray scanning technology
is typically deployed for medical data analysis [4, 8, 23], except boundary extraction is not
of such concern in such applications as for the parchment ink recovery task.

There is a critical need to access the valuable information in historical scrolls that cannot
be read by conventional means. In some cases, their physical deterioration is at such an
advanced state that any attempt to unravel the document manually would cause catastrophic
fragmentation, destroying the internal information. Use of X-ray microtomography, a new
direction in digital document analysis [11], provides a digital copy of a scrolled parchment
as a 3D volumetric object, see Fig. 1. Clearly, the parchment layers need to be separated to
perform a virtual unrolling and apply further digital document restoration methods.

Parchment is essentially animal skin and therefore has an irregular sponge-like structure,
also its thickness may vary across a document surface. As a result of degradation over time,
parchment may convert to its entropic form, gelatin, making the boundary between its layers
difficult to observe even with the human eye. Image noise, low contrast and scanning artifacts
may lead to even more indistinct parchment structure boundaries. As can be seen in Fig. 2,
it would be difficult to handle the parchment segmentation task satisfactorily. A general
algorithm can destroy damaged areas because of parchment’s latent texture (oversegment),
and not split tightly connected layers with zero gradient (undersegment) at the same time.
The topology of parchment smoothly changes from slice to slice, but can differ significantly
across the whole scroll. The parchment ink thickness is only a few voxels deep (represented
by the light pixels close to the parchment boundary), so it is very important to carefully
process the boundary to avoid losing important information due to incorrect segmentation.

This paper describes the segmentation process utilised in our system for virtual unrolling
of parchments, whose goal is to extract the scrolled parchment surface from the volumetric
data, and to separate its touching layers. We exploit both geometric and pixel intensity fea-
tures from the data. Our algorithm consists of three main steps: data filtering, segmentation,
and postprocessing using geometric constrains. The first step, anisotropic filtering, makes the
parchment structure more homogeneous, simultaneously preserving the parchment’s layer
boundaries. At the next step we introduce the main segmentation routine, based on Graph
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Figure 2: Parchment data examples: fragments and several slices of the same scroll

Cut [1], with a novel shape prior optimisation. Here we incorporate parchment layer thick-
ness information together with the traditional pixel intensity. This makes the segmentation
more robust, however a few very tight connections between layers may still be retained. The
reason for such incorrect connections is that the local boundary features may not exist, or
it may be difficult to detect them reliably using the global optimisation. Therefore instead
of involving time-consuming user interaction which also requires great accuracy from the
user, in the last step of our algorithm we employ local geometric constraints to automati-
cally separate such connections. We evaluate our algorithm by applying it to segment three
different parchment data sets, which vary in the parchment’s condition, size and number
of layers. Our experiments indicated that we were able to fully separate these parchments’
layers, outperforming traditional segmentation methods both visually and numerically.

2 Parchment segmentation framework

We treat the data, volumetric images from an X-ray scanner, as a set of slices, as in Fig. 1,
because the parchment volumetric model is very large and constructing volumetric segmen-
tation will take up large amounts of time and resources. Using the fact that the parchment
structure is only changing slightly from slice to slice, we use the segmentation for one slice as
the initialisation for the next slice in the set. Our algorithm consists of filtering, segmentation
itself, and postprocessing. We describe these steps below.

2.1 Data filtering

We use Coherence-Enhancing Diffusion filtering (CED) as a segmentation preprocessing
due to its property of completion of interrupted lines [20]. CED uses a nonlinear diffu-
sion process whose diffusion tensor allows anisotropic smoothing by acting mainly along
the preferred structure direction. This so-called coherence orientation is determined by the
eigenvector of the structure tensor with the smallest eigenvalue [20]. Using the CED fil-
ter enables us to preserve the topology of the parchment layers, while the internal variation
caused by the parchment’s sponge-like structure is diminished.

A gray-scale image u(x,y) can be treated as a surface corresponding to the mass con-
centration (the grey level). The equation describing the diffusion of the mass concentration

Citation
Citation
{Boykov and Jolly} 2001

Citation
Citation
{Weickert} 1999

Citation
Citation
{Weickert} 1999



4 SAMKO: SEGMENTATION OF PARCHMENT SCROLLS FOR VIRTUAL UNROLLING

is

dtu = div(D ·5u), (1)

where5u is the concentration gradient, and D is the diffusion tensor, a function of local im-
age structure. As in [20], we define D using the regularised structure tensor matrix Jρ(5uτ):

Jρ(5uτ) = Nρ ∗ (5uτ ⊗5uτ), (2)

where ρ is the integration scale, and uτ is the regularised image of u obtained by convolution
with a Gaussian Nτ(x,y) = (2πτ2)−1 exp(− x2+y2

2τ2 ). The eigenvectors of Jρ give the preferred
local orientations, and the corresponding eigenvalues denote the local contrast along these
directions.

For a given parchment image u(x,y), we have three parameters to define: time step t, lo-
cal scale τ and integration scale ρ . We set τ = 1.5 for our framework; this small value gives
us a uniform blurring over the whole object. The integration scale ρ reflects the characteris-
tic size of the texture and is defined individually for each parchment. Correctly adjusted, it
plays an important role in “reconstructing” a parchment’s damaged areas, whilst preserving
boundaries. Small ρ (1,2) does not lead to the visually dominant coherence orientation and
gives a rough approximation of the parchment’s boundary. For the relatively small parch-
ment data we got good results with ρ = 4. Generally larger parchments require a bigger ρ

value; but excessive ρ values may deform the parchment boundary into a shapeless mass.
Finally, the time step t is also defined for each parchment individually. Larger t values pro-
duce increased blurring. This parameter depends on the image resolution and parchment
condition. If the image resolution is small, a large time scale may dissolve the parchment
boundary. If the parchment condition is poor (damaged, many pores), large t is preferable.
In our experiments we set t = 4 for the small parchment, and t = 12 for the damaged parch-
ment. Fig. 3 shows the example of the original parchment image, and the results of applying
CED with different parameters to it. Note that the effect of a large ρ is most significant in
very damaged areas, which contain boundaries that we also need to preserve.

Figure 3: From left to right: original parchment fragment; the CED filtered images with
parameters (τ , ρ , t): (1.5, 10, 12) - optimal, (10, 10, 12) - nonuniform blurring, (1.5, 4, 12) -
small ρ , (1.5, 20, 12) - large ρ , (1.5, 10, 4) - small t
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2.2 Graph Cut with shape prior

We use a Graph Cut based optimisation for our main segmentation step. Boykov and Jolly [1]
formulated Graph Cut segmentation as a binary labelling problem, i.e. each pixel in the
image has to be assigned a label from the label set {0,1}, where 0 and 1 stand for the
background and the object, respectively. The labelling corresponding to the minimum energy
is chosen as the solution.

The Graph Cut energy is formulated as a function of the pixel assignment:

E( f ) = ∑
p∈P

Dp( fp)+λ ∑
(p,q)∈N

Vpq( fp, fq) (3)

Here P is the set of image pixels, fp is the binary label assigned to pixel p, N is the set of
neighbourhood pixel pairs, Dp is the data term, Vpq is the smoothness (boundary) term for
two neighbouring pixels, parameter λ ≥ 0 specifies the relative importance between these
two terms. To avoid user interaction, we initialise these models through GMM learning.
We take Dp( fp) as the negative log likelihoods of the constructed background/foreground
models. The smoothness term counts the weighted sum of discontinuities in f :

Vpq( fp, fq) = wpqς( fp, fq) = exp
[
−

(Ip− Iq)2

2σ2

]
1

dist(p,q)
ς( fp, fq) (4)

Here ς( fp, fq) is 0 if fp = fq and 1 otherwise, wpq is the weight, Ip is the intensity of pixel
p, and σ is the intensity variance. To minimise the energy from Eq. 3, Boykov and Jolly
in [1] used the minimum cut on the constructed graph. Later in [2], an efficient algorithm for
computing the minimum cut was presented, which we apply in our framework.

Fig. 4 (left) shows the result of applying Graph Cut to the parchment data from Fig. 1.
It can be seen that after the segmentation we still have many interlayer connections. In-
corporating prior shape information, based on the parchment thickness, should make the
segmentation more robust. This is performed as follows: at the initialisation stage, we set
region U as a dilation of the foreground, and define its neighbourhood pixel pairs as Nu. To
get local thickness we separate the image into background and foreground, detect parchment
boundaries, and calculate distances dx for each pixel x from U to its closest boundary, taking
into account the edge’s orientation. Define m as the parchment thickness parameter, which
can be estimated as the mean distance between opposite boundaries of parchment layers.
Using these settings, we define our shape prior energy, and rewrite the energy function from
Eq. 3 as:

E( f ) = ∑
p∈P

Dp( fp)+λ ∑
(p,q)∈N

wpqς( fp, fq)+ µ ∑
(p,q)∈Nu

spqρ( fp, fq) (5)

Here ρ( fp, fq) is 0 if fp = fq and 1 otherwise, µ is the shape parameter to control the relative
importance of the shape term, spq is the shape weight. In our parameter settings we always
bias intensity over shape due to the parchment structure and irregularity in thickness. The
shape weight controls the layer thickness, we use the following form:

spq = exp

−
(

dp+dq
2 − km

)2

2σ2
u

 1
dist(p,q)

(6)
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where k is the parchment layer counter, k = 1 . . .M, M = maxdxd
dx
m e, σu is a parameter which

we estimate as σu ≈ m+1. To define k, we calculate dp+dq
2 . If 0 <

dp+dq
2 < 3m

2 , then k = 1,
and generally (2k−1)m

2 <
dp+dq

2 < (2k+1)m
2 for k = 2 . . .M.

The energy based on our shape prior will be low for the neighbouring pixels p, q which
are close to the estimated parchment boundary and have different labels. Assuming that the
shape prior energy is 0 outside U , and considering all the above, we can conclude that our
shape term Spq( fp, fq) = spqρ( fp, fq) satisfies the following property

Spq(0,0)+Spq(1,1)≤ Spq(1,0)+Spq(0,1) (7)

and therefore according to [12] can be minimised using Graph Cut. Fig. 4 (right) illustrates
how our Graph Cut with the shape prior works. We get much less interlayer connections in
comparison with the original Graph Cut, did not get any extra holes inside the parchment
layers, and retained the ink at the surface.

Figure 4: Segmentation using Graph Cut (left), and Graph Cut with shape prior (right)

2.3 Postprocessing

Our segmentation result in the right part of Fig. 4 indicates that there are still some false con-
nections between the parchment layers. The problem appears in the areas which are stuck
together such that it is impossible to even see the boundary between them, as also demon-
strated in Fig. 5. Many popular segmentation methods rely on user corrections during the
segmentation process [9, 17], but this is time consuming, and they still require the presence
of boundary features. We use a purely geometrical approach, based on the parchment’s local
features, to separate such areas.

Figure 5: Examples of segmentation containing false connections between parchment layers
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The idea is to recreate a missing boundary from the preserved boundary of the opposite
side of the same layer, otherwise from the closest preserved boundary. The basic stages of
our postprocessing algorithm are:

1. Detect a layer’s false connections using existing boundary information. We extract the
parchment boundary, and apply simple rules based on the patterns in a moving 7× 7
window to detect and disconnect these connections.

2. Endpoint linking. For each detected endpoint, we find its pair and the opposite side
of their layer. Between these endpoints we construct links parallel to the opposite
parchment side, adjusting it if necessary to the local parchment thickness. Next we
similarly reconstruct the boundary of the joined layer using the closest (reconstructed)
boundary, maintaining the distance. We perform analysis on a layer by layer basis,
starting from the outermost layer.

3. If necessary, adjust the obtained boundary to avoid connections with the previous slice.

Note that we give priority to the inner parchment surface, because this side of the parch-
ment contains ink. It is not necessary to perform all these steps for all slices; since the
parchment topology changes smoothly, we postprocess the first slice using the described al-
gorithm, adjust the result for the second slice, and so on. Also note that depending on the
parchment condition, postprocessing may not be required. Fig. 6 illustrates the stages of our
postprocessing algorithm.

Figure 6: From left to right: segmented parchment fragment; its contour; endpoints detection
(red); links construction (green); postprocessed fragment

3 Experiments
We demonstrate how to apply our framework to segment three real parchment examples,
which range in size and complexity. The data were obtained through tomographic develop-
ment in the School of Medicine and Dentistry at QMUL [6].

The size of the first parchment (shown in Fig. 1, 4) is 430× 430× 708. It has fairly
good condition, excluding a few areas where layers are stuck together. Fig. 7 illustrates
the stages of applying our algorithm to this data. Here we set m = 12, λ = 0.45, µ = 0.3.
The segmentation results are quite similar for all slices of the same scroll, so our pictures
represent the algorithm’s performance for the whole data set.

Fig. 8 demonstrates segmentation results with snakes [21], the original Graph Cut, and
our algorithm. Since the original slice does not have tight connections our Graph Cut with
the shape prior was able to separate its layers without any postprocessing, while the original
Graph Cut and snakes both failed. Although we give more penalty to the parchment bound-
aries, the result is not oversegmented because the ink is always considered as foreground.
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Figure 7: From left to right: original slice; segmented by Graph Cut with the shape prior;
final result; postprocessed slice and contour of its neighbour slice (green, blue marks post-
processing areas); scaled fragment

Figure 8: From left to right: original slice; segmented by snakes; segmented by Graph Cut;
segmented by our method

The next parchment example is more complicated, more damaged and has more topo-
logical variation. It consists of 708 slices, 530× 530 pixels each. We set m = 11, λ = 0.5,
µ = 0.2 for this data, and due to the variation in layer thickness we reduce our shape penalty
to have less effect on very thick layers. Fig. 9 demonstrates our segmentation, and the result
obtained with the original Graph Cut. With Graph Cut, we got undersegmentation (joined
layers) simultaneously with oversegmentation (a large hole at the bottom left) even after the
filtering. Our Graph Cut with shape prior was able to extract the parchment without holes, by
giving them more penalty in comparison to the parchment boundary. Also we were able to
separate most of the layers without postprocessing. In comparison to the previous example,
this parchment needed more postprocessing to completely separate its layers.

Figure 9: From left to right: original slice; segmented by Graph Cut; segmented by our
method; a fragment before and after postprocessing

Finally we consider a large scroll of size 1702×1732×423, containing two interleaved
parchments, shown in Fig. 10. With this example we demonstrate how our method can
help to process parchment with highly damaged layers. For the previous (less damaged)
examples, we detected the boundaries of our initialised models and calculated the distances
dx. In this case we do not have a solid boundary in some areas, see the top middle of Fig. 10.



SAMKO: SEGMENTATION OF PARCHMENT SCROLLS FOR VIRTUAL UNROLLING 9

Example 1 Example 2 Example 3
Our Graph Snakes Our Graph Snakes Our Graph Snakes

method Cut method Cut method Cut
PRI 0.9445 0.5887 0.5893 0.9592 0.6414 0.6415 0.9073 0.5953 0.6142
VI 0.3182 1.6193 1.5772 0.2664 1.3628 1.3605 0.7020 3.0737 2.7298
P 0.9911 0.9695 0.9518 0.9687 0.9452 0.9353 0.8942 0.8855 0.8758
R 0.9634 0.9374 0.9385 0.9402 0.9372 0.9309 0.9585 0.9446 0.9328
F 0.9771 0.9532 0.9436 0.9542 0.9412 0.9331 0.9252 0.9141 0.9034

Table 1: Numerical evaluation scores

The third layer there is very weak even after the filtering to detect its boundary with the
initialisation. Therefore we “reconstruct" a boundary in the following manner: we dilate the
image to fully include the weak layer, and define the obtained region as U . After that we
assign the parchment boundaries as one pixel away from the obtained mask boundary, and
calculate distances dx to these “reconstructed" boundaries. As a result we get more joined
layers which we separate using our shape prior, but also we save the weak boundaries. The
right part of Fig. 10 shows a fully segmented slice of the scroll. The parameters here are
m = 12, λ = 0.4, µ = 0.35. Our Graph Cut with the shape prior was able to separate most
of the data, we needed only minimal (automatic) postprocessing for the areas with very tight
and thin layers.

Figure 10: From left to right: original slice; fragments: original, thresholded with marked
assigned boundary (gray), result; segmented by our method

To provide a numerical evaluation of our algorithm, we use multiple benchmark criteria:
Probabilistic Rand Index (PRI) [18], Variation of Information (VI) [15], as well as boundary-
based precision-recall framework measures Precision (P), Recall (R), and F-measure (F)
[14]. We manually segment an image from each set to obtain ground truth, perform a con-
nected component labelling on the segmented images (on both foreground and background),
and compare the obtained labellings so as to emphasise the importance of correct topology.
The results are presented in Table 1. The results show that our proposed method obtained
high scores even for complicated data, and outperforms both snakes and standard Graph Cut.
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4 Conclusion
We have presented a novel method for parchment segmentation which will subsequently be
used for virtual unrolling and visualisation of the parchment. Technologies for the effec-
tive scanning of parchment are under active investigation, creating a demand for methods
of analysing scanned scrolls. Our algorithm is the first attempt to solve the segmentation
problem automatically for such data. The presented method does not require user interaction
and incorporates parchment thickness information to separate the layers. We illustrated the
performance of our algorithm with three different real scrolls, and were able to process very
damaged areas and tightly stuck together layers. Our algorithm may be useful for medical
data applications, such us vessel extraction. In our future work we plan to involve local
parchment thickness in the Graph Cut shape prior to make it more robust for the data with
very large thickness variation.
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