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ABSTRACT

We propose a new method for detecting mesh saliency, a
reflection of perception-based regional importance for 3D
meshes. The basic idea is to incorporate the Conditional
Random Field (CRF) framework with a saliency detection
process. We first produce a multi-scale representation for
a mesh. Then, a CRF is designed to robustly detect salient
regions utilising neighbourhood consistency. By inferring the
CRF via belief propagation algorithm, we actually make use
of the global statistic information in the saliency detection
process. Experimental results demonstrate the robustness and
the effectiveness of the proposed method.

Index Terms— Saliency, CRF, Mesh Simplification

1. INTRODUCTION

Mesh saliency is a measure that captures the property of a
point in a 3D mesh based on human perception rather than lo-
cal geometry of shape. Saliency can efficiently and effectively
reflect perceptual importance of regions for a 3D mesh while
curvature is not able to measure. Therefore, mesh saliency has
a wide range of applications in the fields of computer vision
and graphics, such as mesh simplification, scene rendering,
view point selection, point cloud matching, compression and
object recognition.

The literatures related to 3D mesh saliency are largely in-
spired by the correspondent work performed on 2D images
[1]. Particularly, the concept of scale space has been success-
fully extended to the 3D domain. We also notice that saliency
is a flexible concept that can be defined in line with various
tasks. M. Pauly et al [2] proposed a multi-scale method to
extract line-type features where they introduced a saliency
measure of surface variation by combining the eigenvalues
of the local covariance matrix. In [3], salient geometric fea-
tures based on curvatures were introduced to improve part-
in-whole matching. [4] developed a technique to effectively
select 3D shape descriptors of high saliency. [5] proposed a
method for detecting and matching salient points from multi-
view meshes where the saliency is also estimated by generat-
ing multi-scale representation for a mesh in a scale space. The
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state-of-the-art method [6] computed mesh saliency using a
center-surround operator on Gaussian-weighted curvatures:

G(C(v), σ)=

∑
x∈N(v,2σ) C(x) exp[−‖x−v‖2 /(2σ2)]∑
x∈N(v,2σ) exp[−‖x−v‖2 /(2σ2)]

(1)

where C(v) and N(v, 2σ) denote the mean curvature and a
neighbourhood region of the vertex v respectively.

Usually, previous methods output a single-saliency map
by simply computing the sum or the average of all multi-
scale saliency maps to simplify the information and then use
thresholding-based methods (often not robust to noise) to de-
termine whether a point is salient or not. These methods are
fast but do not make good use of the information embedded in
the multi-scale saliency maps. We propose a new method for a
more robust saliency detection. Instead of simply combining
the multi-scale information, we incorporate such information
into a Conditional Random Field (CRF) framework. The de-
tected salient/non-salient locations are the labeling result of
the CRF which incorporates information not only associated
within a local neighbourhood but also throughout the mesh at
all scales. The proposed method involves two stages: multi-
scale mesh representation and CRF-based saliency detection.

2. MULTI-SCALE MESH REPRESENTATION

We apply a set of S Gaussian filters on a mesh M to produce
a multi-scale representation Ds for M . G(p, σ) is a Gaussian
kernel with standard deviation σ centred at the vertex p ∈M .
Each Gaussian kernel is applied over a neighbourhood region
centred at p with a geodesic radius r. The geodesic distance
between two points is computed using the method proposed
in [7]. All vertices within this region are viewed as the neigh-
bours of p and involved in the convolution. Compared to
the neighbourhood defined in [6] (Eq. 1) using the Euclidean
measure, the advantage of using the geodesic measure is the
reduction of potential ambiguity. In Fig. 1(a), only surface
patch 1 is considered as the neighbourhood of the point P
under the geodesic measure, while patch 2 is an ambiguous
neighbourhood if the Euclidean measure is used. We set
r = 2.4 ∗ F ∗ σ in line with the principle of full width at
half maximum where F is a normalisation parameter related
to the scanning resolution R (average interpoint distance) of



Fig. 1. (a) Geodesic vs Euclidean. Patch 1 is the neighbour-
hood of P defined by geodesic measure; Patch 2 is an ambigu-
ous neighbourhood produced by Euclidean measure. Am-
biguous neighbourhood usually leads to ambiguous saliency.
(b) A perturbation can only change P ’s position while the
curvatures of P and its neighbours are all changed.

the mesh M and we choose F = 2R. We propose a new
algorithm to do a rank-based Gaussian filtering:

(1) For a point p, find all of its kp neighbours (including itself)
within a distance equal to r from all of the points in M .
(2) Sort the kp neighbours in the descending order of the dis-
tance to p. So the first point in the neighbourhood sequence
vp is p itself and the last one is the point furthest from p.
(3) Construct a discrete Gaussian kernel with standard devia-
tion σ sampled as a kp-dimensional vector.
(4) Sort the elements in this Gaussian kernel in descending
order, yielding an a Gaussian kernel Gp. Thus in the follow-
ing convolution, nearer neighbours have larger weights.
(5) Do convolution using vp and Gp.
(6) Repeat the steps listed above for all points in M .

The Difference-of-Gaussians (DoG) scale space is constr-
ucted by computing the difference of two Gaussians at scales:

Ds(p) = Gp(p, σs)−Gp(p, ησs), s = 1, 2, ...S (2)

where Gp denotes the Gaussian applied to the point p. η is
set as 1.6, which makes the DoG a good approximation of the
Laplacian of Gaussian (LoG). By ‘approximation’, we mean
DoG(x)/LoG(x) ≈ constant or the DoG is approximately
equal to the scale-normalised LoG which can achieve true
scale invariance. We use four scales (S = 4) of filtering with
σs ∈ {0.6, 1.2, 1.8, 2.4} for a reasonable balance between re-
liability of saliency detection and computational cost.

Ds(p) is a 3D vector representing the displacement of
the point p from its original position in M after the filter-
ing. We define the multi-scale representation of a point on
its Gaussian-weighted position rather than mean curvature as
in [6] for higher robustness against scanning noise. Scan-
ning noise can be viewed as a perturbation or a displace-
ment added to a point to move it away from its correct po-
sition. As illustrated in Fig. 1(b), once the point P suffers
from a perturbation, only its position has been changed while
all its neighbours’ 3D positions remain unchanged. In con-
trast, the curvature-based computation in Eq. (1) is less ro-
bust because the curvatures of P ’s neighbouring points have

also been changed. Furthermore, instead of directly using the
interpoint distances to calculate the weights in the Gaussian
convolution in Eq. (1), we determine the weight of a neighour-
ing point by its distance-based rank among all neighbouring
points. A small perturbation at one point caused by scan-
ning noise is highly likely to change its distance to the centred
point but less likely to change its distance-based rank among
all neighbouring points. Therefore, in most cases, salient lo-
cations can still be correctly detected in the presence of scan-
ning noise by using our method.

To reduce Ds(p) in a scalar quantity, we project it onto
the normal n(p) at the point p to obtain the scale maps Ms.
Then, we employ the method proposed in [1] to normalise
the scale maps. The normalisation is designed to globally
promote maps in which a small number of strong peaks are
present, while globally suppressing maps which contain nu-
merous comparable peaks. To further enhance the difference
between potential salient and non-salient locations, we apply
an arc-tangent operation to each scale map to produce the fi-
nal multi-scale representation M̂s (see Fig. 2).

3. CRF-BASED SALIENCY DETECTION

Then we incorporate the multi-scale information of a mesh
into a Conditional Random Field (CRF) framework. The rea-
son that we apply a CRF rather than a simple summation over
the multi-scale saliency maps employed by previous methods
[6, 5] is to increase the robustness of our saliency detection
method by introducing a consistency constraint.

We define a label assignment s = {sp,∀p ∈ M} and the
label set comprises the scale indices {s} = {1, 2, 3, 4}. For
a point p, each label corresponds to a scale saliency M̂s(p)
for the scale s. In line with the standard CRF formulation
where the points/sites are written as subscripts and the la-
bels assigned to the points are the real variables that we try
to figure out, in the rest of this paper, we rewrite {M̂s(p)} as
{M̂p(s)}. If we use s′ = {s′p,∀p ∈ M} to denote a known
observation field, a CRF can be defined as:

Pr(s|s′) =
1

Z(s′)
exp

{
−
∑
c∈C

(λc · ψc(sc|s′c)
}

(3)

where λc is a weighting parameter and Z(s′) is a normalising
constant. The factors ψc are potential functions of the random
variables sc within a clique c ∈ C. The Gibbs energy of a
pairwise CRF is expressed as

E(s|s′) = − lnPr(s|s′)− lnZ(s′) =
∑
c∈C

λc · ψc(sc|s′c)

=
∑
p∈M

ψp(sp|s′p)+λ
∑
p

∑
q∈Np(s)

ψpq(sp, sq|s′p, s′q)(4)

where Np(s) denotes the neighbourhood of p at the scale s
as used in Gaussian filtering but without p itself. To simplify
notations, in the rest of this paper, we use shorthand ψp(sp)
for ψp(sp|s′p) and ψpq(sp, sq) for ψpq(sp, sq|s′p, s′q).



Fig. 2. The pipeline of our saliency detection method with the result of each stage.

Fig. 3. Saliency detection results of complete 3D surface models with and without noise. Each quaternate subfigure consists of
the original model, the saliency detection for the original model, the noisy model and its saliency detection result.

In Eq. (4), ψp(sp) is the data term associated to the state
that we observe or most likely observe at point p, defined as:

ψp(sp) =
∣∣∣M̂p(sp)−max

s
M̂p(s)

∣∣∣ , s = 1, 2, 3, 4. (5)

The compatibility term ψpq(sp, sq) captures the consistency
between two neighbouring points. It can be regularised by
the general and scene-specific knowledge. For instance, the
smoothness prior, essentially an intensity consistency applied
to a neighbourhood, is widely used in 2D applications such as
image segmentation, restoration and depth estimation. Gen-
erally, consistency constraints are based on the nature that
neighbouring points are more likely to have the same prop-
erties (e.g., whether they are salient). Therefore, such con-
straints usually increase the robustness of labeling. Scanning
noise, occlusions, outliers and unreliable triangulation can
lead to unreliable saliency detection, turning a point in non-
salient region into a salient point. But the consistency con-
straint is highly likely to correct that by investigating its non-
salient neighbours. We use a consistency constraint which
encourages two neighbouring points to take the same scale:

ψpq(sp, sq) =

{
0, if sp = sq,∣∣∣M̂p(sp)− M̂q(sq)

∣∣∣ , otherwise. (6)

We solve this CRF in accordance with the maximum a
posteriori probability criterion via belief propagation (BP). It
requires the minimisation of the energy function in Eq. (4).
The solution assigns a label to each point on the mesh M .
Typically, most points are assigned the same principal scale
as shown in Fig. 2, and these points comprise the non-salient
regions. All other points comprise the salient regions.

4. EXPERIMENTS

We tested our method using both range scans and complete
3D surface models. Fig. 2 takes a range scan of a human face
as an example to show the pipeline of our CRF-based saliency
detection method. It is consistent with human perception that
the eyebrows, the eyes, the nose, the mouth, the ears and the
contour of the face are detected as salient regions.

To demonstrate the robustness of our method, we added
some Gaussian noise to the original data sources and then im-
plemented our method using these noisy data. The results are
shown in Fig. 3. It can be seen that our method can still distin-
guish salient and non-salient regions in the presence of con-
siderable amount of noise. For the teapot, the detected salient
regions such as the lid, the nozzle and the handle remain in-
tact. For the Beethoven, the facial region, as a whole, are
detected as salient region despite the presence of noise. For
the foot, the toes are robustly recognised as salient regions.
For the hippo, the head, the limbs, the spine and the tail of the
hippo are detected as salient regions even if some local details
are significantly (e.g. the ears) corrupted by noise.

We demonstrate the effectiveness of our method through
an application: mesh simplification. We have modified the
QSlim method [9] by guiding the order of simplification con-
tractions using a weight map derived from the saliency map.
[6] reported that using the simplification weights based on
a nonlinear amplification of the saliency gives good results
where they simply amplified the saliency values greater than
a threshold. In our method, the CRF has robustly partitioned
a mesh into salient and non-salient regions. So we just am-
plified the saliency values of the points in salient regions.



Fig. 4. Simplification by using SPS [8], QSlim [9] and our method with simplification rate 80% on foot and face.

Table 1. RMSE and MESH errors measured with different
simplification rates using our method and Lee’s method [6].

We compared our method with the stratified point sampling
(SPS) [8] and the QSlim. Fig. 4 presents the simplification
results where the simplification rate is 80% (80% points are
removed). It can be observed that local details are better pre-
served with our saliency-based simplification. In particular, it
is consistent with our saliency detection results that the toes
of the foot and the eyebrows, the eyes, the nose and the mouth
of the face are significantly better preserved.

We also compare Lee’s method [6] with our method by
computing the root mean square error (RMSE) and the MESH
error [10] between the original mesh and the simplified mesh.
As shown in Table. 1, if the simplification rate increases, the
RMSE and MESH errors become larger for both methods as
expected. Even though, the errors of our method are lower
than those of Lee’s method, which means that the simplified
meshes produced by our method are the better approximations
of the original meshes than those produced by Lee’s method.

5. CONCLUSIONS

In this paper, we present a novel method for robust mesh
saliency detection. The multi-scale representation of a mesh
is derived via a rank-based Gaussian filtering algorithm where
we use geodesic measure to define neighbourhood. The fol-

lowing saliency detection is based on a CRF labeling enforc-
ing neighbourhood consistency. It is thus more robust than the
methods based on saliency thresholding. As demonstrated by
the experimental results, continuous surface regions are de-
tected as salient regions, which largely complies with human
perception on regional importance for 3D meshes.
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