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Abstract. In this paper we describe a method for re-mapping anima-
tion parameters between multiple types of facial model for performance
driven animation. A facial performance can be analysed automatically
in terms of a set of facial action trajectories using a modified appearance
model with modes of variation encoding specific facial actions. These pa-
rameters can then be used to animate other appearance models, or 3D
facial models. Thus, the animation parameters analysed from the video
performance may be re-used to animate multiple types of facial model.

We demonstrate the effectiveness of our approach by measuring its
ability to successfully extract action-parameters from performances and
by displaying frames from example animations.

1 Introduction and Overview

Facial animation is a popular area of research, and one with numerous challenges.
Creating facial animations with a high-degree of static and dynamic realism is
a difficult task due to the complexity of the face, and its capacity to subtly
communicate different emotions. These are very difficult and time-consuming
to reproduce by an animator. For this reason, research continues to progress in
developing new facial animation methods and improving existing ones. One of
the most popular facial animation methods today is expression mapping, also
known as performance driven animation [7,8,9,1]. In expression mapping, the
face is used an an input device to animate a facial model. This is popular since
it can potentially directly transfer subtle facial actions from the actors face onto
the facial model. This method of animation can also greatly reduce animation
production time.

A common theme in work on expression mapping is that facial parameters only
map between specific types of facial model [6,9,8]. This paper addresses the issue
of re-using facial animation parameters by re-mapping them between multiple
types of facial model. Facial actions along with intensities may be identified from
real video performances using computer vision, parameterised, and used to di-
rectly animate video-realistic appearance models with different identities. These
same parameters may also be mapped directly to onto the morph-targets of a
3D facial model to produce 3D facial animation [5]. Thus the facial parameters
may be re-used since they map onto more than one type of facial model.
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Figure 1 gives an overview of our approach. This paper therefore makes the
following contributions:

– An approach for expression mapping between different facial appearance
models and also between facial appearance models and 3D facial models.

– An approach for extracting meaningful facial action parameters from video
performances.

– An approach for creating appearance models with intuitive basis-vectors for
use in animation.

Expression mapping between image based models has previously been con-
sidered by several authors, e.g. [6,10]. However, in these studies expressions are
only transferred between the same type of model, and not between e.g. an image
based model and a 3D blend-shape model.

Another such system for image based expression transfer is presented by
Zhang et al [9]. Our method differs from theirs in several ways. Firstly, our
approach represents a persons facial performance as a set of meaningful action
parameters, and facial expression transfer is based on applying these parameters
to a different facial model. Zhang et al transfer expressions via a texture-from-
shape algorithm, which calculates sub-facial texture regions on the target face
based on transferred shape information from the input performance. Our ap-
proach also differs from that of Zhang et al in that whereas they incorporate
multiple sub-facial models for each person in order to facilitate transfer – each
offering a different set of basis vectors – our approach requires only a single set
of basis-vectors per person, where these vectors represent information for the
entire face.

Zalewski and Gong [8] describe a technique for extracting facial action param-
eters from real video and then using these to animate a 3D blend-shape facial
model. However, their facial parameters concentrate on mapping only full facial
expressions. In our work, more specific sub-facial actions may be mapped onto
a 3D model as well as full expressions.

This paper is organised as follows. In Section 2 an overview of appearance
model construction is given. In Section 3 we describe how to extract meaning-
ful facial parameters from video performances using appearance models, and
how to use these parameters to animate other appearance models, or 3D blend-
shape facial models. In Section 4 we show animation results, and quantita-
tively evaluate our appearance model mapping technique. We give conclusions in
Section 5.

2 Data Acquisition and Appearance Model Construction

We filmed a male participant using an interlaced digital video camera at 25 fps.
Lighting was constant throughout each recording. The participant performed
three different facial expressions: happiness, sadness and disgust (see Figure 2).
We broke each expression down into a set of individual facial actions. We also
added four more actions for individual eye-brow control (see Table 1).
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Fig. 1. Given a video performance we track facial features and project image and shape
information into our facial model. This produces trajectories of facial action parameters
which can be used to animate multiple types of facial model, namely appearance models
and 3D facial models. Thus, animation parameters may be reused.

Table 1. Facial Actions

Expression Actions

Happiness (1) Surprised Forehead, (2) Smile
Sadness (3) Sad Forehead, (4) Frown
Disgust (5) Annoyed Forehead, (6) Nose

Wrinkle
Miscellaneous Left Eye-brow (7) Raise/ (8) Lower,

Right Eye-brow (9) Raise/ (10)
Lower

We semi-automatically annotated the images in each video performance with
62 landmarks (see Figure 2) using the Downhill Simplex Minimisation (DSM)
tracker described in [3]. We then constructed appearance model using the land-
marked image data. A brief description of this procedure is now given. For further
details, see [2].

We calculate the mean landmark shape vector x̄ and warp each image in the
training set to this vector from its original landmark shape x. This provides
a shape-free image training set. Performing PCA on this set of image vectors
gives g = ḡ + Pgbg where g is a texture vector, Pg are the eigenvectors of the
distribution of g, and bg is a vector of weights on Pg. Performing PCA on the
training set of shape vectors gives the model x = x̄ + Pxbx where Px are the
eigenvectors of the distribution of x, and bx is a vector of weights on Px.

We now represent the training set as a distribution of joint shape (bx) and
texture (bg) weight vectors. Performing PCA on this distribution produces a
model where x and g may be represented as functions of an appearance param-
eter c. We write x = x̄ + PxW

−1Qxc, and g = ḡ + PgQgc. Here, Qx and Qg

are respective shape and texture parts of the eigenvectors Q - these eigenvectors
belonging to the joint distribution of shape and texture weights. The elements
of c are weights on the basis vectors of Q. Each vector in Q describes type of
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Fig. 2. Example landmark placement and participant facial expressions for Disgust,
Sadness and Happiness

Fig. 3. First four modes of variation for our male participant. Note that the modes
encode combinations of facial actions.

facial variation. Figure 3 shows the first four modes of variation for the male
participant.

3 Expression Mapping

We first describe how we create a new appearance model with parameters for
specific facial actions. We then describe how these parameters can be used to
animate other other appearance models, or 3D facial models with pre-defined
morph-targets.

3.1 Creating Appearance Models with Action Specific Modes

We aim to build a new model with modes of variation controlling the actions
in Table 1. One way to achieve this is to create individual appearance models
for different sub-facial regions [3]. Since the highest mode of variation should
capture the largest proportion of major texture and shape change, then in the
case of e.g. modelling the lower part of the face given only images of a smile, then
the highest mode of variation should provide a good approximation of that smile.
By applying this rule to multiple facial regions we can obtain a set of modes over
several sub-facial appearance models which provide our desired modes. We have
previously shown this to be the case on several occasions [3]. However, managing
multiple sub-facial appearance models becomes cumbersome, and blending these
together can produce visual artefacts.

In this paper we describe an alternative approach, and provide a solution
which offers all the benefits of using multiple sub-facial appearance models in a
single facial appearance model. We break the face into four regions where actions



Re-mapping Animation Parameters Between Multiple Types of Facial Model 369

1, 3 and 5 belong to a forehead region (R1), actions 2, 3 and 6 belong to a lower
face region (R2), actions 7 and 8 belong to a left eyebrow region (R3) and actions
9 and 10 belong to a right eyebrow region (R4). Let G = (g1, . . . ,gN ) be the
training set of N shape free facial images. For each region we create a new set
of images RG

j = (rG
1 , . . . , rG

N ). In this set, rG
i is constructed by piece-wise affine

warping a region from image gi over the mean image ḡ. The boundaries between
the superimposed image region and the mean image are linearly blended using
an averaging filter. This removes any obvious joins. Figure 4 defines our four
different facial regions, gives example images from each region, and illustrates
construction of an artificial image. Images shown in this Figure are shape-free.

Fig. 4. (Left) There are four facial regions. The grey areas are shared by regions R1,
R3 and R4. (Middle) An artificial image is constructed by warping a region from a
training image over the mean image. (Right) Example artificial images for actions
(Left to Right) 8, 2, 9 and 10.

We now have a new training set of shape-free images G′ = (RG
1 , RG

2 , RG
3 , RG

4 )
consisting of 4N artificial training images. The next task is to create a corre-
sponding training set of artificial shape vectors. Let X = (x1, . . . ,xN ) be the
training set of N shape vectors. Again, we define a new set of vectors for each
region RX

j = (rX
1 , . . . , rX

N ). A vector rX
i is constructed by calculating offsets be-

tween xi and x̄ in a specific region, and then adding these to x̄. Figure 5 shows
example training vectors superimposed for each region.

Fig. 5. (Left to Right) Superimposed shape vectors for regions R1, R2, R3 and R4

We now have a new training set of shape vectors X ′ = (RX
1 , RX

2 , RX
3 , RX

4 )
consisting of 4N vectors. Performing PCA on X ′ and G′ we have the new models

x′ = x̄′ + P′
xW

−1′

x b′
x and g′ = ḡ′ + P′

gb
′
g.

A new AAM can be constructed from X ′ and G′, where joint shape and tex-
ture information may be represented as a functions of an appearance parameter
c′. We define v as the concatenation of b

′
x and b

′
g, and write our model as
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Fig. 6. Modes of appearance variation for the new appearance model, along with ap-
pearance parameter distributions visualised in a low dimensional space. Note how these
modes capture localised facial variations, as opposed to the standard appearance model
shown in Figure 3.

v = v̄+Q′c′, where Q′ are the eigenvectors of the joint artificial shape and tex-
ture parameter distribution, and v̄ is the mean concatenated artificial shape and
texture parameter. Figure 6 shows the first four modes of appearance model vari-
ation for each participant, along with selected vector distributions for elements
of c′. Note that the modes of this model represent more localised facial variations
than in the previous appearance model, where modes represent combinations of
several facial actions at once (Figure 3). Thus this new representation allows
us to parametrically control individual facial regions. Also note in this Figure
how distributions of appearance parameters (red dots) representing specific fa-
cial regions are orthogonal to each other when viewed in this lower-dimensional
form.

3.2 Mapping Performances Between Different Appearance Models

When appearance models are constructed for different people, the modes of
variation of both models will in nearly all cases encode different types of fa-
cial variation, i.e. there will be no one-to-one mappings between the modes of
variation in both models with respect to the specific facial actions they contain.

The technique described in the previous section to a great extent allows us to
control what variations will be encoded in a particular mode. Therefore, appear-
ance models can be constructed for two different people, and the modes can be
biased to encode our desired variations. Given a new facial performance from a
person, it can be analysed in terms of the weights it produces on a specific set
of modes. This forms a set of continuous parameter trajectories which can be
mapped on the modes of variation of a second appearance model. This is how we
achieve expression mapping between different appearance models in this work.

We identified modes in the male participants new appearance model relating
to the 10 actions specified in Table 1. We then fit this model to a new video
performance of the participant. Figure 7 demonstrates the 10 selected action
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modes along with example action-mode trajectories resulting from fitting the
appearance model to the video. Note that some trajectories are given negative
values. This relates to the fact that in order to produce the desired action on
that particular mode, a negative value is required (this is also shown this way
for clarity – if all trajectories were given positive values the figure would be far
less clear).

The trajectories are normalised between −1 and 1 by dividing through by their
maximum or minimum value. Just by examining the trajectories in Figure 7 it
is easy to imagine what the participants video performance would have looked
like. This is an advantage of having such an intuitive parameter representation.

We next recorded a new participant using the same set-up described in Sec-
tion 2. We constructed a new appearance model for this person (using the ap-
proach described in Section 3.1), and identified modes for the same 10 actions
(see Figure 7). Limits on the values of these modes relate to the maximum and
minimum mode-weight values recorded from the training set. Now, given a set
of action-mode trajectories from the male participant, an animation for the fe-
male participant can be produced by applying these to the corresponding action
modes.

Fig. 7. (Top) Modes for the male participant relating to the actions specified in Table 1.
(Middle) A video performance of the male participant represented as a set of continuous
action-mode trajectories. (Bottom) Modes for the female participant relating to the
actions specified in Table 1. Animations of this persons face can be created by applying
the male action-mode trajectories.
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3.3 Mapping Between Appearance Models and 3D Facial Models

The model representation described gives us a clear set of facial action trajec-
tories for a persons performance. The next aim is to use these to animate a
morph-target based 3D facial model. In such a model, we define a set of facial
actions by their peak expression. These act as the morph-targets, and we repre-
sent the intensity of these using a set of weights with values between 0 and 1. In
practical terms, our morph-targets are just a set of 3D vertex positions making
up the desired facial expression. The magnitude of a morph-target is its linear
displacement from a neutral expression. Any facial expression in our 3D facial
model can therefore be represented as

E = N +

n∑

i=1

((m(i) − N)w(i)) (1)

where N is the neutral expression, w is a morph-target weight with a value
between 0 and 1, m is a morph-target, and n is the number of morph-targets.
Figure 8 shows the neutral expression and 6 morph-targets for our 3D male facial
model.

Fig. 8. 3D facial model expressions. (Top-row left to right) Neutral, Surprised-forehead
(Action 1), Smile (Action 2), Sad-forehead (Action 3), (bottom-row left to right) Frown
(Action 4), Annoyed-forehead (Action 5) and Nose-wrinkle (Action 6).

New animations using this model can be created by fitting a persons appear-
ance model to a facial performance, representing this performance as a set of
action-mode trajectories, setting all these values to positive, and using these as
values for w.

4 Results

In this Section we first demonstrate animation results before examining our
approach from a quantitative perspective.
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Fig. 9. Mapping expressions from our male participant onto our female participant
and a 3D morph-target based facial model

Figure 9 demonstrates expression mapping between our male participant, the
new appearance model of our female participant, and our 3D morph-target based
model. In our animations, expression transitions are smooth and in perfect syn-
chronisation. We did not smooth the action-mode trajectories captured from our
male participant before transfer onto the other facial models, and found that this
did not degrade resulting animations. In fact, small changes in the action trajec-
tories often add to the realism of the animations, as these can appear as subtle
facial nuances.

For the next part of our evaluation we investigated how well our new method
for constructing appearance models encodes isolated facial variations. This is
important since it is related to how well our model can recognise facial actions
given a facial performance. If the model is poor at representing actions in in-
dividual modes, then the action-mode trajectories will be poor representations
of the persons performance and the resulting performance driven animation will
be less accurate.

Note that in a model with separate appearance models for different sub-facial
regions, variations would be entirely confined to a certain region of the face. The
following test may therefore also be considered an indirect comparison with a
facial model of this kind.

We varied the weight on each action mode of our male appearance model
up to its positive or negative limit, produced corresponding facial shape and
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Fig. 10. Differences (for the male participant) between texture and shape vectors
produced by our actions and their respective means

texture, and then subtracted the mean shape and texture. The result is shown in
Figure 10, and demonstrates how major variations do occur in isolated regions.
It also shows that some minor variations also simultaneously occur in other
regions. The visual result of this in animations is negligible, and for practical
animation purposes it may therefore be said that this new model has comparable
performance to a model with separate local appearance models. In fact, the
appearance of small residual variations in other parts of the face may in some
ways be seen as an advantage over a model with local sub-facial appearance
models, since it may be considered unrealistic in the first place to assume the
affect of facial actions is localised to a specific facial region.

We further investigated how well our single action-modes encode our separate
facial actions using a numerical measure. It is unlikely, even in a model with local
facial appearance models, that an entire facial action would be perfectly encoded
in a single mode of variation. This would assume that facial actions are linear
in motion, when they are not. It is more likely that a single mode will encode
a very large proportion of the actions variation, while the rest of the variation
will be spread over a small set of other modes. In this next test, we only aim to
measure how distinct each of our 10 action-modes are from one another.

We took 10 images from the training set formed in Section 3.1 corresponding to
10 action specific images. Each image consisted of the mean face image, overlaid
with a region specific image representing a specific facial action. For example,
the image representing the smile action consisted of the mean face overlaid just
on region R2 with a smile image. We formed 10 corresponding action-specific
shape vectors in a similar manner.

Projecting this information into our appearance model results in 10 appear-
ance parameter vectors. We can measure the exclusivity of an action with respect
to a mode by measuring the orthogonality of these vectors. We take the following
measure adapted from [4] where c is an appearance parameter

M(ci, cj) =
(ci · cj)

2

(cj · cj)(ci · ci)
(2)



Re-mapping Animation Parameters Between Multiple Types of Facial Model 375

Table 2. Orthogonality between Facial Actions 1 to 10 for our Male Participant. (0 =
orthogonal, 1 =non-orthogonal).

1 2 3 4 5 6 7 8 9 10

1 1 0.153 0.009 0.466 0.205 0 0 0 0.866 0.249
2 0.153 1 0.769 0.006 0.011 0 0 0 0.207 0.004
3 0.009 0.769 1 0.187 0.114 0 0 0 0 0.041
4 0.466 0.006 0.187 1 0.899 0 0 0 0.143 0.019
5 0.205 0.011 0.114 0.899 1 0 0 0 0.009 0.197
6 0 0 0 0 0 1 0.363 0.157 0 0
7 0 0 0 0 0 0.363 1 0.243 0 0
8 0 0 0 0 0 0.157 0.243 1 0 0
9 0.866 0.207 0 0.143 0.009 0 0 0 1 0.565
10 0.249 0.004 0.0410 0.019 0.197 0 0 0 0.565 1

This returns a value between 0 and 1, where 0 indicates that the vectors
are orthogonal. Table 2 compares the orthogonality of our actions. It can be
seen from this result that a great many of the actions are orthogonal. Some
actions have a low orthogonality. However, this is because these actions produce
variations in the same facial region which can produce changes in the same
appearance mode.

In summary, these results show that our method for creating appearance
models with action specific modes is successful, and is therefore well suited to
producing performance driven animation in the way we have described. The
results show that the modes of variation in our models successfully capture
facial variations associated with actions when applied to video performances.
This means that it is accurate enough to reliably transfer performances onto
other facial models.

5 Conclusions and Future Work

We have presented a method for measuring facial actions from a persons per-
formance and mapping this performance onto different types of facial model.
Specifically, this mapping is between different appearance models, and between
appearance models and 3D morph-target based facial models. We have described
how to construct appearance models with action-specific modes in order to record
facial actions and represent them as continuous trajectories. We have also shown
how these parameters are used for animating the models with respect to different
facial actions.

By numerically measuring the orthogonality of our action modes, we have
successfully demonstrated that they are well suited to accurately capturing fa-
cial actions. This therefore demonstrates the models suitability for performance
driven facial animation applications.

One issue that we currently do not address is the transfer of inner mouth
detail e.g. for smiles. This would be an interesting experiment, and it may be
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the case that further basis vector would be required to include this variation. We
also do not consider the re-inclusion of head pose variation, and this would be
the topic of future work. However, one solution which would part-way address
this would be to reinsert the facial animations back into the training footage in
a similar way to that described in [3].

References

1. V. Blanz, C. Basso, T. Poggio, and T. Vetter. Reanimating faces in images and
video. In Proc. of EUROGRAPHICS, 2003.

2. T. Cootes, G. Edwards, and C. Taylor. Active appearance models. IEEE Trans.
PAMI, 23(6):681–684, 2001.

3. D. Cosker. Animation of a hierarchical image based facial model and perceptual
analysis of visual speech. PhD Thesis, School of Computer Science, Cardiff Uni-
versity, 2006.

4. P. Gader and M. Khabou. Automatic feature generation for handwritten digit
recognition. IEEE Trans. PAMI, 18(12):1256–1261, 1996.

5. P. Joshu, W. Tien, M. Desbrun, and F. Pighin. Learning controls for blend shape
based realistic facial animation. In Proc. of Eurographics/SIGGRAPH Symposium
on Computer Animation, 2003.

6. D. Vlasic, M. Brand, H. Pfister, and J. Popovic. Face transfer with multilinear
models. ACM Trans. Graph., 24(3):426–433, 2005.

7. L. Williams. Performance driven facial animation. Computer Graphics, 24(4):235
– 242, 1990.

8. L. Zalewski and S. Gong. 2d statistical models of facial expressions for realistic
3d avatar animation. In Proc of IEEE Computer Vision and Pattern Recognition,
volume 2, pages 217 – 222, 2005.

9. Q. Zhang, Z. Liu, B. Guo, D. Terzopoulos, and H. Shum. Geometry-driven pho-
torealistic facial expression synthesis. IEEE Trans. Visualisation and Computer
Graphics, 12(1):48 – 60, 2006.

10. Z.Liu, Y. Shan, and Z. Zhang. Expressive expression mapping with ratio images.
In Proc. of SIGGRAPH, pages 271–276, 2001.


	Introduction and Overview
	Data Acquisition and Appearance Model Construction
	Expression Mapping
	Creating Appearance Models with Action Specific Modes
	Mapping Performances Between Different Appearance Models
	Mapping Between Appearance Models and 3D Facial Models

	Results
	Conclusions and Future Work

