


Figure 4. Overlapping area detection: (a) The reconstructed surface (b) One single view of the input (c) They are overlapped after registra-

tion (d) The surface area in yellow is detected as the overlapping area (e) They usually contain different number of points

Figure 5. The two transformed curvatures of an elephant model.

Left: Transformed curvature d1 ; Right: Transformed curvature d2

sure to errors and noise. Second, N1 and N2 largely decide

whether the Lorenz surface is smooth or not, and further af-

fect the �nal value of 3DGiC. Third, the computational time

of 3DGiC is also related to the two parameters.

(2) Lorenz surface estimation. The joint probability

distribution of d1 and d2 of all vertices on a surface can be

calculated via:

pij =
xij

N
, i = 1, 2, ..., N1 and j = 1, 2, ..., N2 (2)

where xij indicates the number of the vertices whose trans-

formed curvatures lie in the ith bin out of N1 bins and the

jth bin out of N2 bins respectively. N is the number of

vertices on the surface and

N =
�

i,j

xij , i = 1, 2, ..., N1 and j = 1, 2, ..., N2 (3)

We then reorder P = { pij |i = 1, ..., N1; j = 1, ..., N2}
using the following procedure. We �rst calculate the zigzag

order for the N1 × N2 array of P as illustrated in Fig. 3

(b). Then we sort the N1 × N2 pijs in P in ascending order.

We do this reordering to make sure that the Lorenz surface

is always under the diagonal plane, which complies with

the nature of the Lorenz curve (as shown in Fig. 3 (a), the

Lorenz curve is always under the line of equality). Fig. 7

shows the Lorenz surfaces produced with and without this

reordering scheme for comparison. A Lorenz surface parti-

tions the unit cube into two parts. One has a volume larger

than 0.5 and the volume of the other one is smaller than 0.5.

The reordering actually makes sure that the algorithm uses

the smaller one to calculate the 3DGiC, leading to mean-

ingful result. Once we obtained the reordered P , written

as P ′ = { p′
ij |i = 1, ..., N1; j = 1, .., N2} , the cumulative

distribution S of the joint probability can be calculated as:

S = { suv|u = 1, ..., N1; v = 1, ..., N2} (4)

where

suv =
i= u,j= v�

i=1 ,j=1

p′
ij u = 1, ..., N1 and v = 1, ..., N2. (5)

Here, the order of summation is also the zigzag order.

The Lorenz surface L is the surface represented by the

3D point set { cuv|cuv = ( u
N1

, v
N2

, suv)} . It can be seen that

any two Lorenz surfaces must intersect at point ( 1
N1

, 1
N2

, 0)
(as the smallest pij is always equal to 0) and point (1, 1, 1).

(3) 3DGiC computation. Gini coef�cient re�ects how

different a Lorenz curve is from the line of equality. In

this paper, we extend this idea and propose the concept of

3DGiC. First, it measures how different one Lorenz surface

is from the other one. Second, it is de�ned as the ratio

of the volume that lies between the two Lorenz surfaces

over the volume under the Lorenz surface on the top. Note

that two Lorenz surfaces are possibly intersected. Thus, in

Eq. 6, the denominator is chosen as the larger one between

V (L(Rm)) and V (L(Im).
Let the Lorenz surfaces of Rm and Im be L(Rm) and

L(Im) respectively. V (L(Rm)) and V (L(Im)) denote the

volumes under the two Lorenz surfaces respectively, the

3DGiC of R and Im can be calculated as

G(R, Im) =
|V (L(Rm)) Š V (L(Im))|

max(V (L(Rm)), V (L(Im)))
. (6)

To measure the overall consistency between R and all

of the multiple input point clouds I , we can calculate the

mean 3DGiC G(R, I) = 1
n

�m= n
m=1 G(R, Im). The evalua-

tion based on the 3DGiC is thus very intuitive: the smaller

the mean 3DGiC, the better the reconstruction.

2.3. Transformed curvatures vs. curvatures

We use transformed curvatures instead of principal cur-

vatures to compute the Lorenz surfaces. The reason is that
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Figure 8. (a) The Lorenz surface of the foot produced by directly using principal curvatures for quantisation and the volume under the

Lorenz surface is 0.0011 (b) The Lorenz surface of the foot produced by using transformed curvatures and the volume under the Lorenz

surface is 0.0603 (c) The foot model with some zero-mean Gaussian noise (d) The Lorenz surface of the noisy foot tends to bend towards

the bottom right corner where both Lorenz surfaces are produced using the proposed transformed curvatures.

Figure 9. From left to right: The ground truth skull; The skull with Gaussian noise; The Lorenz surfaces of the the ground truth skull and

the noisy skull; The ground truth hippo; The hippo with Gaussian noise; The Lorenz surfaces of the ground truth hippo and the noisy hippo

Table 1. The 3DGiC and the accuracy [13] of different test models

of Table. 2-4 show the 3DGiCs of the three surface models

produced by the three reconstruction methods. We can see

that 3DGiC is very informative. First, according to the aver-

age 3DGiC, in general, the higher-order CRF-based method

[14] (corresponding to Model 1 in Table. 2-4) produced the

best reconstructions. The k-means clustering-based method

[19] (corresponding to Model 3 in Table. 2-4) had a worse

performance while the pairwise MRF-based method [11]

(corresponding to Model 2 in Table. 2-4) was the worst.

Second, it is possible that a reconstruction is generally poor

but has a small patch of local surface region better recon-

structed. For example, for the 7th input scan of the Frog

(Table. 4), the pairwise MRF-based method achieved the

lowest 3DGiC. Third, the 3DGiC of each individual input

range image gives us a clue that whether some parts of the

output complete surface model are well or poorly recon-

structed. In Table. 2, for Model 1 of the Bird, the 3DGiC

of the 8th range scan is as high as 0.2223. Considering that

the average 3DGiC of the whole dataset is merely 0.0812,

we know that some parts of the surface covered by the 8th

range scan are not well reconstructed. Similarly, in Table. 4,

for Model 1 of the Frog, from the 3DGiC corresponding to

the 12th input range scan, we know that some parts of the

surface covering the back of the Frog are not well recon-

structed. This is very useful in practice. For example, the

improvement of the surface quality can only focus on the

partial surface poorly reconstructed, which makes the pro-

cess more ef�cient.

If we compare the 3DGiCs calculated in Experiment 1

with those calculated in Experiment 2, we can have the

sense that in most of the cases, some noise distributed

throughout the surface tends to have more signi�cant im-

pact than registration error on 3DGiC. This is reasonable

as such noise directly destroys local surface geometry and

human perception is quite sensitive to it. For example, a

bumpy surface is tended to be viewed as a poorer recon-

struction than one surface under- or over-estimated to the

ground true shape as we cannot easily distinguish the lat-

ter one from the true shape. Such kind of bumpy surface

caused by a particular noise usually cannot be re�ected and

further recognised by existing evaluation methods such as

accuracy (see Fig. 2 for a better understanding). In con-

trast, the proposed 3DGiC carries out a quantitative evalua-

tion which complies more with human�s habit of visual per-

ception while sometimes it is indeed very dif�cult to judge

which reconstruction is better visually.

Table. 5 shows the computational time of 3DGiC over

different datasets. The algorithm needs more computational

time when the quantisation parameters increase, but not

signi�cantly. This is easy to understand because we need

more time to calculate the joint probability distribution of

the quantised transformed curvatures as the joint probabil-

ity P = { pij} has more elements. In Table. 5, besides the

3 datasets of multiview range images, we also use four syn-

thetic datasets with ground truth. We produce a new sur-

face model by adding some Gaussian noise into the ground
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Figure 10. 3DGiCs of Bunny models with different levels of noise. From left to right: the �rst model is the original Bunny; The 3DGiCs

of the 4 Bunny models with different levels of noise are 0.2093, 0.4370, 0.6457 and 0.8262 respectively.

Table 2. The Bird dataset in Experiment 2 and the resultant 3DG-

iCs of the three reconstructed surface models (listed in the columns

of Model 1, Model 2 and Model 3). ARE: Average registration er-

ror [8]. SDRE: Standard deviation of registration errors [8].

truth model and the new surface model is used as the recon-

structed surface model. The Foot, Skull and Hippo models

have been shown in Fig. 8(a)(d) and Fig. 9 respectively. The

Stanford Bunny is shown in Fig. 10. Please note that in Ta-

ble. 5, the number of points denotes the number of all points

involved in the estimation of 3DGiC. For the Foot, Skull,

Hippo and Bunny models, it is the total number of points in

the ground truth model as well as the reconstructed model.

For the Bird, Frog and Teletubby datasets, it is equal to the

total number of points in all of the input range images and

the reconstructed model.

4. Conclusions

In this paper, a novel evaluation method, 3DGiC for as-

sessing the quality of multiview surface reconstruction al-

gorithms is proposed. We �rst develop the two transformed

curvatures which describe the local surface geometry and

then compute a joint probability distribution to obtain a

Table 3. The Teletubby dataset used in Experiment 2 and the 3DG-

iCs of the three reconstructed surface models (listed in the columns

of Model 1, Model 2 and Model 3). ARE: Average registration er-

ror [8]. SDRE: Standard deviation of registration errors [8].

global statistic of the surface. The global statistic is then

converted into a Lorenz surface through reordering in or-

der to generate an intuitive representation. Eventually, the

3DGiC is calculated based on the volumes under the Lorenz

surfaces. For multiview surface reconstruction, we usually

take the mean of a collection of 3DGiCs as the �nal evalu-

ation outcome. Therefore, different from existing distance-

based evaluation methods, 3DGiC incorporates local sur-

face geometry into its global evaluation scheme. Exper-

iments demonstrated that (1) the evaluation using 3DGiC

does not require a complete ground truth model, (2) com-

pared to existing evaluation methods, 3DGiC re�ects both

global and local accuracy of a reconstruction and (3) the as-

sessment made by 3DGiC is intuitive and consistent with

human perception.

We do not claim that 3DGiC should be employed

exclusively for the evaluation of reconstruction methods. In

practice, we can always use different measurements to more
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