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Abstract: Image captioning is the task of generating textual descriptions of images. In order to obtain
a better image representation, attention mechanisms have been widely adopted in image captioning.
However, in existing models with detection-based attention, the rectangular attention regions are not
fine-grained, as they contain irrelevant regions (e.g., background or overlapped regions) around the
object, making the model generate inaccurate captions. To address this issue, we propose panoptic
segmentation-based attention that performs attention at a mask-level (i.e., the shape of the main part
of an instance). Our approach extracts feature vectors from the corresponding segmentation regions,
which is more fine-grained than current attention mechanisms. Moreover, in order to process features
of different classes independently, we propose a dual-attention module which is generic and can
be applied to other frameworks. Experimental results showed that our model could recognize the
overlapped objects and understand the scene better. Our approach achieved competitive performance
against state-of-the-art methods. We made our code available.

Keywords: image captioning; attention mechanism; panoptic segmentation

1. Introduction

Image captioning, the task of automatically generating natural language descriptions of images,
has received increasing attention in computer vision and natural language processing. This task has
several important practical applications. For example, it can help people with visual impairments.
Therefore, it requires accurate recognition of the objects and a thorough understanding of the
images. With the advances in deep neural networks, image captioning models now tend to use
the “encoder-decoder” framework. In this framework, a convolutional neural network (CNN) is used
to encode images into vectors, and a recurrent neural network (RNN) or one of its variants LSTM [1],
is used to generate captions step by step.

The main problem in image captioning is the coarse representation of images. In the
vanilla encoder-decoder framework, the encoder simply compresses an entire image into a global
representation. This representation is coarse and has two drawbacks. First, it is fixed and thus does
not correspond to the dynamic decoding process of caption generation. Second, it does not contain the
spatial structures of the image. In order to obtain a fine-grained image representation, visual attention
mechanisms [2–6] have been widely adopted. These mechanisms aim to focus on a specific region
while generating the corresponding word.

However, the image features in existing attention-based methods are not fine-grained. Xu et al. [2]
proposed a top-down attention mechanism that represents the image with the parameters from
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the convolutional layer of the CNN, allowing the model to preserve the spatial information and
dynamically attend to different regions when generating words.

However, in the top-down attention mechanism, the attention regions correspond to a uniform
grid of receptive fields. Since the sizes and shapes of these receptive fields are equal, they are
independent of the content of the image. With the advances in object detection, detection-based
attention mechanisms [3–5] were proposed to enable the model to attend to the detected salient image
regions. Compared with the top-down attention mechanism, the detection-based attention mechanism
has a better performance as it can generate variable numbers and sizes of rectangular attention regions.
However, it is still not fine-grained enough because there may be other objects or background in the
rectangular attention regions.

In this paper, we introduce a novel attention mechanism called panoptic segmentation-based
attention, as illustrated in Figure 1. This mechanism comes from the goal of finding more fine-grained
attention regions. Naturally, image segmentation, a more fine-grained form of detection, was taken
into consideration. We considered it first. Instance segmentation [7,8] is a more challenging task
than object detection, as it requires not only detecting all objects in an image but also segmenting the
instances of each object class. The results from instance segmentation only contain the main part of
the object and do not include the background or overlapped regions. Therefore, we can obtain more
fine-grained attention regions with the aid of instance segmentation. However, instance segmentation
only segments instances of “things” classes (countable objects with specific shapes; e.g., cars and
persons), neglecting “stuff” classes [9] (amorphous background regions; e.g., sky and grass). Losing
information of the stuff regions may weaken the model’s ability to understand the scene. Recently,
Kirillov et al. [10] proposed panoptic segmentation that performs segmentation for all classes (things
and stuff) in the image. Inspired by this work, we built our attention mechanism upon this idea.

Figure 1. An overview of our proposed method. Given an image, we first generate segmentation
regions of the image and use a convolutional neural network to extract the segmentation-region features.
For readability, we have applied a color map to each segment. The segmentation-region features are
then fed to the LSTM to generate the captions.

Based on the segmentation regions generated from panoptic segmentation, our method extracts
image features based on the shape of the segmentation regions and generates captions based on the
attention-weighted features. As shown in Figure 2, compared with the detection-based attention
mechanisms that contain irrelevant regions around the objects in their attention regions, the attention
regions of our approach contain one instance in each region with irrelevant regions masked out, which
is more fine-grained and can avoid the negative impact of the background or overlapped regions.
Moreover, while the detection-based attention mechanisms only detect things classes and extract scene
information in a top-down way [3,6], our approach processes things and stuff classes independently
via a dual-attention module. Incorporating the features of stuff regions can provide richer context
information and yield better performance.

The main contributions of this paper are:
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• Introducing a novel panoptic segmentation-based attention mechanism together with a
dual-attention module that can focus on more fine-grained regions at a mask-level when
generating captions. To our best knowledge, we are the first to incorporate panoptic segmentation
into image captioning.

• We explored and evaluated the impact of combining segmentation features and stuff regions on
image captioning. Our study reveals the significance of the fine-grained attention region features
and the scene information provided by stuff regions.

• Our proposed method is evaluated on the MSCOCO [11] dataset. Results show that our approach
outperforms the baseline detection-based attention approach, improving the CIDEr score from
112.3 to 119.4. Our approach achieves competitive performance against state-of-the-art.

Figure 2. Comparison of the feature extraction procedures between a detection-based attention model
and our panoptic segmentation-based attention model: (a) The feature extraction procedure of the
detection-based attention model. The attention regions are the rectangular regions annotated with
colored edges. (b) The feature extraction procedure of our panoptic segmentation-based attention
model. The attention regions are the fine-grained regions annotated in the colored map. With panoptic
segmentation, our method can not only generate fine-grained attention regions, which avoids the
negative impact caused by irrelevant regions, but also performs attention to stuff class regions.

2. Related Work

Image Captioning. Image captioning models with the encoder-decoder framework have been
widely studied. In recent works [2–4,12–16], attention mechanisms have been introduced to the
encoder-decoder framework to obtain a better image representation. Xu et al. [2] first proposed
an attention mechanism in image captioning, where weighted CNN features from a convolutional
layer are fed to the encoder-decoder framework. Lu et al. [15] developed an adaptive attention
mechanism to decide whether to attend to the image or caption at each time step. Leveraging object
detection, subsequent works perform attention in different ways. You et al. [13] trained a set of visual
concept detectors and performed attention over the detected concepts. Jin et al. [3] generated salient
regions of an image by selective search [17] and feed these regions to an attention-based decoder.
Similarly to Jin et al. [3], Pedersoli et al. [4] generated object detection proposals and applied a spatial
transformer network [18] to them to obtain more accurate regions. Recent detection-based attention
methods [6,19,20] use Faster R-CNN [21] to generate detection regions, which significantly increases
the quality of the generated captions. However, their attention regions are not fine-grained as they
contain other objects or background within their rectangular area.

As object detection models only detect things classes, scene information needs to be provided to
the captioning model. With the aid of Latent Dirichlet allocation [22], Fu et al. [23] generated topic
vectors from the corpus of captions to represent the scene-specific contexts. Anderson et al. [6] trained
an object detector from the Visual Genome [24] dataset which provides annotations of richer categories
(e.g., tree, water). The features of the detected regions in an image are then averaged to be regarded as
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scene information. Differently from the above methods, our method not only has more fine-grained
attention regions but also incorporates stuff regions to obtain richer context information.

Two works that incorporate segmentation into their attention mechanisms are similar to ours.
Liu et al. [25] proposed the mask pooling module in video captioning to pool the features according to
the shape of the masks. This module is similar to our feature extraction process but it only considers
the things classes, and therefore lacks scene information from stuff classes. Zhang et al. [26] proposed
the FCN-LSTM network, which incorporates the segmentation information generated from a semantic
segmentation model FCN [27] into attention. However, their attention regions are the same as [2],
which are not fine-grained, and the segmentation information is merely used to guide the attention.
Moreover, their models are incapable of distinguishing instances of the same class in an image,
as they use semantic segmentation. As opposed to their methods, our method incorporates panoptic
segmentation to distinguish not only things and stuff classes but also their instances with fine-grained
attention regions. Our work also places emphasis on demonstrating the advantage of fine-grained
segmentation regions over detection regions.

There are other works that focused on other issues in image captioning. Rennie et al. [28] used
reinforcement learning to directly optimize the evaluation metric. Dai et al. [29] studied the impact of
an RNN with 2D hidden states. Some recent works [30,31] explored the use of graph convolutional
networks (GCN) to encode images to improve a visual relationship. Other works attempt to increase
the diversity of the captions [32,33].

Instance and Semantic Segmentation. Instance segmentation [7,8,34,35] and semantic
segmentation [27,36–38] are two similar tasks but usually employ different approaches. The aim
of instance segmentation is to detect and segment each object instance in an image. Most of the
instance segmentation approaches [7,8,34] modify the object detection networks to output a ranked
list of segments instead of bounding boxes. Hence, instance segmentation can distinguish individual
object instances but only for things classes. Semantic segmentation aims to assign a class label to each
pixel in an image. It is capable of segmenting stuff and things classes but does not distinguish the
individual instances.

Due to the inherent difference mentioned above, although both semantic and instance
segmentation techniques aim to segment an image, they had not been unified hitherto. Recently,
Kirillov et al. [10] proposed “panoptic segmentation”, which unifies the above tasks and requires
jointly segmenting things and stuff at the instance level. Our method was developed upon panoptic
segmentation and performs attention over the segmentation regions.

3. Captioning Models

In this section, we first describe the generic encoder-decoder image captioning framework
(Section 3.1). Then, we describe the up-down attention model in Section 3.2. Our panoptic
segmentation-based attention mechanism is based on the up-down attention model with features from
segmentation regions. We also proposed a baseline detection-based attention model with features from
detection regions as a comparison. Then, we introduce the dual-attention module we proposed for
panoptic segmentation features in Section 3.3.

3.1. Encoder-Decoder Framework

First, we briefly introduce the encoder-decoder framework [39]. This framework takes an image I
as input and generates a sequence of words w = {w0, ..., wt}.

In this framework, captions are generated by LSTM. At a high level, the hidden state of the LSTM
is modeled as:

ht = LSTM(xt, ht−1), (1)
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where xt is the input vector and ht−1 is the previous hidden state. For notational convenience, we do
not show the propagation of the memory cell.

At each time step t, the probability distribution of the output word is given by:

pθ(wt|w0:t−1, I) = softmax(Whht). (2)

Here we omit the bias term. Wh ∈ RΣ×d where Σ is the size of the vocabulary and d is the
dimension of the hidden state. θ denotes the parameters of the model.

Given the target ground truth sentence w∗ = {w∗0 , ..., w∗t }, the encoder-decoder framework is
trained to maximize the probability of w∗. By applying the chain rule to model the joint probability
over w∗0 , ..., w∗t , the objective is to minimize the sum of the negative log likelihood:

L(θ) = −
T

∑
t=1

log(pθ(w∗t |w∗0:t−1, I)), (3)

where T is the total length of the caption.
In the vanilla encoder-decoder framework, the image is only input once, at t = 0, to inform the

LSTM about the image contents. The input xt is the previous generated word, given by:

xt =

{
WcCNN(I) if t = 0

Ewt−1 if t ≥ 1,
(4)

where Wc ∈ Rd×D, E ∈ Rd×Σ, D is the dimension of the image features and E is the word embedding
matrix. The beginning of the sentence w0 and end of the sentence wt are marked with a BOS token and
an EOS token, respectively.

3.2. Up-Down Attention Model

We adopt the framework of the up-down attention model [6] with our
segmentation-region/detection-region features. This model is composed of an attention LSTM which
generates the attention weights and a language LSTM which generates words. Their hidden states are
denoted by h1

t and h2
t , respectively.

Given k image regions, the features of these regions v are given by:

v = {v1, ..., vk}, vi ∈ RD. (5)

The input to the attention LSTM is the concatenation of the mean-pooled image feature,
the previous hidden state of the language LSTM, and the previous generated word:

x1
t = [ Ī, h2

t−1, Ewt−1] (6)

where the mean-pooled image feature Ī provides the attention LSTM with a global content of the
image. Note that, differently from [6] where Ī = 1

k ∑k
i vi is the average feature of the detected regions,

in this paper, Ī is the average feature of the uniform grid of the image regions. In the baseline
detection-based attention model, the image features v are the features of detection regions. In order to
obtain fine-grained representation of the images, the image features v in our method are the features of
segmentation regions. The definitions of detection/segmentation regions are illustrated in Sections 4.1
and 4.2, and the image features v are described in Section 5.

The input to the language LSTM is the concatenation of the attention weighted image feature and
the previous hidden state of the attention LSTM:

x2
t = [It, h1

t ] (7)
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where the attention weighted image feature It is the weighted sum of vi:

ai
t = WT

a tanh(Wavvi + Wahh1
t ) (8)

αt = softmax (at) (9)

It =
k

∑
i=1

αi
tvi (10)

where αi
t is the normalized attention weights, Wa ∈ RA, Wav ∈ RA×D, and Wah ∈ RA×d; A is the

dimension of the attention layer. For the sake of simplicity, we denote {a1
t , ..., ak

t } by at and denote
{α1

t , ..., αk
t } by αt.

Then, the hidden state of the language LSTM is used to generate the distribution of the next word
following (2) and ht is replaced with h2

t following [6]. The other parts of the model remain the same
with the definition in Section 3.1.

Reinforcement training [28] is also introduced to directly optimize the CIDEr [40] metric. For a
sampled sentence w, a reward function r(w) denoting the CIDEr score of w is used to measure the
quality the sentence. With this reward, the probability of the sampled captions with a higher CIDEr
score is increased by reinforcement training following [28]. Therefore, we can directly optimize the
CIDEr score by reinforcement learning.

3.3. Dual-Attention Module for Panoptic Segmentation Features

In panoptic segmentation, the segmentation regions include things and stuff classes. As they
convey different kinds of information, they have to be processed separately.

In this section, we describe the Dual-Attention Module we propose for panoptic segmentation
features. Our framework and the Dual-Attention Module is shown in Figure 3. In this case, the image
features v in (5) include the features of things classes vt and the features of stuff classes vs; i.e.,
v = [vt, vs], where vt and vs are given by:

vt = {vt
1, ..., vt

kt}, vt
i ∈ RD (11)

vs = {vs
1, ..., vs

ks}, vs
i ∈ RD, (12)

where kt is the number of things regions and ks is the number of stuff regions. The attention process is
further given by:

ati
t = Wt

a
T tanh(Wt

avvt
kt + Wt

ahh1
t ) (13)

asi
t = Ws

a
T tanh(Ws

avvs
ks + Ws

ahh1
t ) (14)

αt
t = softmax (at

t) (15)

αs
t = softmax (as

t) (16)

It
t =

kt

∑
i=1

αti
t vt

i (17)

Is
t =

ks

∑
i=1

αsi
t vs

i (18)

It = [It
t , Is

t ]. (19)

The final image feature It is the concatenation of the attention weighted features Is
t and It

t .
Other parts of the model remain the same.
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Figure 3. Overview of our framework and the Dual-Attention Module used for handling the panoptic
segmentation features. The features of the things and stuff classes are fed into the pathway to
perform attention individually. The attended features are then concatenated and fed into the LSTM to
generate captions.

4. Attention Regions

In this section, we describe how to obtain the detection and segmentation regions for later feature
extraction.

4.1. Detection Regions

We first describe how to obtain the detection regions for the detection-based attention model.
Given an image, the output of an object detection model is a set of bounding boxes (i.e., the rectangular
boxes that contain the instances):

b = Det(I), (20)

where b = {b1, ..., bL}; bi = (xmin, ymin, xmax, ymax) contains the coordinates of the bounding box; L
is the number of the instances in the image. Here we do not show the output category prediction.
As current object detection models only detect things classes, b does not contain regions that belong to
stuff classes.

4.2. Segmentation Regions

Next, we describe how to obtain the segmentation regions for the segmentation-based attention
model. Given an image, a segmentation model generates a set of binary masks for each instance in
the image:

m = Seg(I) (21)

where m = {m1, ..., mL}, mi ∈ {0, 1}H×W is the mask indicating which pixels belong to the instance.
H and W are the height and width of the image, respectively. Here we also omit the output category
prediction. Note that in panoptic segmentation m contains things and stuff classes while in instance
segmentation m only contains things classes.

5. Feature Extraction

In this section, we introduce how we extract the features v of the segmentation/detection regions
that are used in the image captioning model.

For segmentation-region features, we extract the image features by convolutional feature
masking [41], denoted as the CFM approach. As shown in Figure 4, given an image I, we first
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obtain the masks m of the image as in (21). Meanwhile, the feature maps CNN(I) of the image are
extracted from the convolutional layer of a pre-trained CNN. The masks are resized to match the size
of the feature maps. The final segmentation-region features are given by:

vi = CNN(I)� resize(mi) (22)

where we perform an element-wise product � to every channel of the output feature maps.

Figure 4. An overview of the convolutional feature masking (CFM) approach for feature extraction.
The image is fed to the segmentation model to obtain masks and fed to the CNN to obtain feature
maps, respectively. The masks are resized to have the same size as the feature maps. The feature maps
are then multiplied by the resized mask to obtain the segmentation-region features.

For detection-region features, we scale the coordinates to match the sizes of the feature maps.
The final detection-region features are given by:

vi = crop(CNN(I), resize(bi)) (23)

where the crop() operation crops the output feature maps based on the resized coordinates. Similarly,
this operation is performed to every channel of the output feature maps. Note that unlike [41], in order
to obtain richer information, the pixel values of the resized masks are obtained by averaging without
thresholding.

6. Experimental Results

6.1. Dataset

Extensive experiments were performed to evaluate our proposed method. All the results were
based on the MSCOCO dataset. For validation of offline testing, the “Karpathy” split [42] that has been
widely used in prior work was adopted. The training, validation, and test sets respectively, contained
113,287, 5000, and 5000 images, along with five captions per image. We truncated captions longer than
16 words and removed the words that appeared less than five times, resulting in 9587 words.

The COCO-Stuff [9] dataset contains 80 things classes, 91 stuff classes, and one unlabeled class.
The stuff classes are organized in a hierarchical way and belong to 15 parent categories. We omitted
the unlabeled class. Since the stuff regions are often scattered, and we did not need a fine classification
of the sub-classes stuff in image captioning; we used a compact representation for stuff. The regions of
the sub-classes that belong to the same parent category were merged by adding the masks of these
sub-classes together, resulting in 15 parent stuff categories.

6.2. Implementation Details

In our experiments, in the up-down attention model, the dimension of the hidden states in the
language LSTM and the attention LSTM and word embedding were set to 1000. The hidden state A of
the attention layer was 512. We used the Adam [43] optimizer with initial learning rate of 5 × 10−4.
The weight-decay and momentum were 1 × 10−4 and 0.9, respectively. We set the batch size to 100
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and trained the models for up to 50 epochs. In order to further boost performance, we trained the
models with reinforcement learning for another 50 epochs.

We used a pre-trained ResNet-101 [44] as our CNN model to extract image features. The image
feature vi was the mean output of the last convolutional layer of ResNet-101, and thus had a dimension
of 2048.

As there is no current available model to jointly perform both elements of the panoptic
segmentation, we used Mask R-CNN [7] to perform instance segmentation for things classes and
DeepLab [36] to perform semantic segmentation for stuff classes. Their outputs were merged to
represent the result of panoptic segmentation. The minimum detection confidence of Mask R-CNN
was 0.6 and the non-maximum suppression threshold was 0.5. The code of our method can be accessed
at https://github.com/jamiechoi1995/PanoSegAtt.

We denote the model that uses panoptic segmentation features by PanopticSegAtt, and denote
the baseline model that uses detection features by DetectionAtt. To evaluate the impact of stuff regions,
we also propose InstanceSegAtt, a model that only uses instance segmentation features (i.e., without
stuff regions) as another baseline.

6.3. Evaluation

In this subsection, we first compare our results with state-of-the-art models on MSCOCO
dataset. To demonstrate the effect of the segmentation-region features, we conducted qualitative
and quantitative analyses of the difference between InstanceSegAtt and DetectionAtt. Moreover,
to demonstrate the effect of the features of stuff regions, we also conducted qualitative and quantitative
analyses of the difference between PanopticSegAtt and InstanceSegAtt. We report results using the
COCO captioning evaluation tool [11], which reports the following metrics: BLEU [45], METEOR [46],
ROUGE-L [47], and CIDEr [40]. Table 1 shows the overall results on the MSCOCO dataset.

Compared with the method of Zhang et al. [26] which is most similar to our method,
our PanopticSegAtt model surpasses their method in all metrics by a large margin. We consider that it
is because of the more fine-grained attention regions and the combination of panoptic segmentation in
our method. We also compared our PanopticSegAtt with PanopticSegAtt (w/o Dual-Attend). The full
model improved the CIDEr from 118.2 to 119.4, which shows that with the dual-attention module,
our model can generate more accurate captions.

We then compared our method with the typical attention methods [2–4,13–15]. For example,
SCA-CNN [14] uses spatial and channel-wise attention in the CNN. Lu et al. [15] adaptively attends to
the image and caption during decoding. Our PanopticSegAtt model significantly outperforms these
methods in all metrics, which demonstrates the power of our panoptic segmentation-based attention
mechanism. We also compared our method with state-of-the-art methods [48–52]. Our PanopticSegAtt
model outperforms these methods in most of the metrics, especially on the CIDEr metric, which is
considered to be the metric most aligned with human judgments. Note that Stack-Cap [53] has higher
scores, as the model of this method has three LSTMs to perform coarse-to-fine decoding, which is more
complex than our method. Since Anderson [6] used the extra Visual Genome [24] dataset to train the
object detector, their attention regions are much richer than ours. Thus, we did not compare with these
two methods directly.

Figure 5 shows the statistical results of the CIDEr scores of the captions in the Karpathy test split
for DetectionAtt, InstanceSegAtt, and PanopticSegAtt. Captions within the interval with a score from
0 to 1 are not accurate enough to describe the images. Among them, the number of DetectionAtt is the
highest, InstanceSegAtt is second, and PanopticSegAtt is the smallest. In the interval with a score from
1 to 3, captions can accurately describe the images. Among them, the number of PanopticSegAtt is the
highest, InstanceSegAtt is second, and DetectionAtt is the smallest. In the interval where the score is
greater than 3, the number of captions of the three methods is almost the same. This is because the
images in this interval are simple so that all the models work well for them. The above results indicate
the advantages of using the segmentation features and the stuff regions in our method.

https://github.com/jamiechoi1995/PanoSegAtt
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Table 1. The results obtained on the MSCOCO Karpathy test split [42]. † indicates ensemble models.
Higher is better in all columns. Scores were multiplied by a factor of 100.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr

Hard-Attention [2] 71.8 50.4 35.7 25.0 - 23.0 -
VIS-SAS [48] 72.5 52.6 38.1 28.1 55.4 23.7 82.1
Jin et al. [3] 69.7 51.9 38.1 28.2 50.9 23.5 83.8
ATT-FCN † [13] 70.9 53.7 40.2 30.4 - 24.3 -
Zhang et al. [26] 71.2 51.4 36.8 26.5 - 24.7 88.2
Areas of Attention [4] - - - 30.7 - 24.5 93.8
SCA-CNN [14] 71.9 54.8 41.0 31.1 53.1 25.0 95.2
Aneja et al. [49] 72.2 55.3 41.8 31.6 53.1 25.0 95.2
Fu et al. † [23] 72.4 55.5 41.8 31.3 53.2 24.8 95.5
Lu et al. [54] - - - 33.1 53.9 25.8 99.3
Chen et al. [50] 74.0 57.6 44.0 33.5 54.6 26.1 103.4
Jiang et al. [51] 74.3 57.9 44.2 33.6 54.8 26.1 103.9
Adaptive [15] 74.2 58.0 43.9 33.2 - 26.6 108.5
Att2all [28] - - - 34.2 55.7 26.7 114.0
Dognin et al. [52] - - - - - 26.9 116.1
Stack-Cap (C2F) [53] 78.6 62.5 47.9 36.1 56.9 27.4 120.4

DetectionAtt 77.1 60.4 45.4 33.7 55.6 26.3 112.3
InstanceSegAtt 77.9 61.4 46.7 34.9 56.3 27.0 117.3
PanopticSegAtt (w/o Dual-Attend) 78.2 61.8 46.9 34.9 56.4 26.9 118.2
PanopticSegAtt 78.1 61.7 47.1 35.3 56.6 27.3 119.4

0 1 2 3 4 5

CIDEr Score
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Figure 5. Histogram of CIDEr scores of DetectionAtt, InstanceSegAtt, and PanopticSegAtt.

We also evaluated our model on the online COCO test server in Table 2. Our PanopticSegAtt
model achieves comparable scores compared to the state-of-the-art models.

Table 2. The results obtained on the online MSCOCO test server. † indicates ensemble models. Higher
is better in all columns. Scores are multiplied by a factor of 100.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr

sgLSTM [55] 67.9 49.9 36.5 26.9 49.9 23.5 82.1
Aneja [49] 71.5 54.5 40.8 30.4 52.5 24.6 91.0
Adaptive [15] 74.8 58.4 44.4 33.6 55.2 26.4 104.2
Att2all † [28] - - - 35.2 56.3 27.0 114.7
Stack-Cap (C2F) [53] 77.8 61.6 46.8 34.9 56.2 27.0 114.8
PanopticSegAtt 79.0 63.0 48.3 36.5 57.3 27.7 117.8
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6.3.1. Segmentation-Region Features versus Detection-Region Features

We used Mask R-CNN [7] to perform instance segmentation and object detection, which resulted
in equal numbers of attention regions in both tasks. Thus, the difference between segmentation regions
and detection regions is that the segmentation regions are more fine-grained and better-matching to
the shape of the instances. We compared InstanceSegAtt with DetectionAtt to demonstrate the impact
of segmentation-region features.

As shown in Table 1, comparing against DetectionAtt verifies the effectiveness of using
segmentation-region features. Our InstanceSegAtt model improves the CIDEr score from 112.3 to
117.3 compared with the DetectionAtt model. The performance gap between InstanceSegAtt and
DetectionAtt demonstrates that using features from more fine-grained regions is beneficial.

The training curves in terms of CIDEr metric are shown in Figure 6. During 50 epochs’ training,
the InstanceSegAtt model consistently surpasses the DetectionAtt model. This result indicates
that, since segmentation regions do not include irrelevant regions that have negative impact on
captioning models during training, using segmentation-region features leads to better convergence
and performance.

0 10000 20000 30000 40000 50000
Steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CI
DE

r

DetectionAtt
InstanceSegAtt

Figure 6. Comparison of CIDEr scores on the validation set for InstanceSegAtt and DetectionAtt during
50 epochs’ training.

Dense Annotation Split. In order to better evaluate the effect of using features of fine-grained
segmentation regions, we present a new split from the COCO dataset called dense annotation split.
This is based on the intuition that the segmentation-based attention model ought to distinguish
instances even if they are overlapped, while the detection-based attention model may be confused by
the features of the rectangular regions which include irrelevant regions. The dense annotation split
consists of images in which some of the instances are highly overlapped. We generated this split by
selecting images for which the IoU (intersection-over-union) between any of their two instances was
over 0.5, resulting in 12,967, 570, and 608 images in the training, validation, and testing sets of Karpathy
split [42], respectively. We then evaluated the performance of InstanceSegAtt and DetectionAtt on
this split.



Appl. Sci. 2020, 10, 391 12 of 18

As shown in Figure 7, compared with the DetectionAtt model that uses detection-region features,
InstanceSegAtt is better at handling images with overlapped objects, as the segmentation-region
features do not overlap with each other. For example, in the first column of Figure 7, the detection
region of the person and snowboard are highly overlapped. InstanceSegAtt correctly generates the
word “snowboard”, while DetectionAtt cannot. Similarly, in the second column of Figure 7, the dense
detection regions make DetectionAtt hard to generate “a woman” like InstanceSegAtt. In the third
column of Figure 7, the detection regions of the two giraffes contain each other, which could confuse
the DetectionAtt model. In the last column of Figure 7, the rectangle detected region of the boy in
the second row contains the region of the man; therefore, DetectionAtt cannot correctly recognize
their relationship.

Figure 7. Examples of captions generated and the attention regions of DetectionAtt and InstanceSegAtt.
(a): Original image; (b) detection regions generated by the object detection model; (c) captions generated
by DetectionAtt; (d) instance segmentation regions generated by the instance segmentation model;
(e) captions generated by InstanceSegAtt. Images are selected from the dense annotation split. Bold text
indicates where InstanceSegAtt has included more detail in the captions compared to DetectionAtt.
Results of PanopticSegAtt are not shown, as the differences between the captions of PanopticSegAtt
and InstanceSegAtt are not obvious in these images.

Table 3 shows the evaluation results on the dense annotation test split. The performance gap
between InstanceSegAtt and DetectionAtt is larger than their gap in Table 1, which demonstrates that
the segmentation-based attention model has the advantage in handling densely annotated images.
We consider that the features of overlapped regions make it hard for DetectionAtt to distinguish
the individual instances in overlapped regions. Thus, DetectionAtt has lower scores compared
with InstanceSegAtt. It is also observable that the performance of PanoSegAtt is better than that of
InstanceSegAtt. This suggests that the contextual information from stuff region features is of benefit
for the model to recognize the partially occluded objects. Such a conclusion is widely acknowledged
in object detection [56–58].
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Table 3. The results obtained on the MSCOCO dense annotation test split. Higher is better in all
columns. Scores are multiplied by a factor of 100.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr

DetectionAtt 76.9 61.0 45.5 35.7 57.0 26.6 112.2
InstanceSegAtt 78.4 62.6 48.3 37.0 57.5 27.2 117.8
PanopticSegAtt 79.2 63.8 49.5 38.1 58.2 27.6 120.9

The above results demonstrate that, with fine-grained attention regions, the model can not only
avoid the negative impact from irrelevant regions but also benefit from the context information and is
more capable of distinguishing instances in images with overlapped objects.

6.3.2. With Stuff versus without Stuff

Stuff regions play an important role in image captioning, as they provide the context information
(scene, location, etc.) to the model. As shown in Table 1, when comparing PanopticSegAtt with
InstanceSegAtt, PanopticSegAtt further improves the CIDEr score by 2.1, which shows that using
features of stuff regions also enhances performance. To qualitatively demonstrate the superiority
of using features of stuff regions, we show the example captions generated by InstanceSegAtt and
PanopticSegAtt in Figure 8. Compared with the InstanceSegAtt model that does not have the features
from stuff regions, PanopticSegAtt can generate captions with richer scene information. For example,
in the first column of Figure 8, the segmentation regions generated by panoptic segmentation contain
the brick wall region in the image and provide the feature of brick wall to the captioning model. Thus,
the caption generated by PanopticSegAtt contains the background information “brick wall”. Similarly,
in the second column of Figure 8, the purple area provides the context information of the image, so
the PanopticSegAtt can generate the phrase “with plants”. In the third column of Figure 8, while
InstanceSegAtt does not generate the scene of the photo, PanopticSegAtt correctly generates the scene
phrase “in a field”. In the fourth column of Figure 8, the purple area provides the location of the
train to the PanopticSegAtt model which generates a more accurate scene word “mountain” while
InstanceSegAtt generates the scene word “field”.

The above results demonstrate that, with the aid of stuff regions, our panoptic segmentation-based
attention method can generate captions with richer context information.
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Figure 8. Examples of captions and the attention regions of InstanceSegAtt and PanopticSegAtt.
(a) Original image; (b) instance segmentation regions generated by the instance segmentation model;
(c) captions generated by InstanceSegAtt; (d) segmentation regions generated by the panoptic
segmentation model; (e) captions generated by PanopticSegAtt. Images were selected from the
Karpathy test split. Bold text indicates where PanopticSegAtt has included more detail in the captions
compared to InstanceSegAtt.

7. Conclusions

In this paper, we present a novel panoptic segmentation-based attention mechanism for
image captioning, which provides more fine-grained regions for attention with the aid of panoptic
segmentation. Our method achieves competitive performance against state-of-the-art methods.
Qualitative and quantitative evaluation results show that our approach has better scene and instance
recognition of an image compared with the detection-based attention method, which demonstrates the
superiority of using features of fine-grained segmentation regions in image captioning. Our research
provides a novel perspective for academics and practices on how to improve the performance of image
captioning. The above results indicate that extracting fine-grained image features is a prospective
research topic for future work.

We plan to further utilize the available model in the panoptic segmentation task to generate
segmentation regions for things and stuff in a more elegant way. Investigating different ways to
incorporate stuff-region features into the captioning model is also a future research direction.
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