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Determining local natural scales of curves

Paul L. Rosin 1

Department of Computer Science and Information Systems, Brunel UniÕersity, Uxbridge, Middlesex UB8 3PH, United Kingdom

Received 16 May 1997; revised 24 September 1997

Abstract

An alternative to representing curves at a single scale or a fixed number of multiple scales is to represent them only at
Ž .their natural i.e. most significant scales. This allows all the important information concerning the different sized structures

contained in the curve to be explicitly represented without the overhead of redundant representations of the curve. This paper
describes several approaches to determining the local natural scales of curves. That is, various possibly overlapping sections
of the curve should be represented at certain scales depending on their shape. The merits and drawbacks of the techniques
are described, and the results of implementing one of them are shown. q 1998 Elsevier Science B.V.
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1. Introduction

Curves can contain a variety of structures at
different scales. Moreover, these structures are often
superimposed, e.g. fine detail upon medium scale
detail, which in turn is superimposed on coarse
detail. Most processing techniques applied to curves
Ž .e.g. feature detection, model matching work best at
the appropriate scales for each of these structures.
Otherwise, the spurious detail and noise that is pre-
sent in most real image curves is likely to produce
undesirable side-effects. For instance, when segment-
ing a curve into primitive parts such as codons
Ž .Hoffman, 1983 , noise, quantisation effects, and
irrelevant detail will cause the curve to be over-seg-

Žmented into many insignificant tiny parts Rosin,
.1993 .

1 E-mail: paul.rosin@brunel.ac.uk.

The most common solution to the problem of
noise and unwanted detail is to smooth each point of
the curve at a single scale. For instance, the determi-

Žnation of a region of support i.e. appropriate spatial
.scale for calculating the curvature along a curve

goes back to the work of Rosenfeld and Johnson
Ž .1973 in the early 70s, and has been more recently

Ž .developed by Teh and Chin 1989 . Other ap-
Žproaches include cross validation Shahraray and

. ŽAnderson, 1989 and significance measures Lowe,
.1989; Rosin, 1994 .

Subsequently more than one scale has been con-
Žsidered desirable Kropatsch, 1987; Mokhatarian and
.Mackworth, 1992 . In the extreme case, scale is

considered as a continuous dimension, giving rise to
Ž .scale-space Witkin, 1984 . The multi-scale approach

enables the behaviour of curve evolution over scale
to be studied, and also makes possible the representa-
tion of multiple overlapping scales of interest.
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Since the standard multi-scale approach exhaus-
tively represents the curves at a fixed sampling rate
Ž .e.g. octave separated over a wide range of scales it
produces a cumbersome representation; its advantage
is that it is guaranteed to include every relevant scale
Ž .assuming a fine enough sampling of scale-space .
On the other hand, the single-scale approach pro-
vides a more compact representation, but may be
unable to represent the complete curve at the correct
scale, particularly when several differently sized
structures are superimposed. The single and multi-
scale representations are the extremes of a range of
possible trade-offs between conciseness and robust-
ness. An intermediate approach is to represent the
curve only at certain selected scales called ‘‘natural

Žscales’’ Bengtsson and Eklundh, 1991; Cesar and da
Fontoura Costa, 1996; Garcıa and Fdez-Valdivia,´

.1994; Rosin, 1992 . These scales are intended to
capture all the significant structures in the curve. 2

Several scales may be necessary, particularly if sev-
eral structures at different scales are superimposed.
Thus, all the relevant information is retained and
made explicit without the cost of redundant represen-
tations. However, since the technique is unlikely to
be perfect, it is liable to be less robust than the fixed
multi-scale approach.

The natural and single scale based approaches can
be divided into global and local methods. Much of
the previous work on determining natural scales
calculated global scales for representing the curve
ŽBengtsson and Eklundh, 1991; Cesar and da Fon-
toura Costa, 1996; Rosin and Venkatesh, 1993; Rosin,

.1992 , However, if the curves contain different sizes
of structures at different locations then the global
approach is not entirely suitable, although if there are
still significant amounts of each sized structure then

Ž .the global approach can still work Rosin, 1992 .
This problem can be overcome by calculating the
natural scales locally rather than globally. A simple
approach would be to segment the curve into a
sequence of smaller sections and independently de-
termine their natural scales. Unfortunately this has
the drawback that coarse scale statistics concerning

2 In addition, there has also been recent interest in performing
Žscale selection for intensity images Jagersand, 1995; Kothe,¨

.1996; Lindeberg, 1993 .

large structures cannot be effectively calculated from
small curve sections. Therefore the spatial extent of
analysis has to correspond to the current scale of
analysis. In this paper we describe several ap-
proaches to determining the local natural scales of
curves, and show results from the implementation of
one of these methods.

ŽIn Section 2 we describe various techniques some
.from the literature, some new for determining local

natural scales. This is followed in Section 3 by
outlining a method for smoothing the map of esti-

Žmated scales in order to produce more coherent i.e.
.less fragmented results. Finally, several examples

are presented in Section 4 of applying one of the
scale determination techniques on both synthetic and
real data.

2. Techniques for determining local natural scales

A convenient way to represent the curve is by
Ž .scale-space Witkin, 1984 . The problem of detecting

the local natural scales then becomes the task of
finding significant bands in scale-space as illustrated
in Fig. 1. For simplicity, we assume the curve has
approximately piecewise constant natural scales.
Since the shape of a curve is often formed by
relatively uniform processes the natural scales at
points along the curve should also be relatively

Ž .uniform Hoffman, 1983 . Minor variations in local
natural scale did not pose a severe problem to the
global natural scale algorithms since they were aver-
aged out by calculating the significance measure
over the whole curve. In contrast, many of the
following local techniques assign a set of natural
scales to each pixel. To be useful for high-level

Fig. 1. Local natural scales in scale-space.
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Fig. 2. Partitioning of scale-space.

processing adjacent pixels then need to be merged
into curve segments. This can become problematic
since both the deviation of scales and the increased
length of the merged set of pixels should be consid-
ered. Since these are incommensurate quantities it is
difficult to combine them in any principled manner.
Thus, we require two parameters to specify the
desired coherence in space and scale.

Below we outline various possible techniques
Ž .both old and new and their limitations for deter-
mining the local natural scale of curves. It can be
seen that most of them provide different means to
produce a similar intermediate result – a scale-space
significance map – which is then analysed to find
natural scales. To prevent fragmentation or excessive
duplication of the curve all the methods require some
parameters effectively specifying a merging process
as described above. Also, the methods permit the
reconstruction of the curve at these natural scales
although the methods vary, and include: subsampling
followed by B-spline fitting; fitting parabolae; low
pass filtering in the frequency domain; Gaussian
smoothing; and regularisation.

2.1. Tangent Õariance

Hoffman described a method for detecting local
natural scales that determined the degree of subsam-
pling of the data to provide control points for a
B-spline reconstruction of the curve at each scale
Ž .Hoffman, 1983 . At each point p on the curve at

pair of windows centred at p and length wt " f
Ž .where w is some function of the offset f are
considered. The line between each corresponding

Žpair of points in the two windows i.e. p ™tq fqs
w x.p ; ss ywr2,wr2 is taken as an estimate ofty fys

the tangent at p . The variance of the tangents ist

calculated and this process is repeated over a range

of offsets. Increasing the offset f increases the scale
of the analysis. Natural scales are defined to be those

Ž .offsets scales producing local minima of tangent
variance.

One problem with this approach is that variance
estimates will be unreliable at fine scales since the
small windows will only provide a few tangent
samples. Also, it is not reported how sensitive the
algorithm is to the selection of the window length
function which was chosen fairly arbitrarily. More-
over, Hoffman’s single example only shows the de-
tection of global natural scales on a synthetic curve.
The problem of merging adjacent pixels with similar
natural scales is not addressed.

2.2. Scale–space plot

Ž .Recently, Deguchi and Hontani 1994 described
a method for calculating natural scales based on the
scale-space plot of zero-crossings of curvature
Ž .Mokhatarian and Mackworth, 1992 . The top of
each arch specifies a natural scale. The complete
curve is retained at every such scale, but it is
smoothed adaptively to minimise distortion. At each
point on the curve the selected scale lies on the
largest scale closed arch whose peak is less than the
natural scale. If there is no such arch then no
smoothing is performed. This is shown in Fig. 3,
where the dark line drawn in scale-space specifies
the amount of smoothing applied to each point to
generate the complete curve for the third natural
scale. The two main weaknesses of this approach are
first, since many parts of the final smoothed curves
will be identical the representation has a great deal
of redundancy. Second, there are likely to be a vast
number of natural scales unless some thresholds are
introduced. For instance, although not explicitly

Fig. 3. Local scales selected by Deguchi and Hontani.
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stated in the paper, a minimum level of smoothing is
retained as a lower limit to eliminate noise.

2.3. CurÕature-tuned smoothing

Ž .Dudek and Tsotsos 1990 employ a regularisa-
Ž .tion process ‘‘curvature-tuned smoothing’’ to

smooth the curve where the stabilising functional
defines a target curvature. This process is performed
over a range of target curvatures to produce a multi-
scale description. The energy functional being min-
imised indicates the appropriateness of the target
curvature value. Discontinuities are inserted at points
whose local energy is maximal and exceeds a thresh-
old. The problem is non-linear, and so a suboptimal
solution is found using a greedy algorithm. Curve
sections whose average fitting energy is a local
minimum over scale are retained. These sections are
similar to the local natural scales of the curve.
However, their approach is rather restrictive since it
can only select curve sections with roughly constant

Ž .curvature i.e. approximately circular .

2.4. Complexity measures

Ž .Recently, Dubuc and Zucker 1995 describe two
Ž .complexity measures normal and tangential which

are based on the rate of growth of local orientated
dilations of edges. They suggest that rapid changes
in these complexity measures could be used to detect
the emergence of natural scales, although few results
are shown.

2.5. InterÕal tree

In his influential paper introducing scale-space
Witkin described how zero-crossings could be linked
over scale to form closed loops from which the

Ž .interval tree is generated Witkin, 1984 . This is a
ternary tree which partitions scale-space into rectan-
gles. Each loop defines a rectangle whose upper
scale bound is the maximum scale of the loop. The
arc length positions of the two ends of the loop at the
finest scale define the spatial bounds of the rectan-
gle. The value of the maximum scale of the loop
with the largest maximum scale that is contained
within the rectangle defines the rectangle’s lower
scale bound. This is illustrated in Fig. 4; the thin

Fig. 4. Interval tree.

curves are the scale space plot of zero-crossings, and
the interval tree is overlaid in bold. To generate a
good single scale description of the curve Witkin
used a stability measure based on a rectangle’s per-
sistence over scale which was simply equal to its
height in the scale domain, although he also experi-

Ž .mented with other unspecified more complex sta-
bility measures. Rectangles were selected from the
interval tree by descending from the root until a
rectangle’s stability was greater than or equal to the
mean stability of its children. We suggest that this
approach could be extended to extract natural scales
from the interval tree in a similar manner. All rectan-
gles which locally maximise the stability measure
over scale would be chosen as local natural scales.

In contrast to some of the other techniques the
interval tree approach assigns natural scales to curve
sections delimited by zero-crossings. For 2D curves
the scale-space map is built up from the zero-cross-
ings of the smoothed curvature values, so that the
curve sections will be concave, convex, or straight
sections. However, this still provides an inconvenient
representation, particularly at fine scales which will
contain vast numbers of sections. Thus, merging is
still required, although at a curve section rather than
pixel level.

2.6. Frequency analysis

The Fourier based technique that we have applied
Žto determine global natural scales Rosin and

.Venkatesh, 1993 can be extended to apply locally.
Previously, any Fourier descriptors with large magni-
tudes were taken as indications of the presence of
many structures at the corresponding scales. Whereas
the Fourier transform is restricted to the global anal-
ysis of signals, local analysis requires that the curve
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be decomposed instead by spatially localised basis
Žfunctions such as Gabor filters or wavelets Mallat,

.1989 . These partition the signal in both the spatial
and frequency dimensions as shown in Fig. 2. Natu-
ral scales could be defined as clusters of basis func-

Ž .tions which are close both in scale and space with
locally maximal magnitudes.

A difficulty arises in representing the curve so
that it can be decomposed by wavelets. In contrast to
the Fourier transform which has both real and imagi-
nary components the wavelet transform only has a
real component. When using the Fourier transform
the curve can be parameterised by its co-ordinates,
allowing easy reconstruction of the curve at the
natural scales. This is not possible with wavelets and
instead a single valued parameterisation such as tan-
gent angle or curvature must be used. This is less
desirable since reconstructing the curve from its

Ž .filtered smoothed tangents or curvatures can pro-
duce distortions. For instance, closed curves gener-
ally become open ones.

2.7. Zero-crossing density

Our original method for determining global natu-
�Ž .4ral scales smooths the curve Cs x , y with at t

Ž ŽGaussian filter corrected for curve shrinkage Lowe,
..1989 at octave separated scales and calculates a

significance measure S at each scale. S is defineds s

as the sum of the number of zero-crossings of curva-
ture at all points t on the curve normalised by the
Gaussian smoothing scale s :

1, k s0, k
X
/0,t tS ss z , where z sÝs t t ½ 0, otherwise.tgC

1Ž .
Dropping subscripts for convenience, at each point
curvature k is calculated as

X X Y XX yY X X XX

ks , 2Ž .3r2X 2 X 2X qYŽ .
where X X, Y X, X XX and Y XX are the results of indepen-
dently convolving the X and Y coordinates of curve
with the first and second derivatives of the Gaussian

Ž .kernel G t :s

1 2 2yt r2 sG t s e , 3Ž . Ž .s 's 2p

yt 2 2X yt r2 sG t s e , 4Ž . Ž .s 3's 2p

yt t 2
2 2XX yt r2 sG t s y1 e . 5Ž . Ž .s 25 ž /' ss 2p

Natural scales are defined to be at scales producing
local minima of S .s

If the significance value is considered as a nor-
malised average zero-crossing density measure then
it can be easily applied locally to sections of curve.
We consider two approaches for calculating local
zero-crossing density. Like the interval tree ap-
proach, the first treats each section of curve bounded
by a zero-crossing of curvature as a primitive con-
caverconvexrstraight curve element. Within that
section the density of zero-crossings of curvature is
taken as the inverse of the length of the section. The
significance value Ss at each pixel in the curvet

section c of length l at scale s is calculated as thec

normalised density of zero-crossings of curvature of
the section in a similar manner to the global signifi-
cance value:

s
sS s , tgc. 6Ž .t lc

We will call the above approach ‘‘method A’’.
The second method, ‘‘method B’’, employs a Parzen
estimator, a standard technique for estimating local

Ž .densities Fukunaga, 1992 . The general form of the
estimator at location t is

N1 1 ty t i
P t s K , 7Ž . Ž .Ý ž /N h his1

where N is the number of observations, h is a
Ž .positive number and a function of N, K P is the

Ž .kernel of the estimate i.e. the point spread function ,
and t is the ith observation. We use a Gaussiani

Ž .kernel G P with hss , so that the density ofs

zero-crossings of curvature at scale s is

1 ty i
sP s z G 8Ž .Ýt i ž /sz sÝ i igC

i

and so the significance, calculated as the normalised
zero-crossing density, is

1 ty i
s sS ss P s z G . 9Ž .Ýt t i ž /szÝ i igC

i
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For both methods of zero-crossing density estima-
tion the natural scales of pixels t are those s ’s at
which Ss is a local minima over adjacent scales.t

We note that an alternative approach involving
zero-crossing density was taken by Garcıa and´

Ž .Fdez-Valdivia 1994 who first segmented the curve
into sections, and then determined the most signifi-
cant global natural scale of each section. However,
their method is flawed since the initial segmentation
process involved combining various arbitrary feature
measures that were calculated at two arbitrarily cho-
sen scales. To be correct, the segmentation process
should also be performed at multiple scales.

3. Merging natural scales

As stated in Section 2 pixel-based techniques for
determining local natural scale are prone to noise
and minor variations in the data. The resulting frag-
mentation is undesirable since most applications will
assume the data contains a certain amount of spatial
coherence. We employ a straightforward merging
method that is carried out in the following stages:

Ž .1 Minima over scale are detected in the signifi-
Žcance map which is then binarised into minima set

. Ž .to 1 and non-minima set to 0 .
Ž .2 Information is integrated across scales by

applying 1D Gaussian smoothing at each point at
each scale. For the ideal case the scales adjacent to a
significance minimum will be non-minima. There-
fore, to prevent the smoothing operation degrading
the likelihood of the existence of a minimum an

uŽ .unnormalised Gaussian filter is used: G t ss

eyt 2 r2 s 2
. The parameter ssS specifies the re-

quired degree of coherence over scale.
Ž .3 Smoothing along the curve is performed at

each scale independently by applying a standard 1D
Gaussian filter at each point, where the smoothing
parameter ssT determines spatial coherence.

Ž .4 Non-maximal suppression is performed at each
point across adjacent scales; non-maxima are reset to
zero. Local scales are then retained at points which
are more likely than not to be a local minimum over
scale by thresholding the smoothed minima map at
0.5.

Ž .5 Finally, to ensure there is no fragmentation,
horizontal gaps smaller than T in the binary smoothed

Fig. 5. Sequence of processes for merging local natural scales.

minima map are removed by relabelling them with
Žtheir opposite label i.e. minima ™ non-minima and

.non-minima ™ minima .
The sequence of processes is illustrated by the

diagram in Fig. 5. Of course, the two 1D Gaussian
filters in the spatial and scale domains could be
combined into a single 2D Gaussian filter. However,
the separable version described is more efficient. It

Ž . Ž . Ž .Fig. 6. a original stochastic Koch curve; b – f local natural
Ž . Ž .scales; g zero-crossings of curvature; h significance measure –

Ž .log mapped for display purposes; i minima of significance
Ž .measure; j minima map after smoothing and non-maximal sup-
Ž . Ž .pression; k minima map after gap removal; l log mapped

significance measure using Parzen estimator.
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Ž .Fig. 6 continued .

should be noted that although there is a relationship
between the smoothing parameters S and T the
exact formulation depends on the nature of the data.
Of particular relevance are: the magnitude and type

Ž .of the noise; the length of sections of ideally
identical local natural scale; and the separation in

Ž .scale of overlapping in the spatial dimension sec-

tions of local natural scale. For instance, if the ideal
local natural scales are well separated in scale, then
substantial smoothing over scale can be performed to
merge similar scales without fear of incorrectly over-
merging distinct natural scales. A similar argument
applies to spatial smoothing. However, in practise it
may be difficult to determine the values of S and T
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except through experimentation. In our examples we
generally used Ts40 and SsTr60.

4. Examples

In this section we show some examples of apply-
Žing the method of Section 2.7 the zero-crossing

.density technique to both synthetic and real data.
We previously showed the results of successfully
determining the global natural scales of the Koch

Ž .fractal curve Rosin, 1992 . Since the curve has by
definition well defined scales it was easy to verify
the correct natural scales. Here we modify the curve
in two ways to produce a more challenging test. First
a stochastic version is made by randomly shifting

each interior vertex during its generation. Perturba-
tion is done by adding zero mean Gaussian noise
with variance linearly decreasing at each level of
recursion. Second, one side of the curve is replaced
by a straight line with added noise, so that the

Ž .natural scales are no longer global. Fig. 6 a shows
Ž . Ž .the stochastic Koch curve, and Fig. 6 b – f show

the curve sections at their detected natural scales
drawn with thickness proportional to the scale. It can
be seen that each level of structure has been reason-
ably isolated although there are gaps in the second

Ž Ž . Ž ..and third natural scales Fig. 6 c , d . The interme-
diate processes can be seen by examining the genera-

Ž .tion of the minima map. Fig. 6 g shows the zero-
crossings of curvature from which the significance

Ž Ž ..map Fig. 6 h is formed using the first method for

Fig. 7. Local natural scales of the half-spiny pear.
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Ž . Ž .Fig. 8. a Local natural scales of Deguchi’s key. b Method B.
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Fig. 9. Local natural scales of the Queen’s head.

calculating zero-crossing density. Dark points corre-
spond to low values of the significance measure. The
repetitive structure of the Koch curve is evident in
the right two thirds of the significance map, while
the remaining third on the left corresponds to the
straight segment. The minima displayed in white
Ž Ž .. ŽFig. 6 i are fragmented. After smoothing Ts32

.and SsTr35 and non-maximal suppression frag-

Ž Ž ..mentation is reduced Fig. 6 j , and gap removal
Ž Ž ..further reduces fragmentation Fig. 6 k . The result

of using the Parzen estimator to generate the signifi-
Ž .cance map is shown in Fig. 6 l . Some natural scales

have been missed at the coarse level, suggesting the
zero-crossing density estimator is oversmoothing,
otherwise the remainder are similar to the previous
results.

Fig. 10. Local natural scales of an arm.



( )P.L. RosinrPattern Recognition Letters 19 1998 63–75 73

Ž . Ž . Ž .Fig. 11. a Image of Alan Turing. b Method A. c Method B.
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The following examples all use the smoothing
parameters set to Ts40 and SsTr60. Unless
other otherwise stated method A is used rather than
method B.

A second synthetic example that clearly demon-
strates varied local scales is the spinyrrippled pear

Ž .from Richards et al. 1986 . The first natural scale
Ž Ž ..Fig. 7 a describes the complete curve at the origi-
nal scale. Thereafter, the scales describe the bottom
and top halves at appropriate intermediate scales
Ž Ž . Ž ..Fig. 7 b , c and the complete figure again as a

Ž Ž ..single blob Fig. 7 d .
The key shown in Fig. 8 has been redigitised from

Deguchi’s paper. Method A has correctly extracted
Žthe main features the top of the key, the prongs, the

.overall shape although there are some additional
redundant sections. The results using method B are
less successful.

The head and shoulders of the Queen, digitised
from a British stamp, is shown in Fig. 9. Extracted
features include the ribbon, the head, as well as the
overall shape.

The next example, this time an arm, is shown in
Fig. 10. Although there is some redundancy the hand
has been successfully located as a single feature.

Finally, the last example is more demanding.
since the scales are not as obviously demarcated as
in the previous examples.

Ž Ž ..The image of Alan Turing Fig. 11 a was
thresholded, the curve bounding part of his face and
clothes extracted, and the results using methods A

Ž . Ž .and B are shown in Fig. 11 b and Fig. 11 c . Both
methods produce similar descriptions at the fine and
coarse levels: the complete curve is represented at
both extremes of scale, thereby capturing the finest
detail and the global shape. The methods differ at the
intermediate scales, but generally extract significant
features such as the chin, ear, hair line, shirt collar,
etc., at the appropriate scales.

5. Conclusions

We have described several techniques for deter-
mining the local natural scales of curves. Most are
based on creating a significance value over scale
which is then used to partition scale-space, thereby
generating local natural scales. To produce practical

results the significance values must be filtered to
prevent excessive fragmentation of the curve into
small adjacent sections with similar but non-identical
natural scales.

In particular we showed results of applying the
zero-crossing of curvature density method followed

Žby smoothing of the minima map which was de-
.rived from the significance map to merge similar

curve sections. Relatively concise multi-scale repre-
sentations were obtained, even for fairly complex
curves. Method A for smoothing the significance
values tended to produce better results than method

ŽB in many of our examples including those not
.shown here . Both methods produced some redun-

dancy, i.e. additional spurious local natural scales.
This is probably due to the use of a single set of
fixed smoothing parameters. Although individual
tuning of the parameters values would have im-
proved the results a better approach would be to
develop a method to automatically determine these
values.

References

Bengtsson, A., Eklundh, J.O., 1991. Shape representation by
multiscale contour approximation. IEEE Trans. Pattern Anal.

Ž .Machine Intell. 13 1 , 85–93.
Cesar, R.M., da Fontoura Costa, L., 1996. Shape characterization

in natural scales using the multiscale bending energy. In: Proc.
13th ICPR, pp. 735–739.

Deguchi, K., Hontani, H., 1994. Multiscale contour approximation
based on scale space analysis with a stable Gaussian smooth-
ing. In: Proc. 2nd Internat. Workshop on Visual Form, pp.
139–148.

Dubuc, B., Zucker, S.W., 1995. Indexing visual representations
through the complexity map. In: Proc. ICCV, pp. 142–148.

Dudek, G., Tsotsos, J.K., 1990. Recognizing planar curves using
curvature-tuned smoothing. In: Proc. 10th ICPR, pp. 130–135.

Fukunaga, K., 1992. Introduction to Statistical Pattern Recogni-
tion. Academic Press, New York.

Garcıa, J.A., Fdez-Valdivia, J., 1994. Representing planar curves´
Ž .by using a scale vector. Pattern Recognition Letters 15 9 ,

937–942.
Hoffman, D., 1983. Representing shapes for visual recognition.

Ph.D. Thesis, MIT.
Jagersand, M., 1995. Saliency maps and attentional selection in¨

scale and spatial coordinates: An information theoretic ap-
proach. In: Proc. ICCV, pp. 195–202.

Kothe, U., 1996. Local appropriate scale in morphological scale-
space. In: Proc. ECCV96, Vol. I, pp. 219–228.

Kropatsch, W.G., 1987. Curve representations in multiple resolu-
tions. Pattern Recognition Letters 6, 179–184.



( )P.L. RosinrPattern Recognition Letters 19 1998 63–75 75

Lindeberg, T., 1993. On scale selection for differential operators.
In: Proc. SCIA, pp. 857–866.

Lowe, D.G., 1989. Organization of smooth image curves at
multiple scales. Internat. J. Comput. Vision 3, 119–130.

Mallat, S.G., 1989. A theory for multiresolution signal decomposi-
tion: The wavelet representation. IEEE Trans. Pattern Anal.
Machine Intell. 11, 674–693.

Mokhatarian, F., Mackworth, A., 1992. A theory of multiscale
curvature-based shape representation for planar curves. IEEE
Trans. Pattern Anal. Machine Intell. 14, 789–805.

Richards, W., Dawson, B., Whittington, D., 1986. Encoding con-
tour shape by curvature extrema. J. Opt. Soc. Am. Ser. A 3,
1483–1491.

Rosenfeld, A., Johnson, E., 1973. Angle detection on digital
Ž .curves. IEEE Trans. Comput. 2 2 , 875–878.

Rosin, P.L., 1992. Representing curves at their natural scales.
Pattern Recognition 25, 1315–1325.

Rosin, P.L., 1993. Multi-scale representation and matching of
curves using codons. CVGIP: Graphical Models and Image
Process. 55, 286–310.

Rosin, P.L., 1994. Non-parametric multi-scale curve smoothing.
Internat J. Pattern Recognition and AI 8, 1381–1406.

Rosin, P., Venkatesh, S., 1993. Extracting natural scales using
Fourier descriptors. Pattern Recognition 26, 1383–1393.

Shahraray, B., Anderson, D.J., 1989. Optimal estimation of con-
tour properties by cross-validated regularization. IEEE Trans.
Pattern Anal. Machine Intell. 11, 600–610.

Teh, C.-H., Chin, R.T., 1989. On the detection of dominant points
in digital curves. IEEE Trans. Pattern Anal. Machine Intell. 11
Ž .8 , 859–872.

Witkin, A.P., 1984. Scale-space filtering: A new approach to
multi-scale description. In: Image Understanding 1984, Ablex,
pp. 79–95.


