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ABSTRACT

A fast and robust auto-sorting method for image ordering

based on Markov Random Fields (MRF) is proposed. We

present a specific MRF model for the ordering problem and

use pairwise phase correlation for the formulation. The MRF

is inferred by a modified belief propagation (BP) method.

Experimental results prove that the new method can reorder a

disorganised collection of images without human input, prior

information or restrictions, as just the first stage of a multi-

stage mosaicing process, but also provides information that

can be used to guide a mosaicing process in order to reduce

both local mismatch and global error accumulation.

Index Terms— MRF, image ordering, image mosaicing

1. INTRODUCTION

The requirement to construct a large, composite mosaic image

from a set of smaller images arises in a large number of appli-

cations. These depend on image mosaicing techniques [1, 2]

which attempt to stitch a set of overlapped images together in

an optimal fashion. Sometimes, there is no guarantee either

that the source image set is ordered in any predictable fashion,

or that any support information is available regarding imaging

positions. Typical examples of such image sets are given in

Fig. 1. However, most of the existing mosaicing techniques

assume that the source images are ordered and rely strongly

on this assumption to estimate local and global registrations.

[3] infers the ordering by solving for specific reliability

using a quality measure where a coarse-to-fine local registra-

tion is needed for all images. The computational cost is usu-

ally very high for such ‘registration-based’ ordering methods.

[4] proposes an algorithm based on viewpoint tracking. But it

needs to calibrate the camera. In contrast, we develop a fully

automatic method relying only on the information within the

captured images. [5] proposes a comprehensive multi-stage

approach which uses image patches and multi-view matching

to deliver estimates of camera positions and corrected image

clusters. The process is slow for high resolution images as it

is based on features. It also requires large overlaps between

images to offer a sufficient number of corresponding points.
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Fig. 1. (a) 20 images from the outer wall of the south transept

of York Minster, UK. (b) 50 mixed images: 20 are the ones in

(a) and the other 30 are from the wall of the north transept.

Fig. 2. The output of the labeling is an order: 5-7-2-1-8-7-3-6

We propose a fast and robust image ordering method

based on MRF. The production of a full mosaic would be a

later, separate process. Since the new method is independent

of any other process, it has a wide range of applications.

2. MAP-MRF MODELING FOR IMAGE ORDERING

In an image ordering problem, the use of multiple camera

positions means that the exact relationship between any two

overlapped images within a multi-row image sequence is ef-

fectively random. There is not only one ordering which can

guarantee that two successive images in the order are over-

lapped. The idea here is to utilize the MRF model to introduce

extra constraints that lead to one optimal and unique ordering.

We denote s = {1, . . . , n} representing the sites in the

network and L = {1, . . . , n} is the label set where each label

corresponds to an image number. We define the label assign-

ment x = {x1, . . . , xn} to all sites as a realisation of a family

of random variables defined on s. We also define an obser-

vation field y = {y1, . . . , yn}. Fig. 2 illustrates a possible

labeling for ordering 8 images. An optimal labeling should

satisfy the maximum a posteriori probability (MAP) criterion

[6]: x∗ = arg maxx(P (x|y)) = arg maxx(p(y|x)P (x)).
According to Hammersley-Clifford theorem [6]: the prior

probability P (x) satisfies a Gibbs distribution: P (x) =
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Fig. 3. 10 input images obtained from an aerial imaging sys-

tem within Wells Cathedral, UK. The intervening beam and

hanging cable in I2 and I3 are framed with red rectangles.

Z−1 × e−U(x), where Z is a normalising constant.

Let the likelihood densities p(y|x) be expressed in the ex-

ponential form: p(y|x) = Z−1
y × e−U(y|x). Then the pos-

terior probability is a Gibbs distribution: P (x|y) = Z−1
U ×

e−(U(y|x)+U(x)). The MAP-MRF problem is converted to a

minimisation problem for the posterior energy U(x|y):

x∗ = arg min
x

(
U(x|y)

)
= arg min

x

(
U(y|x) + U(x)

)
(1)

U(y|x) is computed by the sum of the likelihood potentials at

all sites: U(y|x)=
∑

i∈s V1(yi|xi). U(x) is computed by the

sum of binary clique energies: U(x)=
∑

i

∑
j∈N (i) V2(xi, xj)

where N (i) denotes the neighbourhood of i.
We formulate the MAP-MRF model using phase correla-

tion. Phase correlation is not robust for mosaicing, but when

only an approximate answer is required it can offer exactly

what is needed for automated image ordering—rapid answers

to the questions ‘Are these two images overlapping with each

other?’ and ‘Is the degree of overlap large or small?’.

Given that there is a translation parameter t between im-

age I1 and I2, the value of pixel r in I2 is: I2(r) = I1(r+t) =
I1(r)∗δ(r− t). After a Fourier transform Ψ, the phase corre-

lation is: Ψ(I1) = Ψ(I2)ej2πfx ⇒ ej(ϕ1−ϕ2) = ej2πfx. By

performing an inverse Fourier transform Ψ−1, we obtain

d(r) = δ(r − t) = Ψ−1
(
ej(ϕ1−ϕ2)

)
(2)

Therefore, we can derive the translation t by looking for

the peak of the impulse function d. When the two input im-

ages suffer from noise, pseudo-periodic structures, and/or any

other unknown transformations, there will be multiple peaks,

but there will normally be a single principal peak if the im-

ages do overlap. Fig. 3 and 4 show an example. A stained

glass window was imaged from multiple positions. An inter-

vening beam and hanging cable obscure some views. They

do not appear in I1, but both objects appear in I2, while I3

includes just the beam, but in a different position. These are

sources of misinformation and could confuse feature-based

approaches. However, as shown in Fig. 4, phase correlation

produces a principal peak with an impressively high relative

contrast. In general, the larger the principal peak, the larger

the size and quality of the overlapping region.

Furthermore, many mosaicing approaches are based on

local misfit measures between pairs of adjacent images and,

owing to accumulated errors and unknown/incorrect correc-

tions for lens and positional distortions, the process is highly

Fig. 4. L:The principal peak of I1 and I2 is 0.0521; M: the

principal peak of I1 and I3 is 0.0398 (top right); R: there is no

principal peak for I1 and I8 as the maximum is only 0.0085

Fig. 5. (a) L:Stitching order from I1 to I10; M: From I10 to I1;

R: First stitch from I5 to I1 and, independently, stitch from I6

to I10 and finally stitch two partial mosaics together. (b) The

illustration of Principle 1. (c) The illustration of Principle 2

nonlinear—different stitching orders lead to different mo-

saiced results (Fig. 5(a)). Essentially, our method is not only

to look for realistic positional relationships for the collection

of input images but also to define an optimal order in which

to later stitch them. Thereby, we propose two principles:

Principle 1: An optimal ordering should be in line with the

number of overlapping images of each image.

Principle 2: An optimal ordering should maximise the over-

lapping area between two successive images in the order.

In Fig. 5(b), the numbers of overlapping images of I1 I2

I3 and I4 are 1 3 2 and 2 respectively. According to Princi-
ple 1, the order should be 2-3-4-1 or 2-4-3-1. Fig. 5(a) also

illustrates that usually a better alignment can be achieved due

to the reduction of error accumulation if the alignment starts

from a ‘central’ image. For a multiple image mosaicing, the

more overlapping images one image has, the more ‘central’

it is. An optimal order should guarantee that these ‘central’

images can first be aligned and then the marginal images are

stitched. Hence, it can be seen that this principle targets on the

global optimisation of alignment. In Fig. 5(c), the stitching

order should be 1-3-2 rather than 1-2-3 according to Princi-
ple 2 as the overlapping area between I1 and I3 is larger than

that between I1 and I2. In essence, Principle 2 tries to achieve

the local optimisation of alignment. Broadly, larger overlaps

should offer more information and more matching points for

the estimation of positional information in image mosaicing.

So, constructing the mosaic using those images with higher

correlations should produce smaller local registration errors.

We apply the idea of Principle 1 to V1(yi|xi):
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V1(yi|xi) =
∑

yi∈L\xi

min
(

1/P (yi, xi), F
)

(3)

where F is a truncation constant and L\xi denotes the labels

in L other than xi. P (yi, xi) denotes the principal peak of the

two images with sequence number yi and xi, derived from

the maximum of the impulse function d in Eq. (2). For one

image with a sequence number xi, considering another image

with a sequence number yi, if 1
P (yi,xi)

> F , we think there

is no overlap between them. F is set as 50 in this work. As

we hope to minimise V (yi|xi), Eq. (3) actually encourages a

label assignment in compliance with Principle 1. On the other

hand, we apply the idea of Principle 2 to the clique energy:

V2(xi, xj) = 1/P (xi, xj), j ∈ N (i) (4)

By combining Eq. (3) and (4), U(x|y) is computed as

U(x|y)=
∑

i

∑
yi∈L\xi

min
( 1

P (yi, xi)
, F

)
+λ

∑
i

∑
j∈N (i)

1
P (xi, xj)

where λ is a weighting parameter.

3. ENERGY MINIMISATION USING BP

There are several methods minimising the posterior energy.

[7] shows that Graph-Cuts (GC) [8, 9] and BP [10, 11] are

both efficient and powerful. GC is regarded fast and has some

desirable theoretical guarantee on the optimality of the solu-

tion it can find. However, since our clique energy term is

neither ‘metric’ nor ‘semimetric’ in terms of the definition in

[8], GC is not suitable here. BP is thus a natural choice for us.
The BP works by iteratively passing messages across sites

in a MRF network, briefed as follows:
(1) For all neighbour site pairs (i, j) ∈ N , initialising mes-
sage m0

ij to zero, where mt
ij is a vector of dimension given

by the number of possible labels and denotes the message that
site i sends to a neighbouring site j at iteration t.
(2) For t = 1, 2, . . . , T , updating the messages as

mt
ij(xj)=min

xi

(∑
yi∈L\xi

min
( 1

P (yi,xi)
,F

)
+

λ

P (xi,xj)
+

∑
h∈N (i)\j

mt−1
hi (xi)

)

(3) After T iterations, computing a belief vector for each site,

bj(xj) =
∑

yj∈L\xj

min
( 1

P (yj , xj)
, F

)
+

∑
i∈N (j)

mT
ij(xj)

From site j=1 to j=n, one by one, determining labels at each site:

x∗
j = arg min

xj∈L\{1,2,...j−1}

(
bj(xj)

)
(5)

This strategy minimises the error accumulation early on in the

mosaicing process and reduces the accumulative effect of errors in

the final mosaic. This labeling scheme is applicable for the image

sequences like Fig. 1(a) which contain only one complete image se-

quence. For the disorganised image sequences like Fig. 1(b), we set

a threshold M for recognizing inappropriate input images or images

from different sequences when determining x∗
j . Given that site j is

labeled with xj by Eq. (5), if
∑j−1

k=1 P (xk, xj) < M , the system

Table 1. Pairwise phase-correlation peaks of the 20 images.

For example, in the top left cell, the value 0.0451 corresponds

to the phase-correlation peak of I1 and I2 and the bottom right

cell is the peak value 0.0117 produced by I19 and I20

will conclude that this image has no overlap with any of the previ-

ous images in the sequence and will output the current order as one

outcome and perform our image ordering scheme again for the rest

of the images, repeating the process iteratively as long as there are

still some images that have not been labeled in the input sequence.

4. EXPERIMENTAL RESULTS

In practice, because phase correlation can be realized by fast Fourier

transform (FFT), this scheme performs much faster than those men-

tioned in Section 1. We first load the 20 disordered images shown in

Fig. 1(a). The images contain repeated deceptive objects—without

a larger context, some are so similar that it is difficult to differen-

tiate and identify them by eye. Numbering them in terms of their

loading order, the corresponding phase-correlation peaks are shown

in Table 1. We use it as an index to obtain the principal peak P
for any image pair. The strongest correlation is found between I2

and I20 and the consequent stitching order produced by our ordering

method is: 2–20–1–5–15–16–4–18–19–7–6–13–17–10–9–14–8–3–

12–11. Then we can produce a single composite mosaic using a

well-known multi-stage mosaicing method, outlined as follows: (1)
Feature point extraction and matching using SIFT algorithm [12];

(2) Robust feature point matching using RANSAC [1]; (3) Trans-

form estimation using Levenberg-Marquardt [1] algorithm and Bun-

dle Adjustment [2]; (4) Image fusion using multi-band blending [2].

Fig. 6 illustrates this process at various stages of construction.

We compare the new method with a feature-based method [5]. In

[5], the number of feature matches found between each pair of input

images (the two-view matches) is calculated by feature extraction

and matching where the feature detector and descriptor are not state-

of-the-art. Then a spanning tree is constructed and the images are

reordered according to the number of the two-view matches, subject

to the constraint that the ordering will not create a cycle in the graph

composed of the edges of the tree. To make our comparison more

convincing, we replace the feature extraction and matching method

employed in [5] with SIFT [12]. We still use the images in Fig. 1(a)

for the test. The result of the comparison is shown in Table 2 quan-

titatively. It can been seen that the feature-based ordering is much

more time-consuming than the new method (25 times more in com-

putational time) although the mosaicing it guides is slightly better in

terms of the mean registration error (MRE)). For qualitative compar-

ison with Fig. 6, Fig. 7 illustrates the mosaicing process guided by

the feature-based ordering at various stages of construction.

In Fig. 1(b), some of the 50 mixed input images have quite sim-
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Fig. 6. Selected stages in process of constructing final mosaic

Table 2. Comparison between our method and the one in [5]

ilar content, such as the railings and the mortar lines. The railings

are an example of deceptive objects. Sometimes registration will

fail if we just use a feature-based method to judge whether the two

images with railings are overlapped, because the system could pro-

duce many pseudo matches located on the railings that will mislead

the system. Bricks and stonework are other typical sorts of objects

arising in images of architectural and heritage structures. For a dis-

ordered image set involving bricks it would be difficult to recognize

and reorder them manually, because they look so similar to each

other and lack distinctive features. However, our new method sill

correctly produce an optimal stitching order and two complete mo-

saics are produced. Fig. 8 shows a second outcome mosaic of 30

images produced together with the 20-image mosaic of Fig. 6.

5. CONCLUSIONS

We develop a fast method for automatic sequencing of a disordered

set of images. We take an advantage of the MRF modeling and for-

mulate it in accordance with two ordering principles. A modified is

then employed to find the optimal labeling. Once each site in the

MRF has been labeled, the order is found. In summary, the MRF-

based method can produce an approximate ordering of images, as

just the first stage of a multi-stage mosaicing process, but also pro-

vides information that can be used to guide a mosaicing process in

order to reduce both pairwise registration errors and global error ac-

cumulation. Practical tests indicate that the scheme is robust and can

find a good stitching order for multiple images with varying degrees

of overlap, multiple deceptive features and occluding objects.
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