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Mesh Saliency via Weakly Supervised
Classification-for-Saliency CNN

Ran Song, Yonghuai Liu, Senior Member, IEEE, Paul L. Rosin

Abstract—Recently, effort has been made to apply deep learning to the detection of mesh saliency. However, one major barrier is to
collect a large amount of vertex-level annotation as saliency ground truth for training the neural networks. Quite a few pilot studies
showed that this task is difficult. In this work, we solve this problem by developing a novel network trained in a weakly supervised
manner. The training is end-to-end and does not require any saliency ground truth but only the class membership of meshes. Our
Classification-for-Saliency CNN (CfS-CNN) employs a multi-view setup and contains a newly designed two-channel structure which
integrates view-based features of both classification and saliency. It essentially transfers knowledge from 3D object classification to
mesh saliency. Our approach significantly outperforms the existing state-of-the-art methods according to extensive experimental
results. Also, the CfS-CNN can be directly used for scene saliency. We showcase two novel applications based on scene saliency to

demonstrate its utility.

Index Terms—Mesh saliency, deep learning, transfer learning, weak supervision.

1 INTRODUCTION

ESH saliency has been an active topic in computer
Mgraphics for a long time. Although conceptually it
has several variants such as mesh saliency [1], surface
distinction [2] and region distinctness [3], they all represent
the understanding of 3D surfaces from the perspective that
some regions of a 3D surface are more important than the
others in agreement with human perception. In particular,
this paper follows the definition in the seminal paper of Lee
et al. [1] where mesh saliency is defined as a per-vertex map
to predict “what most of us would classify as interesting
regions in meshes”.

Most previous work on mesh saliency relied on hand-
crafted features which do not generalise well since their
expressive capabilities are limited by the fixed operations
that stay the same for meshes of different classes. In recent
years, we observed the trend towards learning-based meth-
ods, particularly the recent work based on deep learning
[4] where a collection of ground truth saliency data must
be provided for training some models of machine learning.
However, as shown in quite a few user studies (e.g. [3], [4],
[5], [6]), gathering such data is a difficult task. We noticed
that all of the existing datasets of mesh saliency are very
small (e.g. 400 meshes in [5], 79 meshes in [3], 150 meshes
in [4] and 32 meshes in [6]). On the other hand, a neural
network has to be sufficiently deep to generalise well since
learning features at various levels of abstraction requires a
sufficiently large number of layers. Accordingly, training has
to be supported by massive data to avoid overfitting.

This work is motivated by the dilemma currently widely
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existing in the 3D object understanding community that
the trend of embracing deep learning is hindered by the
difficulty of collecting a large amount of accurate and
consistent vertex-level annotations for training the learning
models, especially the popular deep neural networks [4], [7].
Although some effort such as [8] has been made recently,
creating vertex-level annotations for regression problems
such as mesh saliency is still expensive. We propose a
weakly supervised solution where the training is only based
on the classification ground truth. We believe that such a
solution is attractive for two reasons. First, a vertex-level
annotation in a graphics task is often more expensive than
the pixel-level annotation in a corresponding vision task. For
instance, the ground truth generation of 3D interest point
detection on meshes is more time consuming than that of
2D interest point detection on images since human subjects
need to rotate a mesh to mark the vertices of interest [9].
Thus the demand for a weakly supervised method that does
not rely on such annotation might be higher in the graphics
community. Second, the simplest, most efficient and most
consistent annotation that can be collected for most 3D
object understanding tasks is the class membership of an
object. Due in part to this reason, some large-scale datasets
for 3D object classification are already publicly available
(e.g. ModelNet [10] and ShapeNet [11]).

We present a new convolutional neural network (CNN)
for mesh saliency, namely Classification-for-Saliency CNN
(CfS-CNN) which can be trained end-to-end using only the
ground truth classification. The first step is to represent
a mesh as multiple 2D views. Second, each view is fed
into a CNN to generate view-based convolutional features.
Next, the CNN branches off a classification channel and a
newly designed saliency channel and then multiple view-
based features of both classification and saliency are pooled
to obtain a descriptor representing the entire 3D mesh.
Finally, this descriptor is transformed by the last fully-
connected layer to train a classifer. When deploying the
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learned CfS-CNN, we first generate view-based 2D saliency
maps via classification activation mapping (CAM). Then, we
convert view-based 2D saliency into view-based 3D saliency
through a novel 2D-to-3D saliency transfer scheme. Note
that for the same 3D vertex, its saliency values in multiple
views are usually different. Thus finally, we generate a
single per-vertex saliency map for the mesh by aggregating
multi-view 3D saliency through a linear model. The weights
used in this model are output by the saliency channel and
essentially derived from the 3D information of the mesh.

It is noteworthy that the 2D views of a 3D model are
different from normal 2D images since essentially they do
not contain any object colour and material information, and
the intensity of each pixel merely reflects local surface geom-
etry. In comparison, 2D image saliency is largely driven by
object colour and material while 3D mesh saliency is mainly
driven by surface geometry.

Noticeably, here we propose to use a multi-view CNN
other than a point-based net such as PointNet [12] or
PointNet++ [13] as the baseline net of the CfS-CNN. This
is because a multi-view CNN analyses what can be seen in
a way similar to humans since it combines surface infor-
mation from multiple views. To this end, for the particular
task of mesh saliency, a measure reflecting human visual
perception, a multi-view CNN is more suitable than those
based on a point cloud representation. For example, a point
not visible in most views is unlikely to be salient (e.g. a
point on the inner surface of a vase) since in our method, its
saliency is computed by aggregating multi-view saliency. In
particular, a multi-view setup is a good choice for our work
because we extends mesh saliency to scene saliency where
occlusions happen more frequently.

Moreover, the requirement to handle a scene which
contains multiple meshes is also an important reason that
we develop a multi-view CNN rather than a graph neural
network (GNN), which is widely used in geometric deep
learning. A GNN learns a deep representation directly over
the mesh treated as a non-Euclidean graph by a local opera-
tor such as Laplacian [14], [15] and Dirac operators [16]. But
such local operators are not good at capturing the global
spatial relationship of multiple objects not connected by
edges of the mesh. However, such a relationship is recorded
in one or multiple 2D views of the scene. To demonstrate
the efficacy of scene saliency, we showcase two applications:
best view selection of scenes and scene cropping.

Overall, the contribution of our work is threefold:

1) We propose a novel deep neural network for mesh
saliency estimation.

2)  Our network can be trained end-to-end in a weakly
supervised manner with no expensive saliency an-
notation but mesh category information instead.

3) We demonstrate that our method can be used to
generate meaningful saliency maps as well for 3D
scenes through two new applications.

2 RELATED WORK

Early works on mesh saliency [1], [2], [17] heavily exploited
handcrafted local geometric features. For example, Lee et al.
[1] computed mesh saliency using a center-surround oper-
ator on Gaussian-weighted curvatures calculated in a local
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neighbourhood at multiple scales, and they later demon-
strated in [18] that such a mechanism has significantly better
correlation with human eye fixations than either a random
model or a curvature-based model. However, as shown
by psychological evidence [19], [20], [21], saliency also de-
pends on global features. Thus to further improve saliency
detection, researchers have proposed methods integrating
both local and global features. Wu et al. [22] proposed an
approach based on the observation that salient features
are both locally prominent and globally rare. Song et al.
[23] analysed the log-Laplacian spectrum of meshes and
presented a method which considers both local geometric
cues and global information corresponding to the low-
frequency end of the spectrum. Wang et al. [24] detected
mesh saliency using low-rank and sparse analysis in a
space of shape features which encode both local geometry
and global structure information of mesh. Leifman ef al.
[3] proposed an algorithm for detecting surface regions of
interest by looking for regions that are distinct both locally
and globally where the global consideration is if the object
is ‘limb-like” or not. Song et al. [25] proposed a local-to-
global scheme to integrate both local saliency and the global
distinctness of features.

It is natural to consider a data-driven method using
data generated by human subjects since as a perceptual
measure, mesh saliency reflects the human understanding
of 3D data. And in many cases, we hope that artificial
intelligence systems interpret data as humans do. However,
due to the aforementioned training data problem, existing
data-driven methods rely mainly on shallow learning. For
example, in [5], a regression model to predict the so-called
Schelling distribution is learned on a small dataset of 400
meshes. It is essentially a shallow learning scheme using a
selection of handcrafted features. Lau et al. [4] proposed the
concept of tactile mesh saliency which facilitated a reliable
data collection since the concept is well defined and human
subjects tend to give highly consistent responses in the
process of data collection. Even so, only 150 models are
collected for both training and testing. Although such an
amount of data are sufficient to train the well designed 6-
layer network used in the paper, they might not be enough
to support the learning of a sufficiently deep network.

Fundamental differences from closely related works. In
comparison with Lau’s work [4], our work is fundamentally
different in four aspects. First, our neural network is
sufficiently deep (21 layers). Second, we train it on a much
larger dataset (ModelNet40 [10]). Third, our method is
weakly supervised with classification information. Fourth,
our method can handle not only a single mesh, but also 3D
scenes containing multiple meshes.

Compared to Song’s work [26] which requires a sep-
arated inference of a Markov Random Field (MRF) com-
ponent disconnected from the training of the deep neural
network, our network is trained end-to-end. This is achieved
by the two newly designed layers in the CfS-CNN which
not only generate saliency knowledge based on features
learned through the convolutional layers, but also inject
such knowledge back into the fully-connected layers.

Compared to Shilane’s work [2], our method is based
on deep learning rather than handcrafted features. Also,
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Fig. 1. Overview of the proposed approach based on the CfS-CNN containing two channels. The green and the red arrows denote the classification
and the saliency channels respectively. “VS” and “SP” denote the view saliency and the saliency-based pooling layers respectively. The CfS-CNN
is trained end-to-end as a classification network composed of the components enclosed by the black dash lines. The components enclosed by the

cyan dash lines are implemented only in the deployment.

Shilane’s work looks for perceptually important regions on
a mesh solely from a classification perspective. But we apply
transfer learning from classification to saliency, achieved
through the newly designed layers in our network. As
demonstrated experimentally in Section 4.5, this strategy
significantly outperforms generating saliency solely from
classification knowledge.

The proposed CfS-CNN is a multi-view CNN, but it
is fundamentally different from other multi-view CNNs
such as [26], [27], [28], [29], [30]. This is because the key
component of a multi-view CNN, the scheme which ag-
gregates outputs from multiple 2D views in our network
is fundamentally different. Our pooling layer is essentially
a weighted average pooling while [27], [29], [30] use max-
pooling, [28] performs direct concatenation and [26] devel-
ops an MRE. This point is further discussed in Section 3.2
and demonstrated experimentally in Section 4.5.

3 METHOD

The pipeline of our method including the CfS-CNN as well
as other components is illustrated in Fig. 1. In this section,
we first describe each component used in training and/or
deployment in a piecewise manner. Then, to help readers
better understand how our method works, we explain the
details of the implementation as a whole in both training
and deployment where each component is contextualised
with regard to the pipeline.

3.1 Multi-view mesh representation

Multi-view CNNs have been widely used to adapt CNNs
to 3D objects represented as meshes. Compared with other
methods which try to generalise deep learning to non-
Euclidean domains, multi-view CNNs show state-of-the-
art performance in various 3D object understanding tasks
[27], [29], [30], [31]. We assume that each mesh is upright
oriented along the z-axis and create NV 2D views (N = 24 in
this work) for it by placing N viewpoints (virtual cameras)
at the positions defined by the pair (azimuth, elevation).
The azimuth variable is the horizontal rotation about the
z-axis measured in degrees and subject to azimuth €
{0,30,...,330}. The elevation variable is the vertical eleva-
tion of the viewpoint in degrees and subject to elevation €

{—30,30}. Then virtual cameras point towards the centre
of the mesh and their up vectors are also set as the z-axis.
Adding more or different viewpoints is trivial, however, we
found that such a viewpoint setup was already enough to
achieve high performance. Please refer to Section 4.2 and
Table 1 for other viewpoint setups.

3.2 Weakly supervised classification-for-saliency CNN

Motivation and inspiration. As a weakly supervised
approach, we need to produce saliency based only on mesh-
level annotation (i.e. class membership of meshes). We think
this task is feasible due to a simple observation: for 3D
objects of the same class, they usually have similar saliency
distributions [5]. For example, for the meshes of humans,
usually the head, the hands and the feet are detected as
salient. For cups, usually the handle is detected as salient.
One explanation is that the human perception system tends
to capture the most informative features as salient [32] since
it can help humans to recognise an object swiftly without
the need for scrutinizing all of its details. Thus we argue
that the informative features important for distinguishing
a 3D object from others belonging to different classes are
highly likely to be detected as salient.

Certainly, since mesh saliency and 3D object classifi-
cation are two different tasks, a fundamental issue is the
transferability of the knowledge learned through classifica-
tion networks, which has only been explored in the context
of 2D image understanding [33], [34]. One consensus is
that the transferability decreases as the distance between
the base task and the target task increases [33]. The CfS-
CNN is thus inspired by the hypothesis that the knowledge
vital for the base task, 3D object classification, is usually
also important for the target task, mesh saliency due to the
aforementioned observation. Certainly, it does not mean that
an existing state-of-the-art classification network without
a specific mechanism for mesh saliency will automatically
have a state-of-the-art performance on mesh saliency. We
shall further explore this hypothesis in Section 4.6.

We start with the classic VGG-19 model [35] pre-trained
on ImageNet as the baseline architecture and then add
the newly designed view saliency (VS) and saliency-based
pooling (SP) layers onto it. Details of the two layers are
described next.
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View saliency layer. The VS layer takes as input the
outputs of all relu7 (the ReLU layer following the fully
connected layer fc7) layers. Since one 3D object is rendered
as N views, the input of the VS layer is a matrix of size
4096 x N for a given 3D object. Each of its columns can
be regarded as a feature descriptor of one view. The VS
layer outputs an N-dimensional vector to the SP layer.
Each element of the vector corresponds to the saliency of a
particular view, reflecting how salient that view is. The more
salient the view, the larger the contribution it will make in
the following classification and saliency generation.

Inspired by the works [20], [21] in neuroscience, we pro-
pose a simple scheme to compute view saliency. As pointed
out in [20] and [21], a basic principle in human perceptual
system is to suppress the response to frequently occurring
features, while at the same time it remains sensitive to
features that deviate from the norm. Thus, the view most
different from all other views should be the most salient.
Given two views V; and V}, their difference can be measured
as the Euclidean distance between their feature descriptors
F; and F}; output by the relu7 layer

Dij = ||FZ—FJ||, s.t.1,5 € {1,2,,N}al’1dl7éj @)

The saliency of V; is then calculated as the sum of its
pairwise differences to all the other views.

Si =YDy )
J#Fi
Both Eq. (1) and Eq. (2) are differentiable. So for back-
propagation, given that the gradient passed to the VS layer
(i.e. the gradient of the loss function with respect to the
output of the layer) is an N-dimensional vector S, according
to the chain rule, the gradient F of this layer with regard to
the input (4096 x NN) of the layer can be computed as
08,

Fi = SiaT?i ©)

where gf;? is a 4096-dimensional vector. Considering Egs. (1)

and (2) and the partial derivative of the Euclidean distance

function %ZH = Iﬁi\l , it can be computed as
0S; F;, — F;
oF, ~ 2 Dy, @
7 ij

i
Saliency-based pooling layer. =~ While the VS layer pro-
duces saliency information, we need to think about how to
incorporate it into a classification network since as a weakly
supervised method, the only training data we have is the
class membership of a 3D object. Also, as a multi-view CNN,
we need to consider how to aggregate the learned knowl-
edge across all the 2D views to create a single descriptor for
the 3D object. And very importantly, we need to consider
how to cast the influence of saliency into this aggregation
process since as mentioned above, we hope that salient
views can have larger weights in the classification process.
This principle is also based on the simple observation that
in many cases, one or two good views of a 3D object are
enough for humans to recognise it, while some poor views
could be very unhelpful. We propose an SP layer to address
the three considerations.

4

As illustrated in Fig. 1, the SP layer takes as input the
outputs of both the relu? layer and the VS layer. If the output
of the relu? layer is a matrix F' of size 4096 x N and that of
the VS layer is a N-dimensional vector S, the output of the
SP layer, a 4096-dimensional vector P, can be computed as

P=FS. )

Since it is a matrix multiplication, equivalently, we can
express it as

P = ZFiSi (6)

where F; is the column vector of F' which denotes the
feature descriptor of view V; and S; is its saliency. Thus
it is quite clear that the vector P which can be regarded
as the feature descriptor of the 3D object is estimated as
the weighted sum of the feature descriptors of all the views
where the weights are the estimated saliency of views.

In the back-propagation of the gradient of the classifi-
cation loss, the gradient passed to the SP layer is a 4096-
dimensional vector P. Due to the bilinear form of Eq. (5), by
the chain rule of gradients, the gradient F of the SP layer
with regard to its first input I is calculated as

F=psT. 7)

Similiarly, the gradient S with regard to its second input S
can be calculated as
S=FTp. ®)

Interpretation on the saliency channel. As shown in
Fig. 1, the VS and the SP layers compose the saliency
channel of the CfS-CNN. Essentially, it enables the trans-
fer learning from classification to saliency: the VS layer
generates saliency knowledge using the knowledge learned
through layers taken from a classification network (VGG-19)
and injects such knowledge into the SP layer so that it can be
incorporated into the classification network in a meaningful
way. Therefore, we are able to train the entire network end-
to-end with classification annotations.

It can be seen that the heuristic of the VS layer is
manually defined through view differences although it is
calculated with the learned features. Note that the most
different view does not guarantee that its features are
more important than features in other views. Here we
actually assume that view importance correlates positively
with feature importance in most cases. According to the
experimental results, this strategy works well. Also, for
implementation, the manipulation of views is much easier
than that of local features in a multi-view CNN.

The SP layer is essentially an average pooling weighted
by the learned view saliency, which makes it fundamentally
different from existing multi-view CNNs. For instance, in
[26], an MRF disconnected from the CNN is proposed to
gather saliency information from multiple views. In [27],
element-wise max pooling is used to synthesize the feature
descriptors from multiple views into a single descriptor
of the 3D object. It concludes that average pooling is not
effective according to their experiments. In [29], a projection
layer is employed in a segmentation network to aggregate
feature descriptors across multiple views and project the
output back onto the 3D object. They also used a max
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pooling and reported that an alternative average pooling
resulted in lower performance in their experiments. In [30],
max pooling is used for part correspondences of 3D ob-
jects. They concluded that it offers “significantly higher”
performance than average pooling. However, we shall show
that our method performs comparably with the state-of-
the-art max pooling-based methods in object classification
in Section 4.2 and significantly better than max pooling in
mesh saliency in Section 4.5 .

3.3 View-based 2D saliency generation

The components elaborated in Sections 3.3-3.5 are only
implemented in the deployment mode.

Once the CfS-CNN is trained end-to-end on a classifica-
tion dataset, given an input mesh, we first use the trained
CfS-CNN to predict its class. We then employ the CAM
method proposed in [36] to compute a per-pixel saliency
map I(V;) (known as “image-specific class saliency” in [36])
for all the pixels in the view V; based on their influence on
the predicted class. We select this particular CAM method
for its efficiency and simplicity since it just requires a simple
back-propagation with all the network parameters fixed.
The 2D saliency map I(V;) can be interpreted as a measure
of pixel importance with regard to the predicted classifica-
tion of the mesh. I(V;) is further normalised to be within
the interval of [0, 1]. There is no one-to-one correspondence
between the pixels in V; and the vertices of the mesh. We
propose the following method to derive a 3D saliency map
from a single 2D saliency map.

3.4 View-based 2D-to-3D saliency transfer

Note that the resolution of the CNN views is fixed (224 x 224
as required by the VGG net) no matter how many vertices
the mesh contains. We can thus first generate the view-based
3D saliency maps for a simplified mesh and then compute
such maps for the original mesh using point correspondence
between the simplified mesh and the original one.

Inspired by the 2D-to-3D operations in Song et al. [26]
and Kalogerakis et al. [29], we project the simplified mesh
(containing 2500 faces in our implementation) at each of the
N viewpoints and rescale the 2D projections to 224 x 224.
Next, after cropping the rescaled 2D projections to remove
the background pixels, we proposed a novel scheme to
generate a view-based 3D saliency map from a view-based
2D saliency map. The view-based saliency of a 3D vertex m
visible in the view Vj is calculated by considering the view-
based saliency of the pixel closest to its 2D projection (i.e.
the 2D-to-3D correspondence which associates a 2D pixel
with a 3D vertex) and the local density of the vertices:

exp(l — Z(m))
exp(l — Iz ) (Vi)

Because density can be reflected by the distance between
two neighbouring points, we introduce Z(m) computed
as the average of the normalised distances (i.e. within the
interval of [0,1]) between m and its 1-ring neighbours.
(z,y) denotes the coordinates of the pixel in I(V;) closest
to the 2D projection of m. The rationale behind Eq. (9) is
that the 2D projection of a 3D vertex is more ambiguous
and thus the 2D-to-3D correspondence is less reliable if

Hp (Vi) = )
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the local density around the vertex is low. We thus use
the term exp(l — Z(m)) as the numerator in Eq. (9) to
reflect the reliability of the 2D-to-3D correspondence. We use
exp(1 — I(,,)(V;)) as the denominator to define a positive
relation between the view-based 2D saliency and the view-
based 3D saliency. If a vertex is not visible to a viewpoint,
its saliency with regard to that view is set to a constant
3. Finally, the view-based saliency of a 3D vertex on the
original mesh is computed by finding its closest point on
the simplified mesh. Essentially, a view-based 3D saliency
map H,,(V;) indicates the importance of a vertex m with
regard to the predicted classification of the object, based on
the information recorded in the view V;. For simplicity, we
write H(V;) as H; in the rest of the paper.

3.5 Multi-view saliency synthesis

Each of the N 3D saliency maps can be interpreted as an
attribute which encodes some information of the 3D object.
Among many potential mathematical models of synthesiz-
ing such attributes, an intuitive one is a linear model

N

H=> wH, (10)

i=1
where w; denotes the contribution of a view-based 3D
saliency map H;. As a weighting parameter, it reflects the
importance of a view in the synthesis. Secord et al. [37]
showed that such a linear model performed well when
estimating the importance of views for various 3D objects.
In their method, the linear model has to be learned since the
weights of the attributes with regard to the importance of
views were unknown. In [26], these weights were estimated
via an MRF, which leads to an architecture that cannot be
trained end-to-end. In our work, however, we simply use
the output of the VS layer S as the weights since each of its
elements already represents the learned saliency of a view:

N
H = ZSZHZ (11)
i=1

3.6

Training. We first render the mesh representing a 3D object
as 24 2D views as described in Section 3.1 using a standard
OpenGL renderer with perspective projection mode. The
strengths of the ambient light, the diffuse light and the spec-
ular reflection are set to 0.3, 0.6 and 0 respectively. We apply
the light uniformly across each triangular face of the mesh
(i.e. flat shading). Note that using different illumination
models or shading coefficients does not affect our method
due to the invariance of the learned convolutional filters
to illumination changes, as observed in image-based CNNss.
All of the 24 rendered views are then printed at 200 dpi, also
in the OpenGL mode, and further resized to the resolution of
224 x 224. Then we feed these views into the CfS-CNN and
train it through stochastic gradient descent. As mentioned
in Section 3.2, the baseline VGG-19 network is pre-trained
on ImageNet, and the CfS-CNN which contains the newly
added VS and SP layers is fine-tuned on the ModelNet40
dataset. The learning rate is set to 5 x 10~ initially. After 10
epochs, we reduce it to 10~* and after 20 epochs, we further

Implementation
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Fig. 2. A gallery of mesh saliency detected by the proposed CfS-CNN method (top half) with the human-picked interest points (Schelling points [5])
of the corresponding meshes (bottom half). Warmer colours show higher saliency.

reduce it to 107°. We observed that the CfS-CNN converged
usually within 30 epochs.

Deployment. First, we again render the mesh as 24 views
with the same rendering settings. Once the CfS-CNN is
evaluated with the 24 views, we use the schemes described
in Sections 3.3 and 3.4 to generate multiple view-based
3D saliency maps. When evaluating the CfS-CNN, we also
record the output of the VS layer, which enables the syn-
thesis of multiple view-based 3D saliency maps to finally
output a single per-vertex saliency map using the scheme
described in Section 3.5.

4 EXPERIMENTAL RESULTS
4.1 Datasets and ground truth generation

We train the proposed 21-layer CfS-CNN on the Princeton
ModelNet40 dataset [10] containing 12,311 shapes from 40
common categories. We use the same training and test split
as in [10] where 80% of the 3D objects in each category
are used for training and 20% are used for evaluating the
classification performance of the CfS-CNN.

Since mesh saliency concerned in this paper aims at
capturing what most people would classify as interest-
ing regions in meshes, we use human-picked 3D interest
points for evaluations. We test our method on the Schelling
dataset [5] which provides human-selected 3D interest
points (see Fig. 2) for a collection of 400 meshes belonging to

20 object categories. These meshes are all up oriented either
by the method proposed in [38] or manually. To generate a
per-vertex saliency map from the scattered interest points
for quantitative evaluation, we employ a strategy widely
used for evaluating image saliency methods: we project
a Gaussian distribution on a mesh where each vertex is
labeled by either 1 (representing interest point) or 0 (repre-
senting non-interest point) and vary the standard deviation
to generate different versions of the ground truth saliency
maps. When we evaluate our method on these ground truth
maps, we essentially estimate whether it can detect saliency
at different scales.

Note that human eye fixations could also be used as the
ground truth for evaluating mesh saliency. However, human
eye fixations are variant to view change, while we intend
to produce a saliency map which maps each vertex to a
fixed saliency value no matter how the viewpoint changes.
Another reason for choosing the Schelling dataset is that it is
much larger than existing eye fixation datasets. For example,
the dataset proposed in [6] contains 32 meshes and the one
proposed in [18] merely contains 5 meshes. As one of the
aims is to demonstrate the generalisation capability of our
approach, experiments on a larger dataset are more desired.

4.2 Classification results

Although CfS-CNN is primarily designed for weakly-
supervised mesh saliency, ultimately it is trained to perform
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TABLE 1
Classification results on the ModelNet40 dataset

Method #Views  View Selection Ckssmcatlon
ccuracy

Su-MVCNN [27] 12 30° elevation 89.9%
Su-MVCNN-avg 12 30° elevation 86.5%
Qi-MVCNN [31] 20 uniform 89.7%
Qi-MVCNN-avg 20 uniform 86.4%

CfS-CNN 12 30° elevation 87.9%

CfS-CNN 24 +30° elevation 88.3%

3D object classification. It is thus interesting to evaluate its
performance on the classification task. We compare CfS-
CNN against two state-of-the-art 3D object classification
methods [27], [31] and their invariants and show the results
in Table 1. We pick them for comparison because they are
also based on multiple 2D views and, trained on the Mod-
elNet40 dataset using a baseline VGG-19 model pre-trained
on ImageNet. Such similarity facilitates a straightforward
observation of the effect of saliency over classification.

We find that our method does not significantly hurt the
classification performance. Compared with the state-of-art
methods [27], [31] specifically designed for classification,
our method results in a small performance drop of 1 — 2%.
However, it outperforms the variants of both competing
methods where we replace the max-pooling scheme used
in both of them for synthesizing information from multiple
views with average pooling. Qi-MVCNN [31] is largely
the same as Su-MVCNN [27] but using a different view
selection scheme. Although it uses more views, it is still
slightly outperformed by Su-MVCNN. Therefore, not all
the views have positive contribution to the classification. So
average pooling is generally outperformed by max pooling.
The SP layer of our Cf5-CNN essentially pools the views as
a weighted average, which might reduce the contribution
of those bad views but does not rule them out completely.
And it seems that views with 30° elevation are generally
good choices. Furthermore, that we use 24 views rather than
12 is not driven by the incremental boost of classification
performance, but simply because we find that for some
objects such as chairs and tables, a large portion of vertices
cannot be covered by only 12 views with 30° elevation. In
most cases, the 24-view setup guarantees that most vertices
of a mesh are visible in at least one view, which facilitates
the computation of their saliency.

4.3 Qualitative saliency results

Fig. 2 shows the saliency maps for a variety of 3D objects
and the Schelling points [5] of the corresponding objects.
One observation is that these saliency maps are highly
consistent with the human-generated 3D interest points.
Another observation is that objects of the same class tend
to have analogous saliency distributions. Fig. 3 also demon-
strates this observation where we compare our methods
with other state-of-the-art ones. It can be seen that for the
models of humans and quadrupeds, our method reliably
detects features around the head or the facial region as
salient, a behaviour consistent with the ground truth shown
in Fig. 2. In comparison, other methods failed to do so. Our
method also reliably detects hands and feet of humans or

Shilane

Lee

Fig. 3. Saliency detected by our method (top row) and the competing
methods (bottom row) including: Lee [1], Shaline [2], Song [23], Tao [40]
and Leifman [3].

quadrupeds as salient even if the legs are occluded as shown
in the first and the second models (Isis and Stanford Bunny)
in Fig. 3. This is also desired according to the ground truth
of the objects of the same classes shown in Fig. 2.

4.4 Quantitative saliency results

To compare different methods for mesh saliency, we need
to measure the similarity between the ground truth de-
rived from humans and the saliency map produced by a
competing method. In this work, the ground truth saliency
maps are generated through applying Gaussian blurring
to the Schelling points as mentioned in Section 4.1. Many
metrics have been proposed for evaluating methods for
image saliency. Bylinskii et al. [39] provided an analysis
of 8 different metrics and their properties. According to
their recommendations, we selected the Pearson’s Linear
Correlation Coefficient (CC), computed as

cov(H,T)

OHOT

CC(H,T)= (12)
where H and T are the saliency maps produced by a
competing method and the ground truth respectively.

We also selected the area under the ROC curve (AUC)
suggested in [6]. The ground truth maps are thresholded
to be converted into binary maps (in our experiments we
threshold to obtain M vertices considered as salient vertices
and M is equal to the number of human-selected Schelling
points on the 3D object). The saliency map produced by
a competing method is then treated as a binary classifier
of these salient vertices. The ROC curve represents the
relationship between the probability of false positives and
the probability of true positives and is obtained by varying
the decision threshold on the saliency map. The AUC can
then be used as a direct indicator of performance.

As mentioned in Section 3.4, for each viewpoint, the
view-based saliency of the vertices invisible to it are set to a
constant 3. This can be interpreted as a view-based prior as-
signed to the invisible vertices. However, since it is difficult
to create a likelihood model to estimate the representation
of such a prior based on the posterior knowledge of the
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Performance on the Schelling dataset in terms of Pearson’s Correlation Coefficient (CC). o denotes the standard deviation of the Gaussian used to

Performance on the Schelling dataset in terms of area under ROC curve (AUC). o denotes the standard deviation of the Gaussian used to

TABLE 2

generate the pseudo ground truth for mesh saliency. B is the length of the diagonal of the bounding box of the mesh.

Method c=0.1B 0=012B o0¢=014B o0¢=0.16B o0¢=0.18B o¢=0.2B
Multi-scale Gaussian [1] 0.223 0.213 0.202 0.193 0.186 0.179
Admissible Diffusion Wavelets [41] 0.101 0.091 0.082 0.074 0.068 0.063
Spectral Processing [23] 0.324 0.322 0.313 0.301 0.293 0.284
Salient Regions [3] 0.437 0.421 0.402 0.376 0.360 0.340
Local-to-Global Saliency [25] 0.407 0.390 0.372 0.354 0.340 0.324
CfS-CNN (our method) 0.455 0.457 0.454 0.447 0.439 0.427
TABLE 3

generate the pseudo ground truth for mesh saliency. B is the length of the diagonal of the bounding box of the mesh.

Method c=01B o0=012B o¢=0.14B o0¢=0.16B o¢=0.18B o0=0.2B
Multi-scale Gaussian [1] 0.700 0.701 0.707 0.705 0.700 0.696
Admissible Diffusion Wavelets [41] 0.777 0.757 0.762 0.755 0.745 0.738
Spectral Processing [23] 0.811 0.814 0.814 0.810 0.804 0.805
Salient Regions [3] 0.855 0.861 0.863 0.870 0.861 0.858
Local-to-Global Saliency [25] 0.856 0.859 0.871 0.867 0.861 0.859
CfS-CNN (our method) 0.892 0.897 0.899 0.900 0.903 0.898

TABLE 4
Evaluation of the effectiveness of the saliency channel using the
Schelling dataset in terms of CC and AUC. ¢ is the standard deviation
of the Gaussian used to generate the pseudo ground truth for mesh
saliency. Bis the length of the diagonal of the bounding box of the mesh.

Metrics w/ saliency channel ~w/o saliency channel
CC(c =0.1B) 0.455 0416
CC (0 = 0.16B) 0.447 0.396
AUC (¢ =0.1B) 0.892 0.848
AUC (o = 0.16B) 0.900 0.861

visible vertices, 3 is just set to a constant and its value is
picked empirically. To implement a quantitative evaluation,
we make 3 trials (8 = 0,0.5 and 1 respectively) and select
the top-performing one for each 3D object although fine-
tuning it will further improve the performance.

Tables 2 and 3 show the overall performance of a selec-
tion of state-of-the-art methods on the Schelling dataset in
terms of CC and AUC. For CC, 1 represents perfect positive
linear relation, 0 represents no relation and —1 represents
perfect negative relation. For AUC, 1 represents a perfect
classification while 0.5 represents a random one. Both per-
formance metrics demonstrate that our method significantly
outperforms all the competing methods. The results indicate
that our method can generalise well since some object cate-
gories in the testing dataset were not observed during train-
ing. This might be because the baseline network of our CfS-
CNN is a multi-view CNN pre-trained on ImageNet images
from 1k categories although ModelNet40 merely contains
40 categories. This is clearly a benefit derived from the
idea of weak supervision since saliency annotations across a
large number of object categories are very expensive. It also
benefits 3D scene saliency since typically a scene does not
belong to any single object category.

4.5 The effect of the saliency channel of the CfS-CNN

To evaluate the effectiveness of the proposed saliency chan-
nel shown in Fig. 1, we carry out an ablation study where

we compare the CfS-CNN with its ablated version. In the
ablated version, the VS and the SP layers which compose the
saliency channel are removed and we use the view-pooling
layer (essentially a max-pooling layer) proposed in [27] to
aggregate the outputs from multiple views. The ablated
method thus computes saliency solely from the classifica-
tion knowledge. For multi-view saliency synthesis, w;s in
Eq. (11) are all set to 1 since \5; is not available in the ablated
network. All the other components of our method remain
the same. Tables 4 shows the result of the ablation study
and the quantitative evaluation per class of the ablated
method can be found in the supplementary material. We
can see that the saliency channel significantly improves the
performance of the neural network in terms of CC and AUC.
It demonstrates that although the saliency channel leads to
a small drop over classification performance, its effect on
mesh saliency provides a considerable benefit.

4.6 How well the features learned for 3D object classi-
fication are transferred to mesh saliency?

As mentioned in Section 3.2, how well the features learned
through a base task is transferred to a target task depends
on how “close” the target task is to the base task [33]. While
the seminal paper [33] provided an analysis on this issue
from a network-specific perspective (i.e. how well features
produced by a particular layer of a network transfer from
one task to another) in the context of 2D image classification,
we investigate this question from a task-specific perspective.
We observed from the visual results in Fig. 2 that the objects
of the same class tend to have similar saliency distributions.
Fig. 4 shows the quantitative performance per class of
our method through one AUC plot while more plots per
class (including AUC and CC plots with varying os and
a Normalized Scanpath Saliency (NSS) plot) are available in
the supplementary material. It can be seen that for the object
classes with top performances such as Fish, Person and
Quadruped, the salient features (such as head, hands and
feet) are also important for classifying the objects. Although
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Fig. 4. AUC values per class for our method (¢ = 0.16B).
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Fig. 5. A failure case of mesh saliency. Left: mesh saliency produced by
our method; Right: the Schelling points marked by the human subjects.
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Fig. 6. Saliency maps of the Angel meshes containing significantly
different numbers of triangle faces.

the cognitive mechanism of predicting visual saliency is
quite complicated, human perception systems do have the
capability of quickly recognising most objects without re-
quiring a slow process of scrutiny but through focusing
on just important features [42]. Hence, if the perceptually
important salient features are consistent with those that
are highly discriminative, the features learned for object
classification will be transferred to mesh saliency very well.
As we observed in Fig. 4, our method performs well in most
classes with AUC higher than 0.8, demonstrating a good
transfer of such features although this is not the case for the
few object classes with lowest performances. For instance,
some salient features of glasses such as the centres of the
lens picked by human participants in the Schelling dataset
as shown in Fig. 5 are not so discriminative since similar
features (i.e. a region of planar/slightly curved surface) can
be found in the objects of many other classes.

4.7 Consistency over different levels of simplification
and efficiency

It is believed that human visual attention is not sensitive
to the spatial resolutions since humans can quickly find
the salient features without a slow process of scrutinising
the details [42]. It is thus desirable that 3D meshes of the

Run times for computing the saliency of some meshes or scenes listed
in the paper. Please refer to Table 1 in the supplementary material for
the run times of all meshes and scenes listed in the paper.

Mesh or Scene #Vertices | Run Time (sec.)
Armadillo (Fig. 2) 25.3K 26.04
Cavalry regiment (Fig. 7) 496.7K 137.41
Dining room (Fig. 10) 112.0K 53.97
Dolphin (Fig. 2) 7.6K 21.69
Feline (Fig. 3) 129.0K 51.73
Isis (Fig. 3) 187.6K 64.93
Knights (Fig. 7) 19.5K 45.59
Skateboarding (Fig. 8) 12.6K 39.94
Table (Fig. 2) 13.9K 23.03
Teapot (Fig. 2) 6.9K 21.90

same object with different numbers of vertices and triangle
faces should have highly consistent saliency maps. We thus
carried out an experiment where the input mesh of Angel is
subject to different levels of simplification. Fig. 6 shows the
results and demonstrates that even if the number of faces
of each mesh differs significantly, their estimated saliency
maps are still consistent.

Table 5 shows the run times of 10 models (selected with
significantly varying numbers of vertices) listed in this work
where we used a computer with an Intel i7-4790 3.6GHz
CPU and 32GB RAM without any GPU acceleration. We
further reported the run times of all meshes and scenes
listed in this paper in Table 1 in the supplementary material.
It can be seen that the run time of our method increases
only slowly as the number of vertices of the input meshes
increases. In general, our method is much faster than some
competing approaches such as [22], [40].

5 3D SCENE SALIENCY AND ITS APPLICATIONS

Mesh saliency has been applied to best view selection and
mesh simplification of a single object [1], [2], [3], [23]. For
novelty purpose, we extend such applications to 3D scenes
composed of multiple objects. In this section, we first show
and analyze some scene saliency results. Then we show how
to use scene saliency to detect the best views of a scene and
simplify a scene through scene cropping.

The CfS-CNN is based on a multi-view setup. For a
scene, each view encodes the information related to the
global positional relationship of multiple objects in it. Thus
our method can be directly used for scene saliency.

To analyse the behaviour of scene saliency, we specif-
ically select some scenes composed of similar objects and
show their saliency in Fig. 7. Compared with a single horse,
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Fig. 7. Examples of mesh and mesh-based 3D scene saliency. Our method can produce saliency maps for not only a single mesh such as a person
or a horse, but also 3D scenes containing multiple meshes such as a jockey riding a horse, a row of knights, or even a cavalry regiment.
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Domestic pig

Skateboarding
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Conference room

Fig. 8. Saliency of various 3D scenes

in the scenes of jockey’, ‘’knights” and ‘cavalry regiment’, the
saliency of the horses, particularly their feet is consistently
suppressed due to the coexistence of the humans, which
shows that scene saliency is not just a simple concatenation
of the saliency of multiple meshes computed individually.
However, in the ‘person and horse’ scene, the saliency of
the horse is similar to that of a single horse. We have a
similar observation on the ‘person and cow’ scene where
the person and the cow also appear side by side. This means
that the saliency of a scene depends on not only the objects
it contains, but also the way they coexist.

Jug and table

Living room

Coffee table

Standing and sitting people

We further check the 40-dimensional prediction vector
output by the Cf5-CNN. We found that, for the “person and
horse’ scene, this vector has large elements corresponding
to the classes of ‘person” and ‘quadruped’. We also have a
similar finding for the ‘person and cow’ scene. But for the
three riding scenes in Fig. 7, both of the two elements are
relatively small. Consequently, features such as feet impor-
tant for classifying a scene as ‘person’ or ‘quadruped’ are
highlighted in the ‘person and horse” and the ‘person and
cow’ scenes but suppressed in the riding scenes. This means
that recognising the person and the horse is easier in the
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and the bars corresponding to the largest and the smallest view scores are shown in green and red respectively.
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Fig. 10. The best and the worst views of a dining room scene (see Fig. 35 in the supplementary material for the visualised saliency of the scene).

‘person and horse’ scene than in the riding scenes. We infer
that this is because the individual contour of each of the two
objects is well preserved in some views of the ‘person and
horse’ scene, but not in the riding scenes due to the different
ways that they coexist. Note that contours are important
for humans to recognise objects, particularly when colour
information is not available. We also observed that in the
scenes ‘person and horse’ and ‘person and cow’, the feet
and legs of the horse and the cow are more salient than
those of the persons. This is because they are very important
features for classifying horse and cow (as quadruped) but
not equally important for person. The head and the hands
are more important features for classifying person.

Fig. 8 shows the saliency of some other scenes. More
visual results on scene saliency are available in the supple-
mentary material. Again, we observe that whether an object
is presented independently or in a scene has a great impact
on its saliency. For example, in Fig. 2, we observed that
the handle of a mug is usually more salient than the other
regions in it but in the scenes ‘jug and table’ and ‘coffee

table” in Fig. 8, each mug in general is salient such that its
handle is as salient as the other regions in it. In Fig. 2, when
the table and chair appear alone there are variations in the
saliency of their components, but in the scenes ‘conference
room’ and ‘workstation” where they appear jointly, saliency
changes greatly: the saliency of the table as a whole is
suppressed with many originally salient local features such
as some sharp edges and corners becoming not salient while
each chair, as a whole becomes salient. Similarly, a person
has his or her own salient features (e.g, head, hands, feet)
if presented individually (see Fig. 2) or in some scenes (e.g.
the ‘knights’ scene in Fig. 7, the ‘standing and sitting people’
scene in Fig. 8 and Fig. 33 in the supplementary material).
But in some other scenes (e.g. the ‘skateboarding’ scene in
Fig. 8 and Fig. 34 in the supplementary material) where most
objects tend to be recognised as background by humans, the
person as a whole is detected as salient.

Different from the well-established research on depth-
based scene understanding, mesh-based scene understand-
ing is free from some vision biases such as centre bias and
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Fig. 12. Saliency-guided cropping of the ‘living room’ scene

viewing bias [39]. Also, a 3D mesh is usually more infor-
mative and less ambiguous than a depth image. Certainly,
in some cases, it is expensive to obtain a complete mesh
representation of a scene. So mesh-based scene saliency can
be a good complement to the depth-based one. To prove this
claim, we showcase two applications that mesh-based scene
saliency can support but the depth-based one cannot.

5.1 Application 1: Best view selection of 3D scenes

Researchers [37], [43] in computer vision and graphics have
explored the question of what are good views of a 3D object.
A related question derived from it is how to select the best
view of a 3D scene containing multiple objects where each
object typically has its own best view when appearing inde-
pendently. In many cases, this problem is well defined and
can be answered with sufficient consistency and confidence.

We propose to use scene saliency for the best view
selection of 3D scenes. The best view V}, of a scene is found
by V;, = arg max; L where the view score L, is calculated as

Si Y m Hm (Vi)
55 (85 S Hn (V)

H,,(V;) denotes the view-based 3D saliency of a vertex m.
S is the the output of the VS layer of the CfS-CNN where
each of its entry S; represents the saliency of the view
V;. Therefore, according to Eq. (13), the best view should
be salient in comparison with other views and meanwhile
contain a large number of salient vertices. Similarly, the
worst view V,, is found by V,, = arg min, L.

Figs. 9 and 10 show the best and the worst views of two
scenes found by our method. According to the view scores
shown in Fig. 9, the view with (azimuth = 90, elevation =
30) which is the symmetric view of the detected best view
(90, —30) but looking downward is also a good view. Sim-
ilarly, in Fig. 10, the best view is (0,30) while the view
(180, 30) corresponding to the viewpoint from the other
side of the scene is also a good view. These findings are
consistent with human perception. Also, the best view of
a scene is not necessarily the best view of each individual
object in it. For example, in Fig. 9, the best view of the entire

L= (13)

12

scene is not that of the stairs or the handrail. In Fig. 10, the
best view of the scene might not be that of some chairs.

5.2 Application 2: Saliency-guided scene cropping

Image cropping is one of the most basic processes of image
manipulation. It is the user-controlled removal of the outer
peripheral areas from an image. We extend this idea to 3D.
To crop a scene, we introduce a saliency-guided approach
where the peripheral objects are found by computing the
object-level saliency.

In detail, given a 3D scene, we first find all of the
disconnected objects it contains by checking the connectiv-
ity stored in the face matrix. The saliency of a particular
object is then computed as the mean saliency of all vertices
it contains. Finally, we rank the objects appearing in the
scene based on their object-level saliency. To perform scene
cropping, the users just need to indicate an integer K
representing the number of objects they want to preserve
from the scene. The cropped scene is then composed of the
top IV salient objects from the original scene.

Figs. 11 and 12 show the cropping results of two 3D
scenes. Their saliency maps can be found in Fig. 8. When
K is small, only the most salient objects are preserved.
Gradually increasing K adds more and more objects which
are less and less salient. In Fig. 11, setting K = 1 extracts the
leg and the foot of the pig since they are the most important
features to classify a pig as quadruped. In Fig. 12, less salient
objects such as pillows are preserved for a large K.

6 CONCLUSIONS AND FUTURE WORK

We proposed a novel deep neural network for learning a
vertex-level annotation, mesh saliency, from an object-level
annotation, class membership of 3D objects. The network,
namely CfS-CNN, is trained end-to-end in a weakly super-
vised manner. Our work reveals that the knowledge of 3D
objects learned through a sufficiently deep neural network
trained on classification datasets may be transferable to
another 3D object understanding task as long as proper
heuristics related to the particular task are introduced to
guide the feature detection process. We believe that this
finding is of broad interest since it provides a promising way
to handle potentially challenging 3D object understanding
problems hindered by the lack of large-scale fully and con-
sistently annotated training datasets. Therefore, motivated
by the performance of this work, one future work is to adapt
the proposed approach by considering new heuristics to
other 3D object understanding tasks under a certain transfer
learning framework.

Also, the current work is not completely invariant to
object orientation due to the view-based nature of the CfS-
CNN. So another area for future work is a preprocessing
scheme for intelligently generating a small number of self-
adaptive views of 3D objects and scenes in the hope that the
method can be more stable and efficient.
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