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Abstract: In this paper we define a new linearity measure which can be applied to open curve segments. The new

measure ranges over the interval (0,1], and produces the value 1 if and only if the measured line is a perfect

straight line segment. Also, the new linearity measure is invariant with respect to translations, rotations and

scaling transformations.

1 INTRODUCTION

Shape descriptors have been employed in many com-

puter vision and image processing tasks (e.g. image

retrieval, object classification, object recognition, ob-

ject identification, etc). Different mathematical tools

have been used to define the shape descriptors: alge-

braic invariants (Hu, 1962), Fourier analysis (Bow-

man et al., 2001), morphological operations (Ruberto

and Dempster, 2000), integral transformations (Rahtu

et al., 2006), statistical methods (Melter et al., 1993),

fractal techniques (Imre, 2009), logic (Schweitzer and

Straach, 1998), multiscale approaches (Direkoglu and

Nixon, 2011), integral invariants (Manay et al., 2006),

etc. Generally speaking, shape descriptors can be

classified into two groups: area based descriptors and

boundary based ones. Area based descriptors are

more robust (i.e. less sensitive to noise or shape defor-

mations) while boundary based descriptors are more

sensitive. A preference for either type of descriptor

depends on the application performed and the data

available. For example low quality data would re-

quire robust descriptors (i.e. area based ones) while

high precision tasks would require more sensitive de-

scriptors (i.e. boundary based ones). In the literature

so far, more attention has been paid to the area based

descriptors, not only because of their robustness but

also because they are easier to be efficiently estimated

when working with discrete data. Due to the re-

cent proliferation of image verification, identification

and recognition systems there is a strong demand for

shape properties that can be derived from their bound-

aries (Manay et al., 2006; Mio et al., 2007). It is worth

mentioning that some objects, like human signatures

for example, are linear by their nature and area based

descriptors cannot be used for their analysis.

In this paper we deal with linearity measures that

should indicate the degree to which an open curve

segment differs from a perfect straight line segment.

Several linearity measures for curve segments are al-

ready considered in the literature (Gautama et al.,

2004; Gautama et al., 2003; Stojmenović et al., 2008;

Žunić and Rosin, 2011).

Perhaps the simplest way to define the linearity

measure of an open curve segment is to consider the

ratio between the length of the curve considered and

the distance between its end points. This is a natural

and simple definition which is also called the straight-

ness index (Benhamou, 2004). It satisfies the follow-

ing basic requirements for a linearity measure of open

curve segments.

• The straightness index varies through the interval

(0,1];

• The straightness index equals 1 only for straight

line segments;

• The straightness index is invariant with respect to

translation, rotation and scaling transformation on

a curve considered.

Also, the straightness index is simple to compute and

its behavior can be clearly predicted, i.e. we can see

easily which curves have the same linearities, mea-

sured by the straightness index. It is obvious that

those curves whose end points and the length coin-

cide, have the same straightness index. But the diver-

sity of such curves is huge and the straightness index



cannot distinguish among them, which could be a big

drawback in certain applications. Some illustrations

using simple polygonal curves are shown in Fig. 1.

0.632 0.518 0.500 0.478 0.461

Figure 1: Five displayed curves (solid lines) have different
linearities measured by L(C ). The straightness index has
the same value for all three curves.

In this paper we define a new linearity measure

L(C ) for open curve segments. The new measure sat-

isfies the basic requirements (listed above) which are

expected to be satisfied for any curve linearity mea-

sure. Since it considers the distance of the end points

of the curve to the centroid of the curve, the new mea-

sure is also easy to compute. The fact that it uses the

curve centroids implies that it takes into account a rel-

ative distribution of the curve points.

The paper is organized as follows. Section 2 gives

basic definitions and denotation. The new linearity

measure for planar open curve segments is in Section

3. Several experiments which illustrate the behavior

and the classification power of the new linearity mea-

sure are provided in Section 4. Concluding remarks

are in Section 5.

2 DEFINITIONS AND

DENOTATIONS

Without loss of generality, throughout the paper,

it will be assumed (even if not mentioned) that every

curve C has length equal to 1 and is given in an arc-

length parametrization. I.e., planar curve segment C

is represented as:

x = x(s), y = y(s), where s ∈ [0,1].

The parameter s measures the distance of the point

(x(s),y(s)) from the curve start point (x(0),y(0)),
along the curve C .

The centroid of a given planar curve C will be de-

noted by (xC ,yC ) and computed as

(xC ,yC ) =

(
Z

C
x(s) ds,

Z

C
y(s) ds

)
. (1)

Taking into account that the length of C is as-

sumed to be equal to 1, we can see that the coordi-

nates of the curve centroid, as defined in (1), are the

average values of the curve points.

As usual,

d2(A,B) =
√

(x−u)2 +(y− v)2

will denote the Euclidean distance between the points

A = (x,y) and B = (u,v).
As mentioned, we introduce a new linearity mea-

sure L(C ) which assigns a number from the interval

(0,1]. The curve C is assumed to have the length 1.

More precisely, any appearing curve will be scaled by

the factor which equals the length of it before the pro-

cessing. So, an arbitrary curve C would be replaced

with the curve C defined by

C =
1

R

Ca

ds
·Ca =
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R
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Shape descriptors/measures are very useful for

discrimination among the objects – in this case open

curve segments. Usually the shape descriptors have a

clear geometric meaning and, consequently, the shape

measures assigned to such descriptors have a pre-

dictable behavior. This is an advantage because the

suitability of a certain measure to a particular shape-

based task (object matching, object classification, etc)

can be predicted to some extent. On the other hand, a

shape measure assigns to each object (here curve seg-

ment) a single number. In order to increase the perfor-

mance of shape based tasks, a common approach is to

assign a graph (instead of a number) to each object.

E.g. such approaches define shape signature descrip-

tors, which are also ‘graph’ representations of planar

shapes, often used in shape analysis tasks (El-ghazal

et al., 2009; Zhang and Lu, 2005), but they differ from

the idea used here.

We will apply a similar idea here as well. To

compare objects considered we use linearity plots to

provide more information than a single linearity mea-

surement. The idea is to compute linearity incremen-

tally, i.e. to compute linearity of sub-segments of C

determined by the start point of C and another point

which moves along the curve C from the beginning

of to the end of C . The linearity plot P(C ), associated

with the given curve C is formally defined as follows.

Definition 1. Let C be a curve given in an arc-length

parametrization: x = x(s), y = y(s), and s∈ [0,1]. Let

A(s) be the part of the curve C bounded by the start-

ing point (x(0),y(0)) and by the point (x(s),y(s))∈C .

Then, for a linearity measure L , the linearity plot

P(C ) is defined by:

P(C ) = {(s,L(A(s)) | s ∈ [0,1]}. (2)

We also will use the reverse linearity plot Prev(C )
defined as:

Prev(C ) = {(s,L(Arev(1− s)) | s ∈ [0,1]}, (3)

where Arev(1− s) is the segment of the curve C de-

termined by the end point (x(1),y(1)) of C and the



point which moves from the end point of C , to the

start point of C , along the curve C . In other words,

Prev(C ) is the linearity plot of the curve C ′ which co-

incides with the curve C but the start (end) point of

C is the end (start) point of C ′. A parametrization of

C ′ can be obtained by replacing the parameter s, in

the parametrization of C , by a new parameter s′ such

that s′ = 1− s. Obviously such a defined s′ measures

the distance of the point (x(s′),y(s′)) from the starting

point (x(s′ = 0),y(s′ = 0)) of C ′ along the curve C ′,

as s′ varies through the interval [0,1].

3 NEW LINEARITY MEASURE

FOR OPEN CURVE SEGMENTS

In this section we introduce a new linearity mea-

sure for open planar curve segments.

We start with the following theorem which says

that amongst all curves having the same length,

straight line segments have the largest sum of dis-

tances between the curve end points to the curve cen-

troid. This result will be exploited to define the new

linearity measure for open curve segments.

Theorem 1. Let C be an open curve segment given in

an arc-length parametrization x = x(s), y = y(s), and

s ∈ [0,1]. The following statements hold:

(a) The sum of distances of the end points (x(0),y(0))
and (x(1),y(1)) from the centroid (xC ,yC ) of the

curve C is bounded from above by 1, i.e.:

d2((x(0),y(0)),(xC ,yC ))

+ d2((x(1),y(1)),(xC ,yC ))

≤ 1. (4)

(b) The upper bound established by the previous item

is reached by the straight line segment and, con-

sequently, cannot be improved.

Proof. Let C be a curve given in an arc-length

parametrization: x = x(s) and y = y(s), with s ∈ [0,1],
and let S = (x(0),y(0)) and E = (x(1),y(1)) be the

end points of C . We can assume, without loss of gen-

erality, that the curve segment C is positioned such

that

• the end points S and E belong to the x-axis (i.e.

y(0) = y(1) = 0), and

• S and E are symmetric with respect to the origin

(i.e. −x(0) = x(1)),

as illustrated in Fig. 2. Furthermore, let

E = {X = (x,y) | d2(X ,S)+d2(X ,E) = 1}

be an ellipse which consists of points whose sum of

distances to the points S and E is equal 1. Now, we

prove (a) in two steps.

(i) First, we prove that the curve C and the ellipse E

do not have more than one intersection point (i.e.

C belongs to the closed region bounded by E).

This will be proven by a contradiction. So, let

us assume the contrary, that C intersects E at k

(k ≥ 2) points:

(x(s1),y(s1)), (x(s2),y(s2)), ..., (x(sk),y(sk)),

where 0 < s1 < s2 < .. . < sk < 1. Let A =
(x(s1),y(s1)) and B = (x(sk),y(sk)). Since the

sum of the lengths of the straight line segments

[SA] and [AE] is equal to 1, the length of the poly-

line SABE is, by the triangle inequality, bigger

than 1. Since the length of the arc ŜA (along the

curve C ) is not smaller than the length of the edge

[SA], the length of the arc ÂB (along the curve

C ) is not smaller than the length of the straight

line segment [AB], and the length of the arc B̂E

(along the curve C ) is not smaller than the length

of the straight line segment [BE], we deduce that

the curve C has length bigger than 1, which is a

contradiction. A more formal derivation of the

contradiction 1 < 1 is

1 = d2(S,A)+d2(A,E)

< d2(S,A)+d2(A,B)+d2(B,E)

≤
Z

ŜA

ds+
Z

ÂB

ds+
Z

B̂E

ds =
Z

C

ds

= 1. (5)

So, C and E do not have more than one intersec-

tion point, implying that C lies in the closed re-

gion bounded by E .

(ii) Second, we prove that the centroid of C does not

lie outside of E .

The proof follows easily:

– the convex hull CH(C ) of C is the smallest con-

vex set which includes C and, consequently, is

a subset of the region bounded by E ;

– The centroid of C lies in the convex hull CH(C )
of C because it belongs to every half plane

which includes C (the intersection of such half

planes is actually the convex hull of C (see

(Valentine, 1964)));

– the two items above give the required:

(xC ,yC ) ∈CH(C ) ⊂ region bounded by E .

Finally, since the centroid of C does not lie

outside E , the sum of the distances of the centroid

(xC ,yC ) of C to the points S and E may not be bigger

than 1, i.e.

d2((x(0),y(0)),(xC ,yC ))+d2((x(1),y(1)),(xC ,yC ))
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Figure 2: Denotations in the proof of Theorem 1 are illustrated above.

= d2(S,(xC ,yC ))+d2(E,(xC ,yC ))

≤ 1.

This establishes (a).

To prove (b) it is enough to notice that if C is a

straight line segment of length 1, then the sum of its

end points to the centroid of C is 1. �

Now, motivated by the results of Theorem 1, we

give the following definition for a new linearity mea-

sure L(C ) for open curve segments.

Definition 2. Let C be an open curve segment. Then,

the linearity measure L(C ) of C is defined as the sum

of distances between the centroid (xC ,yC ) of C and

the end points of C . I.e.:

L(C ) =
√

(x(0)− xC )2 +(y(0)− yC )2

+
√

(x(1)− xC )2 +(y(1)− yC )2

where x = x(s), y = y(s), s ∈ [0,1] is an arc-length

representation of C .

The following theorem summarizes desirable

properties of L(C ).

Theorem 2. The linearity measure L(C ) has the fol-

lowing properties:

(i) L(C ) ∈ (0,1], for all open curve segments C ;

(ii) L(C ) = 1 ⇔ C is a straight line segment;

(iii) L(C ) is invariant with respect to the similarity

transformations.

Proof. Item (i) is a direct consequences of Theo-

rem 1.

To prove (ii) we will use the same notations as in

the proof of Theorem 1 and give a proof by contradic-

tion. So, let assume the following:

– the curve C differs from a straight line segment, and

– the sum of distances between the end points, and the

centroid of C is 1.

Since C is not a straight line segment, then d2(S,E) <

1, and the centroid (xC ,yC ) lies on the ellipse E =
{X = (x,y) | d2(X ,S) + d2(X ,E) = 1}. Further, it

would mean that there are points of the curve C be-

longing to both hyperplanes determined by the tan-

gent on the ellipse E passing through the centroid of

C . This would contradict the fact that C and E do

not have more than one intersection point (what was

proven as a part of the proof of Theorem 1).

To prove item (iii) it is enough to notice that trans-

lations and rotations do not change the distance be-

tween the centroid and the end points. Since we as-

sume that C is represented by using an arc-length

parametrization: x = x(s), y = y(s), with the parame-

ter s varying through [0,1], the new linearity measure

L(C ) is invariant with respect to scaling transforma-

tions as well. �

4 EXPERIMENTS

In this section we provide several experiments in

order to illustrate the behavior and efficiency of the

linearity measure introduced here.

First experiment: Behavior Illustration. To

demonstrate how various shapes produce a range of

linearity values, figure 3 shows the first two samples

of each handwritten digit (0–9) from the training set

captured by Alimoğlu and Alpaydin (Alimoğlu and

Alpaydin, 2001) plotted in a 2D feature space of

linearity L(C ) versus rectilinearity R1(C ) (Žunić and

Rosin, 2003).

Despite the variability of hand writing, most pairs

of the same digit are reasonably clustered. The major

separations occur for:

– “2” since only one instance has a loop in the mid-

dle;
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Figure 3: Handwritten digits ordered by linearity and recti-
linearity.

– “4” since the instance next to the pair of “7”s is

missing the vertical stroke;

– “5” since the uppermost right instance is missing

the horizontal stroke.

Second experiment: Filtering edges. Figure 4

shows the application of the linearity to filtering

edges. The edges were extracted from the images us-

ing the Canny detector (Canny, 1986), connected into

curves, and then thresholded according to total edge

magnitude and length (Rosin, 1997). Linearity was

measured in local sections of curve of length 25, and

sections above (or below) a linearity threshold were

retained. It can be seen that retaining sections of curve

with L(C ) < 0.5 finds small noisy or corner sec-

tions. Keeping sections of curve with L(C ) > 0.9 or

L(C ) > 0.95 identifies most of the significant struc-

tures in the image.

Experiments are also shown in which Poisson im-

age reconstruction is performed from the image gradi-

ents (Pérez et al., 2003). In figure 5b all the connected

edges with minimum length of 25 pixels (shown at

the bottom of the first column in figure 4) are used

as a mask to eliminate all other edges before recon-

struction. Some fine detail is removed as expected

since small and weak edges have been removed in

the pre-processing stage. When linearity filtering is

applied, and only edges corresponding to sections of

curve with L(C ) > 0.95 are used (see bottom of the

fourth column in figure 5) then the image reconstruc-

tion retains only regions that are locally linear struc-

tures (including sections of large circular objects).

Third experiment: Signature verification. For

the second application we use data from Munich and

Perona (Munich and Perona, 2003) to perform signa-

ture verification. The data consists of pen trajectories

(a)

(b)

(c)

Figure 5: Reconstructing the image from its filtered edges.
(a) original intensity image; (b) image reconstructed using
all connected edges (minimum length: 25 pixels); (c) image
reconstructed using sections of curve with L(C ) > 0.95.

for 2911 genuine signatures taken from 112 subjects,

plus five forgers provided a total of 1061 forgeries

across all the subjects. Examples of corresponding

genuine and forged signatures are shown in Figure 6.

To compare signatures we use the linearity plots de-

fined by (2) and (3) to provide more information than



Figure 4: Filtering connected edges by linearity. Left/first column: connected edges (minimum length: 25 pixels); second
column: sections of curve with L(C ) < 0.5; third column: sections of curve with L(C ) > 0.9; fourth column: sections of
curve with L(C ) > 0.95.



a single linearity measurement. Linearity plot exam-

ples are in figure 7.

Figure 6: Examples of genuine (first and third rows) and
forged (second and fourth rows) signatures.
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Figure 7: Examples of linearity plots for the genuine sig-
natures (top row) and the forged signatures (bottom row) in
figure 6.

The quality of match between signatures C1 and

C2 is measured by the similarity between the linear-

ity plots P(C1) and P(C2). This similarity is measured

by the area bounded by the linearity plots P(C1) and

P(C2) and by the vertical lines s = 0 and s = 1. Fig-

ure 7 demonstrates the linearity plots for the signa-

tures shown in figure 6. The plots in the first (second

respectively) row contain the three genuine (forged

respectively) signatures from figure 6.

Nearest neighbour matching is then performed on

all the data using the leave-one-out strategy. Signature

verification is a two class (genuine or fake) problem.

Since the identity of the signature is already known,

the nearest neighbour matching is only applied to the

set of genuine and forged examples of the subject’s

signature. Computing linearity of the signatures us-

ing L(C ) produces 96.9% accuracy. This improves

the results obtained by using the linearity measure

defined in (Žunić and Rosin, 2011) which achieved

93.1% accuracy.

5 CONCLUSION

This paper has described a new shape descriptor

L(C ) for computing the linearity of open curve seg-

ments. It is both extremely simple to implement and

efficient to compute. In addition, it satisfies the basic

requirements for a linearity measure:

• L(C ) is in the interval (0,1];

• L(C ) equals 1 only for straight line segments;

• L(C ) is invariant with respect to translation, rota-

tion and scaling transformation on a curve consid-

ered.

Finally, experiments show the effectiveness of the

new linearity measure on a variety of tasks.
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