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Abstract Humans have the ability to perceive 3D shapes
from 2D projections of rotating 3D objects, which is called
Kinetic Depth Effects. This process is based on a variety of
visual cues such as lighting and shading effects. However,
when such cues are weakened or missing, perception can
become faulty, as demonstrated by the famous silhouette
illusion example – the Spinning Dancer. Inspired by this,
we establish objective and subjective evaluation models of
rotated 3D objects by taking their projected 2D images
as input. We investigate five different cues: ambient
luminance, shading, rotation speed, perspective, and color
difference between the objects and background. In the
objective evaluation model, we first apply 3D reconstruction
algorithms to obtain an objective reconstruction quality
metric, and then use a quadratic stepwise regression analysis
method to determine the weights among depth cues to
represent the reconstruction quality. In the subjective
evaluation model, we design a comprehensive user study to
reveal correlations on the reaction time/accuracy, rotation
speed, and the perspective. The two evaluation models
are generally consistent, and can largely benefit the
inter-disciplinary research of visual perception and 3D
reconstruction.
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Fig. 1 The Spinning Dancer. Due to the lack of visual cues, it confuses humans
as to whether rotation is clockwise or counterclockwise. Here we show 3 of 34
frames from the original animation [? ]. Image courtesy of Nobuyuki Kayahara.

1 Introduction

The human perception mechanism of the 3D world has
long been studied. In the early 17th century, artists
developed a whole system of stimuli of monocular depth
perception especially on shading and transparency [? ]. The
loss of depth perception related stimuli leads to a variety
of visual illusions, such as the Pulfrich effect [? ]. In this
example, with a dark filter on the right eye, dots moving to
the right seem to be closer to participants than dots moving
to the left, even though all the dots are actually at the same
distance. This is caused by slower human perception of
darker objects.

When a 3D object is rotating around a fixed axis, humans
are capable of perceiving the shape of the object from its
2D projections. This is called the Kinetic Depth Effect [? ].
However, when the light over the object is disabled, humans
can only perceive partial 3D information from the varying
silhouette of the kinetic object over time, which easily leads
to ambiguous understanding of the 3D object. One typical
example of this phenomenon is the Spinning Dancer [? ?
] (see Fig. ?? for some sample frames). The dancer is
observed to be spinning in clockwise or counterclockwise
directions by different viewers. Such ambiguity implies that
more cues are needed for humans to make accurate depth
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judgements for 3D objects. Visual cues such as occlusion [?
], frame timing [? ], speed and axis of rotation [? ] are
widely studied by researchers. In addition, the perspective
effects also affect the accuracy of direction judgements [? ].

In this paper, we make in-depth investigations on how
visual cues influence the perception of Kinetic Depth
Effects from two aspects, including objective computational
modeling, and subjective perceptual analysis. We formulate
and quantify visual cues from both 3D objects and their
surrounding environment. On the one hand, we make
a comprehensive subjective evaluation to correlate the
subjective depth judgement of a 3D object and its visual
conditions. On the other hand, as depth perception largely
depends on the quality of shape reconstruction in mind, we
also propose an objective evaluation method based on 3D
computational modeling [? ]. This allows us to quantify
the impacts of the involved visual cues. The impact factors
are achieved by solving a multivariate quadratic regression
problem. Finally, we analyze the interrelations between the
proposed subjective and objective evaluation models, and
reveal the consistent impacts of visual cues on such models.

In summary, our work makes the following major
contributions:
• A novel objective evaluation of Kinetic Depth Effects

based on multi-view stereo reconstruction.
• A novel subjective evaluation of Kinetic Depth Effects

from a carefully designed user study.
• A detailed analysis of how visual cues affect depth

perception based on our subjective and objective
evaluations.

2 Related work

Our work focuses on objective computational modeling
and subjective analysis of 3D perception of Kinetic Depth
Effects under different visual conditions. We first discuss
related work on visual perception through psychological
and computational approaches, and then briefly describe the
relevant reconstruction techniques employed in this work.
Psychology research on shape perception. For monocular
vision, shading effect contains rich information [? ].
Compared with diffuse shading, specular shading helps
to reduce underestimate of cylinder depth by subjects [?
]. However, the shading effect can be ambiguous in
some cases. For example, when the illumination direction
is unknown, it is hard to judge shape convexities and
concavities, and humans tend to assume that illumination
comes from above [? ]. Besides, when the level of overall
illumination is low, the effect of the shadows is tended to be
assumed coming from overall illumination [? ].

Motion information also benefits shape perception. The
inherent ambiguity of depth order in the projected images

of 3D objects can be resolved by dynamic occlusion [?
]. Perspective also gives rich information of 3D objects
during this process [? ]. The human visual system can
induce 3D shapes from 2D projections of rotated objects [?
], interpolating the intervening smooth motion from two
images of rotated objects [? ].

The color information is very important not only in
immersive scene representation [? ? ? ? ] but also in
depth perception of psychology. Isono and Yasuda [? ] find
that chromatic channels can contribute to depth perception
using a prototype flickerless field-sequential stereoscopic
television system. Guibal and Dresp [? ] realize that the
color effect is largely influenced by luminance contrast and
stimulus geometry. When shape stimuli are not strong, color
could make an illusion of closeness [? ].
Computational visual perception. This research area
has been extensively studied in the computer graphics
community. Here we briefly describe the most relevant
works on perception-based 2D image processing and 3D
modeling.

In terms of 2D images, Chu et al. [? ] present a
computational framework to synthesize camouflage images
that can hide one or more temporally unnoticed figures in
the primary image. Tong et al. [? ] propose a hidden
image framework that can embed secondary objects within
a primary image as a form of artistic expression. The edges
of the object to be hidden are firstly detected, and then an
image blending based optimization is applied to perform
image transform as well as object embedding. The study
of Kinetic Depth Effects often uses subjective response [? ],
and some researchers also use the judgement of the rotation
direction as the response [? ].

Similar to image-based content embedding and hiding,
3D objects can be embedded into 2D images [? ], where
the objects can be easily detected by humans, but not by
an automatic method. Researchers also generate various
mosaic effects on both images [? ] and 3D surfaces [? ].
A computational model for the psychological phenomenon
of change blindness is investigated in [? ]. As change
blindness is caused by failing to store visual information
in short-term memory, the authors model the influence of
long-range context complexity, and synthesize images with
a given degree of blindness. Illusory motion is also studied
as self-animating images in [? ]. In order to computationally
model the human motion perception of a static image,
repeated asymmetric patterns are optimally generated on
streamlines of a specified vector field. Tong et al. [? ]
create self-moving 3D objects using the hollow-face illusion
from input character animation, where the surface’s gradient
is manipulated to fit the motion illusion. There are also
some research works on rendering, designing and navigating

2



3D Computational Modeling and Perceptual Analysis of Kinetic Depth Effects 3

Fig. 2 Overview of our work. We project the input 3D objects onto 2D image planes with some specified conditions (e.g., lighting, projection mode, rotation
speed, etc.), based on which we construct objective and subjective evaluation models, respectively. Finally we reveal some interesting correlations between the depth
perception of rotated 3D objects and the visual conditions.

impossible 3D models [? ? ? ]. In contrast to investigating
those seemingly impossible models, our work focuses on
evaluating the 3D perception of rotated objects.
Multi-view stereo reconstruction. Multi-view 3D
reconstruction and 3D point cloud registration are
fundamental in computer graphics and computer vision.
Comprehensive surveys on these topics can be found
in [? ? ]. Among different techniques, the well-known
structure-from-motion [? ] can effectively recover the
camera poses and further generate a sparse 3D point cloud
by making use of multiple images of the scene or objects.
Moreover, multi-view stereo algorithms [? ] can reconstruct
the fully textured surface of the scene. We employ such
computational techniques to evaluate the 3D reconstruction
quality under various environmental conditions.

3 Overview

Our goal is to evaluate the influence of various visual
conditions on Kinetic Depth Effects, including the ambient
luminance, shading, perspective, rotation speed, and the
color difference between the object and background.

For both the human visual system and image-based 3D
reconstruction techniques, the input visual information is
usually in the form of projected 2D images. Therefore,

by using a set of projected 2D images of the 3D objects
under the aforementioned conditions, we investigate the
perceived shape from human participants and the multi-
view stereo reconstruction of 3D objects. Besides measuring
the perception of Kinetic Depth Effects using our objective
and subjective evaluation models, we further investigate
the co-relations between these two different methods. The
overview of our work is shown in Fig. ??.
Dataset. For each 3D object, when it rotates around a
fixed vertical axis passing through the geometric center
of the object, we sample the projected 2D images with
an interval of rotation angle θ . As the frame rate when
displaying projected images is fixed, changing the sampling
angle interval also means changing the rotation speed of
the object. Also, we can obtain the dataset of projected
2D images in different visual conditions as the images are
explicitly rendered. Specifically, we manipulate the ambient
luminance by adjusting ambient lights, and control shading
by changing diffuse lights. We control perspective by
selecting either orthogonal or perspective projection mode,
which affects the perception of perspective. We also control
the color difference between the object and the background.
In order to define expected color difference, predefined color
pairs are used to generate the colors of the background
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θ Angular interval of 2D projection
α Lightness in HSL color space (0, 0, α)

which is used as the intensity of the diffuse light
β Lightness in HSL color space (0, 0, β )

which is used as the intensity of the global ambient light
D Color difference between objects and background

Tab. 1 Definition of parameters in the controlled generation of 2D projected
images.

and the 3D object (Sec. ??). A summary of parameters
is presented in Tab. ??. Based on the generated dataset
under the controlled conditions, we can then measure the
3D perception of rotated objects using the following two
evaluation models.
Objective evaluation model. This model utilizes the
reconstruction quality of the input 3D objects as the basis
for evaluation. First, according to the projected 2D
images of the 3D object under specified visual conditions,
we reconstruct the point cloud using multi-view stereo
reconstruction algorithms. Then, we develop a method to
measure the reconstruction quality between the point cloud
and the original 3D object (Sec. ??). Finally, we analyze the
effects of different visual conditions in detail (Sec. ??).
Subjective evaluation model. Directly measuring 3D
reconstruction in the brain of human subjects is difficult.
Based on the observation that if humans successfully
reconstruct a rotated object in their mind, it is easy for
them to tell the direction of rotation, the time and the
accuracy of direction judgments can be used as proxies to
measure the quality of depth perception, as done in our
study. We first display rotating objects with the same
set of projected images as used for 3D reconstruction
in the objective evaluation, and ask participants to judge
the rotation direction of the object. Then we consider
extreme situations in which image sequences could not be
reconstructed well, including overexposure, low lighting
levels, and overly fast rotation. We analyze the results with
the accuracy and the reaction time of direction judgements
(Sec. ??).

4 Objective Evaluation

Our objective evaluation includes four steps: generating
2D images of 3D objects under various conditions;
reconstructing 3D shapes of objects based on the generated
images; quantifying the reconstruction quality of the 3D
objects; obtaining the fitted weighting factors of depth cues
by solving a multivariate quadratic regression optimization.

α 0.5, 0.8, 1.1, 1.4, 1.7, 2.0, 2.3
β 0.0, 0.5, 1.0, 1.5, 2.0, 2.5

Tab. 2 Values of α and β that control diffuse and ambient lighting used to
generate image sets.

object color background color color difference
(0.8, 0.8, 0.8) (0.8, 0.8, 0.8) 0.000
(0.8, 0.8, 0.8) (1.0, 1.0, 1.0) 0.600
(1.0, 0.9, 0.5) (0.7, 0.4, 1.0) 1.200
(0.8, 1.0, 0.6) (0.3, 0.0, 0.1) 2.291
(1.0, 0.4, 1.0) (0.0, 1.0, 0.0) 2.538

Tab. 3 Object and background color and corresponding color difference used
to generate image sets.

4.1 Parameter selection and image set generation

In order to generate images of the 3D objects with various
expected conditions, we need to select some parameter
options for the depth-aware cues. Firstly, we normalize the
size of all 3D objects with a unit bounding box centered
at the origin. Then, we import objects in a virtual scene,
display them under orthogonal projection, and set the fixed-
point light. The line between the light and the geometric
center of the object is perpendicular to the rotation axis,
and the distance between the light and the geometric center
of the object is ten times of the bounding box. Since
in openMVG the focal length is one given parameter,
considering perspective projection mode in our objective
evaluation is not that meaningful. So we turn to displaying
3D objects under orthogonal projection.

We control the brightness of diffuse and ambient lights.
We set the HSL value of the diffuse light as (0, 0, α),
and choose seven options for α , corresponding to different
luminance levels. We set the HSL value of ambient light as
(0, 0, β ) with six options for β (see Tab. ??).

As mentioned before, we sample the projected 2D images
when rotating the 3D objects. Here we set the four possible
sampling intervals θ as 0.209, 0.157, 0.126, and 0.105. To
simplify the test, we also choose five optional pairs of RGB
values for the 3D object and the background (see Tab. ??).

We calculate the difference of the chosen color pairs using
the following equation:

D(CB,CO) =
√

wr(rB− rO)2 +wg(gB−gO)2 +wb(bB−bO)2. (1)

In this equation, CO is the color of the object, with RGB
values of (rO,gO,bO), CB is the color of the background,
with RGB values of (rB,gB,bB), wr,wg,wb are weighting
factors, which are empirically set as (3,4,2). In order to
choose 3D objects, we generate image sets for 15 objects
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Fig. 3 Some examples of projected 2D images. The first row shows the changing of diffuse light. The second row shows the changing of ambient light. The third
row shows five continuous images taken at the angular interval of θ = π/3, where γ shows the angle between the initial orientation and current orientation. The last
row shows the changing of color difference.

with different conditions. Then we choose three of them
which have high reconstruction success rate (30%). Finally,
for each object to be tested, we generate image sets for 7
(Shading) × 6 (Ambient Luminance) × 4 (Rotation Speed)
× 5 (Color Difference) conditions, each of which has a
separate image set. The size of every image is set to
800×600 pixels. Some examples are shown in Fig. ??.

4.2 3D reconstruction and quality assessment

We employ openMVG [? ] and openMVS [? ] to
process image sequences, and take the reconstructed point
clouds as input. We normalize the size of all point clouds
with the same bounding box as used in normalizing 3D
objects. Then we match the reconstructed point clouds
and the original objects. More specifically, we use the
Sample Consensus Initial Alignment (SAC-IA) method [?
] for initial alignment, and Iterative Closest Point (ICP) for
refined alignment [? ]. Finally, we compute the Euclidean
fitness score µ between the reconstructed point cloud and
the original object.

4.3 Objective evaluation results

We perform 2520 3D reconstruction cases using different
image sets, and 929 of them generate 929 point clouds,

while 1591 of them fail. We use the following equation
to measure the reconstruction quality s between a pair of
reconstructed point cloud and original point cloud, based on
the point cloud distance µ:

s =− lg(µ). (2)

We use the logarithmic processing to make the residuals of
our model normally distributed. The reconstruction quality
values are linearly normalized to range [0,1]. Given a
set of reconstruction quality samples S = {s1,s2, . . . ,sn},
we formulate the factor analysis model with the following
quadratic stepwise regression:

λ
∗ = argmin

λ

(S− (λ1α +λ2θ +λ3α
2 +λ4αβ +b)), (3)

where λ = {λ1,λ2,λ3,λ4} are weighting coefficients to
balance the corresponding impacts, and b is a constant value.
We fit the coefficients in the model using the standard least
squares method. Results are shown in Tab. ??.

It can be seen that the model accounts for 10.3% of the
variation in reconstruction quality. Since the reconstruction
algorithm used here is not always stable, the explanatory
power of the model is limited. The impact of individual
visual cues is analyzed as follows:
Shading. Shading and reconstruction quality follow the
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Fig. 4 Given a 3D object (top-left) and specified visual conditions, we generate the corresponding projected 2D images, and reconstruct the 3D shapes (others) using
existing multi-view stereo algorithms. With the reconstructed and original objects, we then quantitatively measure the reconstruction quality for shape perception
analysis. For each reconstruction, we report the reconstruction quality measure and the corresponding rendering setting.

Coefficients Values Std. Err
b 0.3678* 0.041
λ1 0.3593* 0.056
λ2 -0.6361* 0.147
λ3 -0.1234* 0.019
λ4 -0.0278* 0.004

Observations 929
R-squared 0.103

* p<0.01

Tab. 4 Objective evaluating model results. p represents the confidence
probability of the parameter based on the standard student’s t-test

.

Fig. 5 Correlation between the 3D reconstruction quality and the shading.

quadratic function relationship (Fig. ??), with λ1 = 0.3593
(p<0.01), λ3 =−0.1234 (p<0.01).
Ambient luminance. The Ambient Luminance × Shading
interaction is significant with λ4 =−0.0278 (p<0.01). High
Ambient Luminance × Shading levels contribute to low
reconstruction qualities. As shown in Fig. ??, the fitted lines
in different ambient light levels are not parallel.
Rotation speed. High rotation speeds significantly
contribute to low reconstruction qualities (λ2 = −0.6361,
p<0.01). When θ = 0.105, the mean value of S is 0.489;
when θ = 0.209, the mean value of S is 0.400.
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Fig. 6 Significant interaction of Ambient Luminance × Shading.

Color difference. The color difference does not
significantly affect the reconstruction quality.

5 Subjective Evaluation

As mentioned before, humans can recover 3D rotated
objects from their 2D projections. The rotation direction
of 3D objects can be an important clue to judge the quality
of the shape reconstruction in their mind. Based on this, the
following multi-factor experiment is designed.

5.1 Participants

We recruited 35 participants and achieved results from
34 participants (19 males and 15 females) who successfully
finished the test.

5.2 Procedure and materials

In the experiment, a set of images were continuously
displayed in full screen mode. The experiment was
conducted on a laptop with an Intel i5 8250U CPU and 8GB
memory. We design two types of study as follows.
Study A. Here we explore the depth cue effect in general
situations. The range of cues are the same as the objective
evaluation model, but we choose fewer values for each
cue (see Tab. ??) to ensure participants can concentrate
during the study. The projection can either be orthogonal
or perspective. Overall we considered 144 conditions
consisting of 3 (Shading) × 3 (Ambient Luminance) × 2
(Rotation speed) × 4 (Color Difference) × 2 (Projection
Mode). For each condition, we display three different
objects.
Study B. Here we consider more extreme situations,
including low lighting levels, overexposure and high speed
rotation, where we vary each condition while keeping other
cues fixed (see Tab. ??). The variables used to represent
each situation are shown in Tab. ??. After that we generate

α 0.5, 1.4, 2.3
β 0.0, 1.0, 2.0
θ 0.105, 0.209
D 0.000, 0.600, 1.200, 2.291

Tab. 5 Values of each cue used in Study A of the subjective evaluation model.

α β θ colors for
object & background

varying 0.0 0.157 (0.8, 0.8, 0.8) ,
(1.0, 1.0, 1.0)

2.3 varying 0.157 (0.8, 0.8, 0.8) ,
(1.0, 1.0, 1.0)

1.7 1.5 varying (0.8, 0.8, 0.8) ,
(1.0, 1.0, 1.0)

Tab. 6 Values of each cue used in Study B of the subjective evaluation model for
extreme situations. From top to bottom: conditions of low lighting levels (with
minimum value of β ); overexposure conditions (with a relatively high value of
α); high speed rotation conditions (with normal values for α and β ).

new test image sets (see Fig. ?? and Fig. ??). To simplify
the problem, we only consider the orthogonal projection
situations.

Every participant was asked to judge rotation direction of
all image sets generated in Studies A and B, and each image
set was judged only once. The display order of each image
set was random, so was the rotation direction of 3D objects.
To exclude “viewing-from-above” bias [? ], we define
rotation direction as Left and Right. From the perspective
of the participants, the rotation direction is right if the close
part of 3D objects is moving to the right, otherwise the
direction is left. The images were displayed at 24 FPS. The
maximum display time for one image set did not exceed 5
seconds. Participants were required to judge whether it is
rotating on the left or right direction. The participants were
given time to practise before the formal experiment. The
entire experiment took about 15−20 minutes.

5.3 Subjective evaluation results

We record the judgments and reaction time of all
participants. We rank all cases of the reaction time in
ascending order and calculate the standard scores (here

α 0.00, 0.05, 0.10, 0.15, 0.20, 0.30, 0.35, 0.40, 0.45
β 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3, 4.5
θ 1.047, 0.785, 0.628, 0.524, 0.449, 0.393, 0.349, 0.314, 0.286, 0.262

Tab. 7 Values of varying cues used in Study B of the subjective evaluation
model for extreme situations. From top to bottom: conditions of low lighting
levels, overexposure, and high speed rotation.

7



8 Meng-Yao Cui et al.

we use τ to denote it), which correspond to the estimated
cumulative proportion of the reaction time. We use
the repeated measures Analysis of Variance (ANOVA)
method to determine the effect of cues on τ under
different conditions. We calculate each participant’s
judgement accuracy under each condition. Since three
objects are tested in each condition, the participant’s
judgement accuracy take four values, and do not follow
a normal distribution. Therefore, we use the ordinal
logistic regression models to test the effect of cues on the
participant’s judgement accuracy. In particular, we choose
the complementary log-log link function, since most of the
participant’s judgement accuracy lie in 0.67−1.00 [? ]:

Φ(x) = log(−log(1− x)). (4)

We establish the ordinal logistic regression models for all
situations, while we only show those models with significant
results and pass other tests of parallel lines.

5.3.1 Analysis of study A
A five-way ANOVA method reveals the main effect

of Rotation Speed (F(1,5028) = 38.11, p<0.01) on τ .
Participants react faster at the high rotation speed condition
(M = −0.08, SD = 0.97) than at the low rotation speed
condition (M = 0.05, SD = 1.00). We also find a significant
Perspective × Rotation Speed interaction (F(1,5028) =

6.19, p<0.05) on τ . At the high rotation speed condition,
τ is significantly lower under perspective projection mode
(M =−0.109, SD = 0.95) than under orthogonal projection
mode (M = −0.06, SD = 1.00). Because Rotation
Speed and Perspective only have two levels, there is
no need for Mauchly’s test of sphericity. Apart from
the above phenomena, for the investigated five cues in
our experiments, we find no significant effect on the
participant’s judgement accuracy.

5.3.2 Analysis of study B
Low lighting levels. A one-way ANOVA reveals the main
effect of Shading on τ (F(9,340) = 2.668, p<0.01), and
Mauchly’s test of sphericity is not significant (p = 0.579).
Here higher α leads to lower reaction time. We establish an
ordinal logistic regression model as follows:

Φ(p1) = ε1−η ∗α,

Φ(p1 + p2) = ε2−η ∗α,

Φ(p1 + p2 + p3) = ε3−η ∗α,

p1 + p2 + p3 + p4 = 1,

(5)

where p = {p1, p2, p3, p4} are the probabilities of each
value of the participant’s judgement accuracy (from low to
high), η is the weighting coefficient, and ε = {ε1,ε2,ε3}
are constant values. For each case, the value with
highest probability is the predicted value of the participant’s
judgement accuracy.

Coefficients Values Std. Err
ε1 -3.682* 0.515
ε2 -2.039* 0.257
ε3 -0.578* 0.177
η 4.229* 0.872

Observations 348
Nagelkerke’s R-squared 0.093

* p<0.01

Tab. 8 Results of ordinal logistic regression under the low lighting levels
situation. p represents the confidence probability of the parameter based on
the Wald Test

.

We fit the coefficients in the model and the results are
shown in Tab. ??. High α significantly contributes to high
judgement accuracy (η = 4.229, p<0.01). Hence using
strong shading in low lighting levels conditions strengthens
the accuracy and accelerates the reaction (see Fig. ??).
Overexposure. A one-way ANOVA reveals the main effect
of Ambient Luminance (F(9,340) = 2.661, p<0.01) on τ ,
and Mauchly’s test of sphericity is not significant (p =

0.350). This means that the covariance matrix assumption
is met, and the result of repeated measures ANOVA is
robust. Participants react faster when β = 2.7 (M =

−0.17, SD = 1.07) than when β = 4.5 (M = 0.24, SD =

0.94), which implies that the higher Ambient Luminance
in overexposure conditions delays reaction (see Fig. ??).
We find no significant effect of Ambient Luminance on
judgement accuracy.
High speed rotation. Rotation Speed has a significant effect
on τ (F(9,340) = 7.627, p<0.01), and Mauchly’s test of
sphericity is not significant (p = 0.162). In high speed
rotation conditions, lower rotation speed leads to faster
reaction. We establish an ordinal logistic regression model
again as follows:

Φ(p1) = ε1−κ ∗θ ,

Φ(p1 + p2) = ε2−κ ∗θ ,

Φ(p1 + p2 + p3) = ε3−κ ∗θ ,

p1 + p2 + p3 + p4 = 1,

(6)

where p = {p1, p2, p3, p4} are the probabilities of each
value of the participant’s judgement accuracy (from low to
high), κ is the weighting coefficient, and ε = {ε1,ε2,ε3}
are constant values. For each case, the value with highest
probability is the predicted value of judgement accuracy.

We fit the coefficients in the model and the results are
shown in Tab. ??. High θ significantly contributes to low
judgement accuracy (κ = −1.353, p<0.01). In high speed
rotation conditions, increasing the rotation speed reduces the
judgement accuracy and delays the reaction (see Fig. ??).
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Fig. 7 Examples of 2D images under each individual low lighting levels condition.

Fig. 8 Examples of 2D images under each individual low lighting levels condition.

Coefficients Values Std. Err
ε1 -5.191* 0.581
ε2 -4.266* 0.432
ε3 -2.480* 0.320
κ -1.353* 0.499

Observations 346
Nagelkerke’s R-squared 0.030

* p<0.01

Tab. 9 Results of ordinal logistic regression under the high speed situation. p
represents the confidence probability of the parameter based on the Wald Test

.

6 Joint Objective and Subjective Analysis

Based on the objective computational modeling and
subjective perceptual evaluations, we perform a joint
analysis on the 3D perception of rotated objects.
Shading. For both objective and subjective evaluations,
shading has a significant effect on the depth perception. In
the objective evaluation, shading and reconstruction quality
are correlated by a quadratic function. As shading increases,
the reconstruction quality first improves then declines. This
coincides with subjective evaluation as in low lighting
levels conditions, higher shading improves the judgement
accuracy and accelerates the observer’s reaction.
Ambient luminance. The depth cue from ambient
luminance is also effective in both objective and subjective
evaluations. In objective evaluation, the interaction of
shading and ambient luminance is significant. High
Shading × Ambient Luminance levels contribute to low
reconstruction qualities. In the subjective evaluation, high
ambient luminances in overexposure cases can increase
observers’ reaction time.
Rotation speed. The rotation speed plays an important

9
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Fig. 9 Mean values of τ under nth level of shading, ambient luminance
and speed. The marked points present significant differences under pairwise
comparison.

role in both objective and subjective evaluations. In the
objective evaluation, increasing the rotation speed decreases
the reconstruction quality, which coincides with the result
of subjective evaluation as in high speed conditions, higher
rotation speed decreases the judgement accuracy.

However, in the subjective evaluation, increasing the
rotation speed accelerates users’ reaction time. A possible
reason is that participants receive more information with
higher rotation speeds within the same time interval, which
stimulates the participants to make decision faster. For our
experiments under general situations, this acceleration is
stronger than the delay caused by uncertainty.
Perspective. In the subjective evaluation, Perspective
× Rotation Speed interaction is significant. Compared
with orthogonal projection, participants react faster under
perspective projection conditions.
Color difference. We have not found significant effects
caused by color difference between objects and background
in either objective evaluation or subjective evaluation model.
As future work, we will test more color combinations to
further explore possible effects by color differences.

7 Discussion

We analyze the effect of different depth cues on 3D
perception of rotated 3D objects, which broadens the scope
of previous studies. We also design an objective evaluation
and a subjective evaluation to make a thorough analysis.

However, there are also some flaws in our design. In our
objective evaluation, when the depth cues in images were
extremely weaken, 3D reconstruction based on structure-
from-motion would be unstable caused by unexpected
feature matching. This common challenge limits the space
of our analysis model (R-squared = 10.3%). Moreover,
the subjective evaluation only uses the judgement of the
direction of rotated objects as the response. In the future,

we could use more 3D information as response. In our
experiments, the reconstruction quality is closely related to
the kind of 3D objects. This specific type of influence on
shape perception could also be further analysed.

The analysis of the effect of depth cues guides us to get
good reconstruction results for both humans and computers,
such as rendering under certain lighting. The objective
evaluation also reveals the limitations of existing algorithms.
On the other hand, when combining with recent deep
learning-based techniques, such as CNN-SLAM [? ] and
deep stereo matching [? ], our solution could further
benefit once there are more accurate depth prediction and
3D reconstruction in various challenging environments.

8 Conclusion and Future Work

We have proposed two approaches to measure the
quality of depth perception of Kinetic Depth Effects, where
we made a detailed analysis of how visual cues affect
depth perception. Firstly, we generated a dataset of
images from rotating objects considering five depth cues:
ambient luminance, shading, rotation speed, and the color
difference between objects and background. In the objective
evaluation, we applied 3D reconstruction and measured
reconstruction quality between reconstructed and original
objects. In the subjective evaluation, we invited participants
to judge the rotating direction of 3D objects by showing the
projected 2D images. We inferred the perception quality by
their reaction time and accuracy. In our study, we found
both strong and dim shadings significantly undermine the
perception of depth in our experiments. High ambient
illumination× shading level, rotation speed, and orthogonal
projection can also reduce the depth perception quality.
It is also interesting that the color difference does not
have significant effect on the depth perception in our
experiments. In the future, we will take more depth cues into
consideration and develop a more precise quantitative model
for more complex situations. Taking our new observations
to guide other 3D computational modeling would also be
an interesting avenue of future work. We hope our study
will inspire more inter-discipline research on robust 3D
reconstruction and human visual perception.
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