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Abstract—In this paper we start with a family of bound-
ary based shape measures IN (γ) =

R

γ
(x(s)2 + y(s)2)Nds,

N = 1, 2, . . . , defined for every curve γ given in an arc-length
parametrisation x = x(s), y = y(s), s ∈ [0, 1] and placed such
that the centroid of γ and the origin coincide. We prove

IN (γ) ≤ 4−N
, for all N = 1, 2, . . .

which implies that the sequence IN (γ) converges quickly to 0 and,
therefore the first few measures IN (γ) are most useful to compare
shapes and to be applied in tasks like object classification,
recognition or identification.

In order to overcome such a problem, we modify the family
IN (γ) and also introduce a parameter p to define a new
family IN,p(γ), N = 1, 2, . . . of shape measures. The new
family IN,p(γ) includes an infinite number of measures which
range over intervals wide enough to provide a discrimination
capacity enough to distinguish among the shapes. The role of the
parameter p is to provide tuning possibilities for the modified
family and to expand the number of applications where the
measures can be used efficiently.

A set of experimental results are provided in order to justify
the theoretical considerations.

Key-words: Shape, shape descriptors, shape measures, object
classification, object recognition.

I. INTRODUCTION

Shape is an object property which allows a wide spectrum

of numerical characterisations. Such an object characterisation,

by a set of assigned numerical values, is very convenient for

a comparison of the objects and is very suitable for computer

supported tasks like the object classification, identification or

recognition. Many shape descriptors have been created so far.

Some of them are very generic, like moment invariants [5]

or Fourier descriptors [16], while the others relate to specific

shape characteristics, e.g. rectilinearity [14], tortuosity [4],

orientability [15], convexity [2], etc.

Another distinction among shape descriptors/measures can

be based on the shape points used for their computation. In the

past, most attention has been paid to the, so called, area-based

shape measures. Such measures use all the shape points and,

because of that, they are robust and suitable when working

with low quality data or with low resolution images. On the

other hand, due to a strong demand for very sensitive image

processing tools, the boundary-based measures, which use the

boundary points only, become more and more popular [6],

[8], [13]. Notice that an additional demand for boundary-

based shape descriptors/measures comes from the fact that

some objects, like human signatures or letters, are linear in

their nature and, because of that, area-based shape descriptors

cannot be used for their analysis.

In this paper we consider a family of the boundary-based

shape measures IN (γ) =
∫

γ
(x(s)2 + y(s)2)Nds defined for

any unit length curve γ, given in an arc-length parametri-

sation and with the boundary centroid coincident with the

origin. Although this family consists of infinitely many shape

measures, just a few of them can be used to distinguish

among the shapes/objects. This is because the sequence IN (γ)
converges quickly to 0, as N → ∞. This follows from the here

proved estimate IN (γ) ≤ 4−N , which holds independently

of γ. In order to expand the number of measures which

have a discriminative power big enough to be used in shape

comparison based tasks, we have modified the family IN (γ).
In addition we have introduced a “tuning” parameter p, or

more precisely, we define a new family of the similarity

invariant shape measures

IN,p(γ) = N

√

∫

γ

(x(s)2 + y(s)2)p·Nds.

Notice that the choice of p depends on the application where

the modified descriptors IN,p(γ), are going to be used.

The paper is organised as follows. Section 2 introduces an

infinite family shape measures and gives some related theo-

retical observations. Section 3 introduces a modified family

of shape measures and gives an experimental justification

that a use of shape measures from a modified family can be

beneficial. Concluding remarks are in Section 4.

II. A FAMILY OF SHAPE MEASURES

In this paper we derive the main result of the paper.

Throughout the paper we will use the following denotations:

• The Euclidean distance between points X = (x1, x2)
and Y = (y1, y2) is denoted as d2(X,Y ), i.e., as

d2((x1, x2), (y1, y2)).

• The centroid Cγ of a given curve γ, with length equal

to 1, is

Cγ =

(
∫

γ

x(s)ds,

∫

γ

y(s)ds

)

(1)



where the curve γ is given in an arc-length parametrisa-

tion x = x(s), y = y(s), s ∈ [0, 1].

Also, even if not mentioned, all the curves γ are assumed:

• to be of a unit length;

• to be given in an arc-length parametrisation form: x =
x(s), y = y(s), s ∈ [0, 1], and

• to be positioned so that the centroid of γ and the origin

coincide, i,e, Cγ = (0, 0).

We start with the following sequence/family of quantities

which are invariant with respect to rotations, translations and

scaling transformations:

I1(γ) =

∫

γ

(x2(s) + y2(s)) ds,

I2(γ) =

∫

γ

(x2(s) + y2(s))2 ds,

. . .

IN (γ) =

∫

γ

(x2(s) + y2(s))Nds. . . . (2)

Indeed, IN (γ), N = 1, 2, . . . , are invariant with respect to

rotations since the sub-integral functions (x2(s) + y2(s))N

in IN (γ) are invariant with respect to rotations because they

are based on the Euclidean distance of the curve points

to the curve centroid. IN (γ) are invariant with respect to

translations and scaling transformation by definition (prior to

the computation the shape is positioned such that the shape

centroid and the origin coincide and scaled such that the curve

length is equal to 1).

Notice that I1(γ) is a boundary-based analogue [1] to the

first Hu moment invariant [5]. Also, the function r(s) =
x2(s) + y2(s) which appears in the above invariants is the

well known radial function which has already been used to

analyze shape [3], [7].

The geometric meaning of the invariants IN (γ) is clear: It

expresses the average value of the N -th power of the squared

distance between the curve points and the curve centroid. Since

different exponents N lead to a variable contribution (x2(s)+
y2(s))N of points (x, y) from the curve γ, it makes sense to

use several invariants IN (γ) together in the classification tasks.

Such an approach, of using a family of invariants dependent

on a “tuning” parameter, has been efficiently used in a recent

work [12]. But the problem is that the invariants IN (γ), as

given in (2), are not suitable for the classification tasks for

large values of N . This is because IN (γ) converges quickly

to 0 as N increases. Consequently, all values IN (γ) become

almost the same (i.e., all equal to 0) for all N larger than

a certain number N0. This is the statement of the following

theorem.

Theorem 1: Let γ be a planar curve with length equal to 1
and whose centroid coincides with the origin. Then

(a) x2 + y2 ≤ 1

4
for all (x, y) ∈ γ;

(b) IN (γ) ≤ 4−N ;

(c) lim
N→∞

IN (γ) = 0.

Proof. First, we prove item (a): x2 + y2 ≤ 1/4, i.e., γ lies

inside a circle centred at the origin and whose radius is 1/2.
The items (b) and (c) are straightforward consequences of (a).

Let γ be given in an arc length parametrisation x = x(s),
y = y(s), s ∈ [0, 1], and let the centroid Cγ of γ coincide

with the origin. Also, let A = (x(sA), y(sA)) , sA ∈ [0, 1],
be a point belonging to the curve γ which has the greatest

distance from the centroid Cγ , and let

Dγ = d2(A,Cγ) = max{d2(X,Cγ) | X = (x, y) ∈ γ}

denote this maximum distance. The point A splits the curve

γ into two arcs, say γa and γb, defined as:

γa : x = x(s), y = y(s), s ∈ [0, sA]

γb : x = x(s), y = y(s), s ∈ [sA, 1]. (3)

Notice that there can be several points on the curve with this

maximum distance from the centroid. In this case any of these

points can be chosen as the point A.

Obviously the curve γ = γa ∪ γb lies inside a circle with

radius d2(A,Cγ) and centred at Cγ . Now we chose the

coordinate system such that

• Cγ coincides with the origin;

• the x-axis passed through the point A (and Cγ , of

course);

which implies that the curve γ lies in one of two half planes

determined by the line x = −Dγ . Without loss of generality,

we can assume that γ lies on the right side of the line x =
−Dγ ; i.e., all the points (different from A) belonging to γ have

their abscissa value bigger than −Dγ (as presented in Fig.1).

Since the centroid Cγ =

(
∫

γ

x(s)ds,

∫

γ

y(s)ds

)

coincides

with the origin, we have
∫

γ
x(s)ds = 0 and further, we

.A

x

y

.
γ

Cγ

Fig. 1. Cγ is the centroid of γ and A is the point belonging to γ which
has the greatest distance from Cγ .



derive:

0 =

∫

γ

x(s)ds =

∫

γa

x(s)ds +

∫

γb

x(s)ds

=

sA
∫

s=0

x(s)ds +

1
∫

s=sA

x(s)ds

≤

sA
∫

s=0

(−Dγ + (sA − s))ds +

1
∫

s=sA

(−Dγ + (s − sA))ds

= −Dγ · sA + (sA)2 −
(sA)2

2

−Dγ · (1 − sA) +
1

2
−

(sA)2

2
− sA · (1 − sA)

= −Dγ +
1

2
− sA · (1 − sA) ≤

1

2
− Dγ (4)

(Note: The following inequalities have been used:

x(s) ≤ −Dγ + (sA − s), for s ∈ [0, sA];

x(s) ≤ −Dγ + (s − sA), for s ∈ [sA, 1];

sA · (1 − sA) ≥ 0, for s ∈ [0, 1].)

Thus, the just proven inequality Dγ ≤
1

2
gives the required

x(s)2 + y(s)2 ≤

(

max
X∈γ

{d2(Cγ ,X)}

)2

≤ D2

γ ≤
1

4
.

Now, by using the last estimate x(s)2 + y(s)2 ≤ 1/4 we

derive item (b) easily

IN (γ) =

1
∫

s=0

(x(s)2 + y(s)2)Nds ≤

1
∫

s=0

4−Nds = 4−N .

Finally, 0 ≤ IN (γ) ≤ 4−N proves item (c) in the statement

of the theorem. �

III. EXPERIMENTS

Even though the family IN (γ) includes an unbounded num-

ber of shape measures, the statements of Theorem 1 show that

only the first few elements of the family can be used for tasks

which are based on shape comparison. This is because IN (γ)
converges quickly to 0, i.e., IN (γ) = O

(

4−N
)

independently

on the curve γ. So, after some N0, the measures IN (γ), with

N > N0, are all very close to zero, and consequently do

not have discriminatory potential necessary for an efficient

comparison among the objects.

An immediate possibility to overcome such a problem is to

consider the family N

√

IN (γ) instead the family IN (γ) and to

get a new family with more elements which have a reasonably

high discriminative capacity. An additional possibility is to

introduce a tuning parameter p ∈ (0, 1). We use both pos-

sibilities and define a new family of shape measures in the

following way:

I1,p(γ) =

∫

γ

(x2(s) + y2(s))p ds,

I2,p(γ) = 2

√

∫

γ

(x2(s) + y2(s))p·2 ds,

. . .

IN,p(γ) = N

√

∫

γ

(x2(s) + y2(s))p·Nds, . . . (5)

Under the assumptions that γ is scaled such that it has length

equal to 1 and is positioned such that Cγ = (0, 0), it is easy

to see that all the elements IN,p(γ) from the modified family

are invariant with respect to similarity transformations. Also,

the estimate IN,p(γ) ≤ 4−p can be proven analogously to the

proof of Theorem 1.

Notice that if we select γ to be a circle, whose normalised

arc length parametrization is

x =
1

2π
cos(2πs), y =

1

2π
sin(2πs), s ∈ [0, 1]

we obtain

IN,p(γ) =
N

√

∫

1

s=0

(x2(s) + y2(s))
p·N

ds

=
N

√

∫

1

s=0

(

1

4π2
(cos2(2πs) + sin2(2πs))

)p·N

ds

=
N

√

∫

1

s=0

(

1

4π2

)p·N

ds

=

(

1

4π2

)p

. (6)

The proven equality (6): IN,p(γ) = (4π2)−p, for γ being a

circle, implies that IN,p(γ) does not necessarily converge to

zero. A further analysis would show even more: IN,p(γ) >
0, for any curve γ whose length is equal to 1, and for all

N = 1, 2, . . . , and for all p > 0. In addition, it can be shown

that IN,p(γ) can be arbitrarily close to 0 – i.e., more formally,

for any ε > 0 there is a curve γ = γ(ε) such that 0 <
IN,p(γ(ε)) < ε.

So, we have constructed the family IN,p(γ) of an infinite

number of shape measures/descriptors which all have an

effective discrimination capacity (e.g., they do not converge

to 0 as the measures from the initial family IN (γ) do). In

addition, we have provided a “tuning” parameter p whose role

is to control the behaviour of the shape measures from the

family.

In the experiments which are performed in this section p =
0.1 has been selected.



CB CM

SB SM

Fig. 2. Examples of the four classes of mammographic masses: circumscribed benign (CB), circumscribed malignant (CM), spiculated benign (SB), spiculated
malignant (SM); they are drawn rescaled.

The invariants are demonstrated on a set of 54 masses from

mammograms, combining images from the MIAS and Screen

Test databases [9]. Some examples are shown in figure 2.

Rangayyan et al. [9], [10] previously tested various shape

measures on this data, classifying the masses as circum-

scribed/spiculated, benign/malignant, and CB/CM/SB/SM, in

two group and four group classification experiments. They

used the BMDP “7M” discriminant analysis program to carry

out classification. Rosin [11] also used the same data to eval-

uate a variety of convexity measures for classification using a

nearest neighbour classifier with Mahalanobis distances. The

best results for these (both single descriptors/measures and

combinations of shape descriptors/measures) are shown in

table I.

Our new results are given in (table I). We have used

IN,p=0.1(γ) for the classification. Table I shows that, when

used individually, the proposed descriptors/measures are able

to provide comparable classification accuracies to the existing

methods in most cases. Moreover, when the best triple of

the proposed descriptors/measures is applied for each of the

classification tasks then the achieved accuracies exceed the

previously used descriptors/measures.

IV. CONCLUDING REMARKS

This paper presents initial work on a use of infinite families

of shape measures in object comparison based tasks including

object classification, recognition or identification. We have

started with a family of shape measures IN (γ) defined by

the line integrals of the shape boundary radial function taken

with an integer exponent. Such defined measures are invariant

with respect to the scaling transformation and are defined for

any integer N . Although, in theory, there are infinitely many

of such measures, we have proven that most of these invariants

are very close to zero and, because of that, in practice they

cannot be used to distinguish among the shapes.

We have presented an opportunity to modify the family

IN (γ) to obtain another family IN,p(γ) of shape measures

which do not converge to 0, and consequently includes in-

finitely many measures which have a discrimination capacity

high enough to be used for classification purposes. Measures

from the family IN,p(γ) are also invariant with respect to the

similarity transformations. There are other ways to modify

the family IN (γ) and they will be investigated in the near

future. For instance, one possibility is to replace the term

x2(s) + y2(s), in the sub-integral functions of IN (γ), by

k · (x2(s) + y2(s)), for a suitable k chosen from the interval

(−4, 4), but there are many more.
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descriptors circ/spic benign/malig 4-way

1

8

>

<

>

:

compactness (C) 88.9 72.2 64.8

Fourier shape factor (FF ) 88.9 75.9 64.8

Mc1→c4, C, FF, MF1−3 94.4 74.1 68.5

C, FF 90.7 75.9 66.7

2

8

<

:

fractional convexity (fcv) – 74 –

spiculation index (SI) – 79 –

C, SI, fcv – 81 –

3



convexity (C0.9 random) 94.4 59.3 57.4

convexity (CL) 85.2 74.1 68.5

4

8

>

>

>

>

>

<

>

>

>

>

>

:
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IN=165,p=0.1, IN=166,p=0.1, IN=7,p=0.1 94.4 81.5 79.6

TABLE I
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