
Large-capacity Image Steganography Based on Invertible Neural Networks

Shao-Ping Lu1∗ Rong Wang1∗ Tao Zhong1 Paul L. Rosin2

1TKLNDST, CS, Nankai University, Tianjin, China
2School of Computer Science & Informatics, Cardiff University, UK

slu@nankai.edu.cn; nkwangrong@163.com; zei.t@qq.com; RosinPL@cardiff.ac.uk

Abstract

Many attempts have been made to hide information in

images, where one main challenge is how to increase the

payload capacity without the container image being de-

tected as containing a message. In this paper, we propose

a large-capacity Invertible Steganography Network (ISN)

for image steganography. We take steganography and the

recovery of hidden images as a pair of inverse problems

on image domain transformation, and then introduce the

forward and backward propagation operations of a single

invertible network to leverage the image embedding and

extracting problems. Sharing all parameters of our sin-

gle ISN architecture enables us to efficiently generate both

the container image and the revealed hidden image(s) with

high quality. Moreover, in our architecture the capacity

of image steganography is significantly improved by natu-

rally increasing the number of channels of the hidden image

branch. Comprehensive experiments demonstrate that with

this significant improvement of the steganography payload

capacity, our ISN achieves state-of-the-art in both visual

and quantitative comparisons.

1. Introduction

Steganography is the art of hiding some secret data by

embedding it into a host medium that is not secret. Differ-

ent from cryptography which hides the meaning of the data

(or makes it unintelligible), steganography aims to hide the

existence of the data [11,42]. Accordingly, image steganog-

raphy refers to the process of hiding data within an im-

age file. The image chosen for hosting the hidden data

named the host- or cover-image, and the image generated

by steganography is called the container- or stego-image.

Nowadays, image steganography is used in digital commu-

nication, copyright protection, information certification, e-

commerce, and many other practical fields [11].

A well-designed image steganography system is ex-

∗indicates equal contribution.

(a) Host/container (b) 4 revealed images

Figure 1. We generate a container image by hiding 4 other images

into the host image. Guess which is the container image in the left

column? Answer: the top-left and bottom-left are the container

and host images, respectively. (b): 4 hidden images revealed from

the container image. These 6 images have the same resolution.

pected to have both the imperceptibility and payload capac-

ity requirements [33]. Firstly, the container image should

avoid arousing suspicion. This means that the hidden data

should not be detected under steganalysis, which is the

countermeasure of steganography. As shown in Fig. 1,

when the hidden images are embedded into the host image,

if the generated container image appears similar to the host

image in terms of its color and other features, then it would

be difficult for image steganalysis techniques [18,24] to dis-

tinguish between the host and container images. Therefore,

image steganography essentially asks for a powerful image

representation mechanism that can effectively approximate

the host image with the “noise” of the hidden images. This

process is also expected to be reversible, because the hidden

images should be well recovered from the container image

in the decoding process of image steganography. Besides

that, to make image steganography applications more effi-

cient in practice, another important aspect is to embed as

much hidden data as possible into the host image.

Existing image steganography solutions [8, 40, 62] still

cannot perfectly simultaneously achieve good impercep-

tibility with high payload capacity. Traditional methods

10816

usually hide messages in the spatial, transform, or some

adaptive domains [33], with the payload capacities around

0.2 ∼ 4 bits per pixel (bpp). For most of them, the hidden

data is embedded into the least significance bits (LSBs) [8]

or insensitive areas that are detected with low-level vision

descriptors, meaning that only a small amount of hidden in-

formation can be embedded. Several recent deep learning-

based hiding methods [4, 5] successfully find a potential

route to increase the hiding capacity. However, once the im-

age steganography system consists of different neural net-

works that are separately designed for the preprocessing,

steganography, and recovery tasks, the components of the

whole system are independent of each other and the pa-

rameters are not shared. It would thus be difficult to find

a trade-off between making the container statistically indis-

tinguishable and recovering the high-quality hidden image.

In this paper, we introduce a large-capacity image

steganography approach based on the invertible neural net-

work (INN) [14,15,58]. We take the task of hiding an image

as a special image domain transformation task, where the

container image should be as close as possible to the host

image. In its reverse process, the hidden images should also

be well reconstructed from the container image. Therefore,

we take image steganography and recovery as a pair of in-

verse problems, and thus introduce an Invertible Steganog-

raphy Network (ISN) to effectively solve them. Our novel

solution takes the same ISN for both steganography and re-

covery, where all the parameters are fully shared in such two

tasks. This methodology enables us to efficiently generate

both the container image and the revealed hidden image(s).

Our ISN network consists of two branches, naturally corre-

sponding to the input hidden and host images, respectively.

Moreover, in our architecture, the steganography capacity

can be substantially improved by increasing the number of

channels of the hidden image branch. Comprehensive ex-

periments demonstrate that our method can generate a de-

sired container image with high payloads for hiding images,

and with the same framework, we successfully reveal such

multiple hidden images (Fig. 1 shows hiding 4 images).

In summary, the main contributions of this paper are:

• We introduce an Invertible Steganography Network

(ISN) to effectively solve image steganography and re-

covery problems. Our bijective transformation model

uses a single network to efficiently hide and reveal im-

ages.

• Our method significantly improves the steganography

payload capacity to 24 ∼ 120 bpp, and it can be easily

adapted to hide multiple images with high impercepti-

bility.

• A comprehensive set of qualitative and quantitative ex-

periments show that our method achieves state-of-the-

art steganography and recovery results.

2. Related Work

Image hiding has been extensively studied in the aca-

demic community [9, 33]. Here we briefly discuss some

representative work on image steganography and the most

relevant techniques on invertible neural networks.

Traditional image steganography methods. Image

steganography techniques can be briefly classified into three

types: spatial-based [8, 31, 36–38, 43, 52, 56], transform-

based [19, 26, 41, 42, 45] and adaptive steganography meth-

ods [22, 23, 27–29, 35, 40]. A commonly used spatial

steganography algorithm is the LSB steganography [8],

where the information is embedded by modifying the LSBs

of the host image. However, this leaves traces in the statis-

tics of the container image that can be easily detected

by some steganalysis methods [18, 24, 61]. Other spatial

steganography methods are based on pixel value differenc-

ing (PVD) [38, 56], histogram shifting [43, 52], multiple

bit-planes [31, 36], palettes [31, 37] and so on. Transform

steganography applies image hiding in various transform

domains [9, 33]. For instance, JSteg [42] embeds the data

into the LSBs of the discrete cosine transform (DCT) coef-

ficients of the host image. In general, DCT steganography

techniques [19, 26, 41, 45] share a low steganography pay-

load capacity.

Adaptive steganography normally adopts a general

framework for data embedding, where the problem can be

decomposed into embedding distortion minimization and

data coding. A well-known framework of this class of

method was proposed in [40], where the subtractive pixel

adjacency matrix feature [39] and syndrome-trellis codes

[17] are utilized for adaptive steganography. Similarly,

some other adaptive methods [22, 23, 27–29, 35] are de-

signed with different cost functions. These methods have

good imperceptibility, but still with a common limitation in

payload capacity.

Deep learning-based image steganography. Various

deep learning-based image steganography schemes have

been introduced recently. These methods can be categorized

into four families [10]: the family by synthesis [46, 53],

the family by generation of the modifications probability

map [50,59], the family by adversarial-embedding [49] and

the family by 3-player game [5, 25, 60, 62].

In the family of image synthesis, [46] and [53] both use

generative adversarial networks (GANs) to create a more

suitable container. Compared with traditional steganogra-

phy, these methods have no significant improvement in the

aspect of steganography payload capacity. In the family of

modifications probability map generation, most methods fo-

cus on generating various cost functions satisfying minimal-

distortion embedding [40]. In [50] a GAN-based distortion

learning framework is introduced for steganography, while

in [59] a generator with U-Net architecture is used to con-

vert an input image into a container image. In the family of

10817

adversarial-embedding, [49] presents an adversarial scheme

under the distortion minimization framework [40]. In the

family 3-player game, HiDDeN [62] and SteganoGAN [60]

adopt the encoder-decoder structure to perform information

embedding and recovery. To resist steganalysis, they in-

clude a third network that plays the role of adversary.

Recently, an excellent approach called Deep Steganogra-

phy [4,5] successfully hides an image within another image

of the same size. This method uses a fully convolutional

network consisting of three components: the preparation,

hiding, and revealing networks. These three different net-

works are trained in an end-to-end manner. In contrast, our

method utilizes an invertible network to train all shared pa-

rameters of the hiding and revealing tasks.

Applications. Many steganography based applications

have been proposed. For instance, Chen et al. [12] inte-

grate image steganography into style transfer. Wengrowski

et al. [55] introduce light field messaging (LFM) for mes-

sage transmission using hiding, recovering, and distortion

simulation networks. Tancik et al. [48] present a stegano-

graphic system called StegaStamp. This system could be

applied to provide extra information in addition to perceiv-

able image contents. Besides that, there is some interesting

work [51] focusing on hiding some objects or textures by

making them similar to the target image.

Invertible Neural Networks (INN). In recent years, the

invertible neural network has attracted much attention, as it

is one of the effective schemes for reversible image transfor-

mation. INN learns a stable invertible mapping between the

data distribution pX and a latent distribution pZ . Instead

of constructing a cycle loss to train two generators to im-

plement bidirectional mapping such as in CycleGAN [63],

INN involves the forward and back propagation operations

in the same network, such that it realizes both the feature

encoder and the image generator.

Pioneering research on INN-based mapping can be seen

in NICE [14] and RealNVP [15]. In [20] a further explana-

tion for the invertibility is explored. INNs have also been

proved to share some advantages in estimating the posterior

of an inverse problem [2]. In [47], flexible INNs are con-

structed with masked convolutions under some composition

rules. An unbiased flow-based generative model is also in-

troduced in [13]. Besides that, FFJORD [21], Glow [34],

i-RevNet [32] and i-ResNet [6] further improve the cou-

pling layer for density estimation, achieving better gener-

ation results. Because of the powerful network representa-

tion, INNs are also used for various inference tasks, such

as image colorization [3], image rescaling [58], image com-

pression [54], and video super-resolution [64]. We take the

advantage of INN’s bijective construction and efficient in-

vertibility for our steganography issue.

3. Proposed Approach

3.1. Overview

Our image steganography framework aims to effectively

embed multiple hidden images into the host image, and con-

versely, it enables us to reveal the hidden images with high-

quality from the container image, as shown in Fig. 2 (b).

Formally, we set the host image and the hidden image(s) as

xho and xhi, respectively, and the corresponding container

image is yco. As mentioned before, we regard embedding

and extracting the hidden images as a pair of inverse prob-

lems, we thus formulate the procedure as:

yco = f(xhi, xho),

(x̂ho, x̂hi) = f−1(yco),
(1)

where x̂ho, x̂hi are respectively the recovered host and hid-

den images from the container image. Therefore, suitable

optimizers should be designed to ensure that yco and x̂hi

are as close as possible to xho and xhi, respectively.

In our system, we introduce a single network to simulta-

neously perform feature transformation, image steganogra-

phy and revealing. Therefore, we use the forward mapping

of this network to fit the stenography function f(·), and the

reverse mapping to fit the recovery function f−1(·), as de-

fined in Eq. (1). Specifically, on the forward propagation

the host image xho and hidden images xhi are set as input

to get the container image yco. On the back propagation,

such yco is set as input to reveal x̂hi. Our two tasks are pro-

cessed in the same network, benefiting from all fully shared

parameters of the two invertible propagation operations.

3.2. Invertible Steganography Network (ISN)

Our ISN architecture, where hiding and revealing images

are efficiently solved in the same network, is inspired by the

latest INNs [14, 15, 58]. As shown in Fig. 2 (b), our ISN

consists of several invertible blocks. In INNs, the basic in-

vertible coupling layer is the additive affine transformations

proposed by NICE [14]. For this model, the l-th invertible

block, the input bl is divided into bl1 and bl2 along the chan-

nel axis and the corresponding output is bl+1

1 and bl+1

2 . For

the forward operation,

bl+1

1 = bl1 + φ(bl2),

bl+1

2 = bl2 + η(bl+1

1),
(2)

where φ(·) and η(·) are arbitrary functions. For the back-

ward operation, given [bl+1

1 , bl+1

2], it is easy to calculate [bl1
, bl2] as:

bl2 = bl+1

2 − η(bl+1

1),

bl1 = bl+1

1 − φ(bl2).
(3)

For our image-into-image steganography, the forward

propagation operation is to embed xhi into xho, the input

10818

(a) Traditional image steganography pipeline

(b) Our invertible steganography framework

𝑥𝑥ℎ𝑜𝑜𝑥𝑥ℎ𝑖𝑖 𝑦𝑦𝑐𝑐𝑜𝑜 �𝑥𝑥ℎ𝑖𝑖
Image

steganography

Hidden Image

recovery

𝑥𝑥ℎ𝑜𝑜 : host image 𝑥𝑥ℎ𝑖𝑖 : hidden image(s) 𝑦𝑦𝑐𝑐𝑜𝑜: container image�𝑥𝑥ℎ𝑜𝑜 : revealed host image �𝑥𝑥ℎ𝑖𝑖 : revealed hidden image(s) 𝑦𝑦𝑧𝑧: constant matrix

𝜙𝜙 𝜌𝜌 𝜂𝜂 : Conv Block

: Invertible Block

…

𝑥𝑥ℎ𝑜𝑜𝑥𝑥ℎ𝑖𝑖 𝑦𝑦𝑐𝑐𝑜𝑜⊕
⊕⨀𝜌𝜌 𝜂𝜂𝜙𝜙𝑏𝑏1𝑙𝑙𝑏𝑏2𝑙𝑙

𝑏𝑏1𝑙𝑙+1 𝑏𝑏2𝑙𝑙+1𝜙𝜙 𝑏𝑏2𝑙𝑙+1
𝑏𝑏1𝑙𝑙+1𝜌𝜌 𝜂𝜂𝑏𝑏2𝑙𝑙

𝑏𝑏1𝑙𝑙
⊘ ⊖

⊖
�𝑥𝑥ℎ𝑖𝑖
�𝑥𝑥ℎ𝑜𝑜 𝑦𝑦𝑧𝑧

Figure 2. System pipeline. Unlike traditional methods (a) where steganography and recovery of the hidden image are processed separately,

we introduce an invertible steganography framework (b). The multiple hidden images are concatenated with the host image, serving as a

forward input to the trainable invertible network. The container image is then generated using several invertible blocks sharing the same

structures. Conversely, the backpropagation effectively recovers the hidden images with high quality from the container image.

of our ISN naturally consists of two parts, which exactly

match the splitting of bl1 and bl2. To increase the representa-

tional capacity of the network, an affine coupling layer [15]

is frequently used. Following [58], we use an additive trans-

formation for the host image branch bl1, and employ an en-

hanced affine transformation for the hidden image branch

bl2. Therefore, we adopt the bijection of the forward propa-

gation, and Eq. 2 is reformulated as

bl+1

1 = bl1 + φ(bl2),

bl+1

2 = bl2 ⊙ exp(ρ(bl+1

1)) + η(bl+1

1),
(4)

where exp(·) and ρ(·) are Exponential and arbitrary func-

tions, respectively. ⊙ is the Hadamard product. Thus, this

is a variant of the augmented invertible block. Accordingly,

our backward propagation operation is

bl2 = (bl+1

2 − η(bl+1

1))⊙ exp(−ρ(bl+1

1)),

bl1 = bl+1

1 − φ(bl2).
(5)

The corresponding invertible blocks are shown in Fig. 2 (b).

Note that exp(·) of ρ(·) is omitted in the figure.

In our ISN, when generating the container image yco, a

constant matrix yz is introduced (see the right of Fig. 2 (b)).

When we attempt to hide an RGB image into another RGB

image, there are 6 feature channels for the input and out-

put of the invertible blocks, which means that the forward

output also has 6 channels. However, we only need 3 fea-

ture channels to represent yco. To keep the consistency of

the channel number and feature information on both sides of

the invertible network, we thus set the remaining 3 channels

besides yco as a constant matrix yz .

It is noticeable that our ISN can be flexibly adapted to

embed multiple xhi. To achieve that, we directly concate-

nate such multiple xhi in the channel dimension, and simul-

taneously increase the number of feature channels in the b2
hidden branch, without changing the network architecture.

3.3. Loss Functions

We aim to ensure that both the container image yco and

revealed images x̂hi are as close as possible to the host xho

and the hidden images xhi, respectively. Therefore, we in-

troduce the following two losses for yco and xhi:

Lco = F(xho, yco),

Lhi = F(x̂hi, xhi).
(6)

Here F is the pixel-level distance function. Besides that,

the following two losses are constructed respectively for the

revealed host image xho and the constant matrix yz ,

Lho = F(x̂ho, xho),

Lz = F(ŷz, yz).
(7)

These two losses further constrain the system towards a

unique solution for reconstructing the desired images. Fol-

10819

Host Container Errors (mag.x50) Hidden Revealed Errors (mag.x50)

(a) Original (b) [5] (c) Ours (d) [5] (e) Ours (f) Original (g) [5] (h) Ours (i) [5] (j) Ours

Figure 3. Visual comparisons for hiding and revealing an image.

Host Container Errors (mag.x50) Hidden-1 Revealed-1 Errors (mag.x50) Hidden-2 Revealed-2 Errors (mag.x50)

(a) Original (b) [5] (c) Ours (d) [5] (e) Ours (f) Original (g) [5] (h) Ours (i) [5] (j) Ours (k) Original (l) [5] (m) Ours (n) [5] (o) Ours

Figure 4. Visual comparisons for hiding and revealing two images.

lowing [58], we use the l2 and l1 loss functions for the for-

ward and backward propagation operations, respectively. In

summary, our final loss function is

L = αcoLco + αzLz + αhoLho + αhiLhi, (8)

where αco, αz, αho, αhi are the weights of the correspond-

ing losses presented above.

4. Experimental Results

4.1. Implementation Details

Our ISN is implemented with PyTorch, and an Nvidia

Titan 2080Ti GPU is used for acceleration. We use the

AdaMax optimizer with β1 = 0.9, β2 = 0.999, a learn-

ing rate of 0.0002 and a mini-batch of size 2 to train our

model. Our network contains several invertible blocks, each

of them uses three 5-layer DenseNet blocks as the φ, ρ,

and η sub-modules, respectively. The number of invertible

blocks and the weights of our loss function are related to the

steganography payload capacity, i.e. the number of hidden

images (more details are in Sec. 4.4).

We train and test our network on the ImageNet [44]

and Paris StreetView [16] datasets, which contain vari-

ous natural and man-made scenarios. We randomly select

100,000 and 1,000 images from ImageNet as the training

and testing sets, respectively. From the Paris StreetView

dataset, we get 14,900 training images and 100 testing

images. We randomly crop 144×144 patches for train-

ing, while flipping and rotation are also used for data aug-

mentation. We alternate the forward and back propaga-

tion operations of the network during training. For each

iteration, our network firstly performs forward calculation

F (xho, xhi) to obtain (yco, ŷz), secondly performs reverse

calculation F−1(yco, yz), and then calculates the corre-

sponding 4 losses and updates the parameters.

10820

O
ri

g
in

a
l

O
u

rs
E

rr
o

rs

(a) 3 hidden images. (b) 4 hidden images. (c) 5 hidden images.

Figure 5. Results for hiding multiple images. Sub-figure (a), (b) and (c) respectively represent the results of hiding 3 ∼5 images, with a

blue border on the host images and an orange border on the hidden images. In each sub-figure, the top row is the original images and the

middle row is our generated results, while the third row is the ×50 magnified errors between them.

Table 1. Objective comparison using PSNR/SSIM. -h1 and -h2
means to hide 1 and 2 images respectively. (c) means cross-

domain testing, i.e. the model trained on another dataset is tested

directly without fine-tuning.

method
ImageNet Paris StreetView

Container Revealed Container Revealed

Ours-h1 38.05/.954 35.38/.955 40.49/.980 43.33/.991

Ours-h1 (c) 36.48/.940 34.92/.950 39.28/.977 40.41/.985

[5]-h1 36.02/.946 32.75/.933 36.80/.986 39.03/.984

[5]-h1 (c) 30.12/.938 29.53/.897 38.29/.975 35.86/.971

Ours-h2 36.86/.945 32.21/.920 39.14/.971 39.05/.982

Ours-h2 (c) 35.57/.932 32.04/.926 38.69/.969 35.12/.962

[5]-h2 30.18/.919 29.17/.898 37.14/.978 34.73/.964

[5]-h2 (c) 29.85/.931 25.19/.833 35.20/.963 33.23/.955

An ISN for hiding an image takes approximately one day

to train for 500,000 iterations. When performing inference,

the entire process of hiding and revealing an image with

380×380 resolution takes about 0.07 seconds. We also im-

plement our model on MindSpore [1] and other platforms.

More specifically, the inference speed of our model is in-

creased by 12% on the Jittor deep learning framework [30].

4.2. Comparison

Here we conduct some comparison tests especially with

the latest method proposed in [5]. Some other CNN-based

methods like HiDDeN [62] and SteganoGAN [60] are not

involved, because they still achieve traditional payload ca-

pacities (<4.5 bpp). We reimplemented the model in [5]

using PyTorch, and trained it on both ImageNet and Paris

StreetView datasets. The PSNR (Peak Signal to Noise Ra-

tio) and SSIM (Structural Similarity) metrics are used to

objectively evaluate the images. Note that the calculated

values of the model trained by us are slightly lower than

that reported in [5] (Tab. 1). This could be due to differ-

ent testing data randomly chosen from the dataset. When

hiding two images, we measure the reconstruction quality

of their revealed results using their average PSNRs. The

results in Tab. 1 indicate that our approach performs better

in both hiding single image and multiple images. Interest-

ingly, Tab. 1 also shows that when our model is specifically

trained on Pairs StreetView with a small amount of data, the

testing results obtained on ImageNet are still acceptable.

Visualization comparisons between our ISN and [5] are

shown in Fig. 3. Due to the space limitation, here we only

show two examples for each dataset (more examples are in

the supplementary). To illustrate the difference between the

original and generated images, we magnify the pixel-wise

errors by 50 times. One can observe that both our gener-

ated container and revealed hidden images contain smaller

errors than that of [5], which is consistent with the objec-

tive comparison. In general, these experiments show that

our ISN obtains the optimal results both quantitatively and

qualitatively, when hiding one or two images.

4.3. Hiding Multiple Images

Here we explore the steganography payload capacity of

our ISN by embedding multiple images. Firstly, we em-

bed two images into the host, and the visual comparison

can be seen in Fig. 4. Furthermore, Fig. 5 visualizes the

results with 3∼5 hiding images, with a blue border around

host images and an orange border around the hidden im-

ages. Clearly, at such a high steganography payload capac-

ity, our ISN still obtains satisfactory container images, and

moreover, it reveals all hidden images with high quality.

In Fig. 6, we further calculate the average PSNRs for the

containers and revealed images when hiding different num-

bers of images. In each class of experiments, we randomly

select 100 images for the test. Again, the PSNR corresponds

to the average of all hidden images for every container im-

age. As shown in Fig. 6, the average PSNR values of the

revealed images decrease with the increasing number of the

hidden images. It is easy to understand that it becomes more

difficult to hide and reveal the information of more hidden

images. Nevertheless, even for the extreme case of 5 hid-

den images, the PSNR of the revealed hidden images is still

higher than 31 dBs, while the container images are with

good visual imperceptibility (∼36 dBs).

10821

[5]

[5]

Figure 6. Average PSNRs of the revealed hidden images and the

container images for embedding 1∼5 images.

Table 2. Ablation experiments for hiding 1∼ 2 images.

αco

1 hidden image 2 hidden images

Container Revealed Container Revealed

2 27.64/.908 41.38/.994 27.08/.856 38.04/.981

4 29.10/.935 42.26/.994 28.84/.894 38.15/.986

8 33.30/.961 41.16/.990 29.86/.922 37.48/.983

16 35.64/.974 41.99/.990 35.52/.932 39.26/.984

32 40.49/.980 43.33/.991 37.60/.958 38.87/.982

64 42.40/.986 40.73/.988 39.14/.971 39.05/.982

Table 3. Ablation experiments for hiding 4 images.

αco

8 InvBlocks 16 InvBlocks

Container Revealed Container Revealed

4 27.58/.779 32.90/.945 26.97/.787 34.66/.960

32 33.63/.928 31.61/.934 34.58/.923 33.22/.949

64 36.53/.957 31.12/.928 36.03/.955 33.02/.942

4.4. Ablation Experiments

The ablation experiments are performed on Paris

StreetView. Here we mainly discuss the loss weight of the

container image and the number of invertible blocks, which

greatly impact the final results. For more detailed exper-

iments on sub-modules selection and loss function adjust-

ment, please see the supplementary.

As reported in Tab. 2, our ISN easily reveals high-quality

images when embedding 1 or 2 images. By simply adjust-

ing αco, the weight of the container image in loss func-

tion Eq. (8), our network still gets desired container images.

When hiding 2 images, without decreasing the quality of the

revealed images (still higher than 38 dBs), changing αco

from 2 to 64 makes the container image gain +12.06 dBs

and +0.115 for the PSNR and SSIM metrics, respectively.

Similarly, when hiding 4 images, increasing αco can

significantly improve the quality of the container image

(see Tab. 3). However, it is difficult to do so for the re-

vealed images. Still in this table, if we only use an ISN with

8 invertible blocks, the average PSNRs of the 4 revealed im-

ages are always less than 33 dBs. By increasing the number

of invertible blocks from 8 to 16, the revealed images gain

Host Container Errors Hidden Revealed Errors

Figure 7. Visual results for some extreme cases, where the host or

hidden images are monochrome, natural or random noise images.

+1.9 dBs, and the container image is higher than 36 dBs

(the bottom row in Tab. 3). In other words, when dealing

with more hidden images, the steganography and recovery

capability of our method could be improved by appropri-

ately increasing the number of blocks. According to Tab. 2

and Tab. 3, we set αco to 32 for 1 hidden image and αco to

64 for multiple hidden images, to ensure that the container

image is sufficiently similar to the host image in most cases,

and αz, αho, αhi are all set to 1.

5. Discussions

5.1. Extreme Cases

To explore the steganography capability of our proposed

approach, we conduct experiments on some extreme im-

ages, including a natural image, a monochrome image and

a random noise image. For every two images, we firstly

select one of them to embed into the other. After that, we

repeat the above experiment by switching these two images

in our system. From the first two rows of Fig. 7, it could be

observed that our method performs well when embedding

a natural image into a monochrome image or vice versa.

However, other results (the last four rows) show that if the

noise image is used as a hidden or host image, it is difficult

for our method to reveal the hidden image.

5.2. Passive Attack Analysis

Here we conduct passive attack analysis on container im-

ages generated by our method, and we employ two widely-

used open source tools [7, 57] for this analysis. The first

tool is ManTra-Net [57], which is designed to detect 385

image manipulation types. We compare the detection re-

10822

H
id

d
e

n

C
o

n
ta

in
e

r
M

a
sk

Ground truth
Ground truth [5] Ours

Figure 8. Forgery detection. The masks in the second row are

the corresponding results of the container images in the first row,

respectively, detected by ManTra-Net [57]. The third row shows

the hidden images.

sults of our method against [5] using this image forgery tool.

As shown in Fig. 8, the indicated abnormal information of

our container image detected by [57] is close to that of the

original host image. On the contrary, the result using [5]

(the center of Fig. 8) shows more information of the hidden

image. This proves the effectiveness of our steganography

approach.

Another detection tool is named StegExpose [7], which

is devised for LSB steganography detection, and includes

four well-known steganalysis approaches. As shown in

Fig. 9, the detection results with StegExpose on [5] and ours

are shown in the form of receiver operating characteristic

(ROC) curves. These two comparable curves indicate that

StegExpose detection does not work well on both ours and

the method in [5]. It is also interesting that the detection

curve on [5] is slightly better than ours, while it is opposite

for the PSNRs metrics reported before.

5.3. Encryption

As mentioned before, we force the output of the forward

propagation in our hidden image branch to a constant matrix

yz during the training. For all our experiments in Sec. 4, all

elements in yz are set as 0.5, such that the consistency of

the network structure is well preserved, and as expected the

hidden image branch information is transferred to the host

image branch.

Can yz be further used as a key for hidden image extrac-

tion? We set yz with other texture patterns during training,

and try to reveal the hidden image under the assumption that

yz is unknown. Fig. 10 shows some revealed results of the

hidden image when yz is set with different textures. We can

Figure 9. The ROC curve produced by setting different thresholds

in StegExpose [7] when detecting the container images generated

by [5] and our method.

Figure 10. Extracting the hidden image by setting yz with different

texture patterns. The top-left and bottom-left are respectively the

container and hidden images. The remaining 5 images of the first

row are texture patterns of yz , and the bottom of them are the

corresponding results revealed from the container images.

see that only with the correct yz , the hidden image could

be revealed with high quality. Note also that although the

images revealed by incorrect yz are distorted, the hidden

contents are still partially recognizable.

6. Conclusion

In this paper, we have proposed an Invertible Steganog-

raphy Network (ISN) for image steganography, where the

forward and backward propagation operations of the same

network are leveraged to embed and extract hidden im-

ages, respectively. Our method significantly improves the

steganography payload capacity, and can be easily adapted

to hide multiple images with high imperceptibility. Com-

prehensive experiments demonstrate that with significant

improvement of the steganography payload capacity, our

ISN method achieves state-of-the-art both visually and

quantitatively.

Acknowledgements. We would like to thank reviewers and

ACs for their valuable comments. This work is funded in part by

NSFC (No. 61972216) and Tianjin NSF (No. 18JCYBJC41300

and No. 18ZXZNGX00110). The corresponding author of this

paper is Shao-Ping Lu.

10823

References

[1] MindSpore. https://www.mindspore.cn/, 2020. 6

[2] Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich

Köthe. Analyzing inverse problems with invertible neural

networks. In ICLR, 2018. 3

[3] Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten

Rother, and Ullrich Köthe. Guided image generation

with conditional invertible neural networks. arXiv preprint

arXiv:1907.02392, 2019. 3

[4] Shumeet Baluja. Hiding images in plain sight: Deep

steganography. In NeurIPS, pages 2069–2079, 2017. 2, 3

[5] Shumeet Baluja. Hiding images within images. IEEE Trans.

Pattern Anal. Mach. Intell., 2019. 2, 3, 5, 6, 7, 8

[6] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Du-

venaud, and Jörn-Henrik Jacobsen. Invertible residual net-

works. In ICML, pages 573–582, 2019. 3

[7] Benedikt Boehm. Stegexpose - a tool for detecting LSB

steganography. arXiv preprint arXiv:1410.6656, 2014. 7,

8

[8] Chi-Kwong Chan and Lee-Ming Cheng. Hiding data in im-

ages by simple LSB substitution. PR, 37(3):469–474, 2004.

1, 2

[9] Yambem Jina Chanu, Kh Manglem Singh, and Themrichon

Tuithung. Image steganography and steganalysis: A survey.

Int. J. Comput. Vision., 52(2), 2012. 2

[10] Marc Chaumont. Deep learning in steganography

and steganalysis from 2015 to 2018. arXiv preprint

arXiv:1904.01444, 2019. 2

[11] Abbas Cheddad, Joan Condell, Kevin Curran, and Paul

Mc Kevitt. Digital image steganography: Survey and anal-

ysis of current methods. Signal processing, 90(3):727–752,

2010. 1

[12] Hung-Yu Chen, I-Sheng Fang, Chia-Ming Cheng, and Wei-

Chen Chiu. Self-contained stylization via steganography for

reverse and serial style transfer. In IJCAI, March 2020. 3

[13] Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and

Jörn-Henrik Jacobsen. Residual flows for invertible genera-

tive modeling. In NeurIPS, pages 9916–9926, 2019. 3

[14] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE:

Non-linear independent components estimation. arXiv

preprint arXiv:1410.8516, 2014. 2, 3

[15] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-

gio. Density estimation using real NVP. arXiv preprint

arXiv:1605.08803, 2016. 2, 3, 4

[16] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic,

and Alexei Efros. What Makes Paris Look like Paris? ACM

Trans. Graph., 31(4), 2012. 5

[17] Tomáš Filler, Jan Judas, and Jessica Fridrich. Minimiz-

ing embedding impact in steganography using trellis-coded

quantization. In Media forensics and security II, volume

7541, page 754105, 2010. 2

[18] Jessica Fridrich, Miroslav Goljan, and Rui Du. Detecting

LSB steganography in color, and gray-scale images. IEEE

Trans. Multimedia, 8(4):22–28, 2001. 1, 2

[19] Jessica Fridrich, Tomáš Pevnỳ, and Jan Kodovskỳ. Statis-

tically undetectable JPEG steganography: dead ends chal-

lenges, and opportunities. In workshop on Multimedia &

security, pages 3–14, 2007. 2

[20] Anna C Gilbert, Yi Zhang, Kibok Lee, Yuting Zhang, and

Honglak Lee. Towards understanding the invertibility of

convolutional neural networks. In IJCAI, pages 1703–1710,

2017. 3

[21] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya

Sutskever, and David Duvenaud. FFJORD: Free-form con-

tinuous dynamics for scalable reversible generative models.

arXiv preprint arXiv:1810.01367, 2018. 3

[22] L. Guo, J. Ni, and Y. Q. Shi. An efficient JPEG stegano-

graphic scheme using uniform embedding. In WIFS, pages

169–174, 2012. 2

[23] L. Guo, J. Ni, and Y. Q. Shi. Uniform embedding for effi-

cient JPEG steganography. IEEE Trans. Inf. Forensics Secur.,

9(5):814–825, 2014. 2

[24] Tariq Al Hawi, MA Qutayri, and Hassan Barada. Steganaly-

sis attacks on stego-images using stego-signatures and statis-

tical image properties. In TENCON, pages 104–107, 2004.

1, 2

[25] Jamie Hayes and George Danezis. Generating stegano-

graphic images via adversarial training. In NeurIPS, pages

1954–1963, 2017. 2

[26] Stefan Hetzl and Petra Mutzel. A graph–theoretic approach

to steganography. In IFIP international conference on com-

munications and multimedia security, pages 119–128, 2005.

2

[27] Vojtěch Holub and Jessica Fridrich. Designing stegano-

graphic distortion using directional filters. In WIFS, pages

234–239, 2012. 2

[28] Vojtěch Holub and Jessica Fridrich. Digital image steganog-

raphy using universal distortion. In workshop on Information

hiding and multimedia security, pages 59–68, 2013. 2

[29] Vojtěch Holub, Jessica Fridrich, and Tomáš Denemark.

Universal distortion function for steganography in an arbi-

trary domain. EURASIP Journal on Information Security,

2014(1):1, 2014. 2

[30] Shi-Min Hu, Dun Liang, Guo-Ye Yang, Guo-Wei Yang, and

Wen-Yang Zhou. Jittor: a novel deep learning framework

with meta-operators and unified graph execution. Informa-

tion Sciences, 63(222103):1–222103, 2020. 6

[31] Shoko Imaizumi and Kei Ozawa. Multibit embedding algo-

rithm for steganography of palette-based images. In PSIVT,

pages 99–110, 2013. 2

[32] Jörn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oy-

allon. i-RevNet: Deep invertible networks. In ICLR, 2018.

3

[33] Inas Jawad Kadhim, Prashan Premaratne, Peter James Vial,

and Brendan Halloran. Comprehensive survey of image

steganography: Techniques, evaluations, and trends in future

research. Neurocomputing, 335:299–326, 2019. 1, 2

[34] Durk P Kingma and Prafulla Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. In NeurIPS, pages

10215–10224, 2018. 3

[35] B. Li, M. Wang, J. Huang, and X. Li. A new cost function

for spatial image steganography. In ICIP, pages 4206–4210,

2014. 2

10824

[36] Bui Cong Nguyen, Sang Moon Yoon, and Heung-Kyu Lee.

Multi bit plane image steganography. In IWDW, pages 61–

70, 2006. 2

[37] Michiharu Niimi, Hideki Noda, Eiji Kawaguchi, and

Richard O Eason. High capacity and secure digital steganog-

raphy to palette-based images. In ICIP, volume 2, pages II–

II, 2002. 2

[38] Feng Pan, Jun Li, and Xiaoyuan Yang. Image steganogra-

phy method based on pvd and modulus function. In ICECC,

pages 282–284, 2011. 2

[39] Tomáš Pevny, Patrick Bas, and Jessica Fridrich. Steganaly-

sis by subtractive pixel adjacency matrix. IEEE Trans. Inf.

Forensics Secur., 5(2):215–224, 2010. 2

[40] Tomáš Pevnỳ, Tomáš Filler, and Patrick Bas. Using high-

dimensional image models to perform highly undetectable

steganography. In International Workshop on Information

Hiding, pages 161–177, 2010. 1, 2, 3

[41] N. Provos. Defending against statistical steganalysis. In

Usenix security symposium, volume 10, pages 323–336,

2001. 2

[42] N. Provos and P. Honeyman. Hide and seek: an introduction

to steganography. IEEE Security Privacy, 1(3):32–44, 2003.

1, 2

[43] Chuan Qin, Chin-Chen Chang, Ying-Hsuan Huang, and Li-

Ting Liao. An inpainting-assisted reversible steganographic

scheme using a histogram shifting mechanism. IEEE Trans.

Circuits Syst. Video Technol., 23(7):1109–1118, 2012. 2

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. Int. J. Comput. Vision.,

115(3):211–252, 2015. 5

[45] Phil Sallee. Model-based steganography. In IWDW, pages

154–167, 2003. 2

[46] Haichao Shi, Jing Dong, Wei Wang, Yinlong Qian, and Xi-

aoyu Zhang. SSGAN: secure steganography based on gen-

erative adversarial networks. In PCM, pages 534–544, 2017.

2

[47] Yang Song, Chenlin Meng, and Stefano Ermon. Mintnet:

Building invertible neural networks with masked convolu-

tions. In NeurIPS, pages 11004–11014, 2019. 3

[48] Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp:

Invisible hyperlinks in physical photographs. In CVPR, June

2020. 3

[49] Weixuan Tang, Bin Li, Shunquan Tan, Mauro Barni, and

Jiwu Huang. CNN-based adversarial embedding for im-

age steganography. IEEE Trans. Inf. Forensics Secur.,

14(8):2074–2087, 2019. 2, 3

[50] W. Tang, S. Tan, B. Li, and J. Huang. Automatic stegano-

graphic distortion learning using a generative adversarial net-

work. IEEE Signal Processing Letters, 24(10):1547–1551,

2017. 2

[51] Qiang Tong, Song-Hai Zhang, Shi-Min Hu, and Ralph R

Martin. Hidden images. In NPAR, pages 27–34, 2011. 3

[52] Piyu Tsai, Yu-Chen Hu, and Hsiu-Lien Yeh. Reversible im-

age hiding scheme using predictive coding and histogram

shifting. Signal processing, 89(6):1129–1143, 2009. 2
[53] Denis Volkhonskiy, Ivan Nazarov, and Evgeny Burnaev.

Steganographic generative adversarial networks. In ICMV,

volume 11433, page 114333M, 2020. 2

[54] Yaolong Wang, Mingqing Xiao, Chang Liu, Shuxin Zheng,

and Tie-Yan Liu. Modeling lost information in lossy image

compression. arXiv preprint arXiv:2006.11999, 2020. 3

[55] Eric Wengrowski and Kristin Dana. Light field messaging

with deep photographic steganography. In CVPR, June 2019.

3

[56] Da-Chun Wu and Wen-Hsiang Tsai. A steganographic

method for images by pixel-value differencing. Pattern

recognition letters, 24(9-10):1613–1626, 2003. 2

[57] Yue Wu, Wael AbdAlmageed, and Premkumar Natarajan.

ManTra-Net: Manipulation tracing network for detection

and localization of image forgeries with anomalous features.

In CVPR, pages 9543–9552, 2019. 7, 8

[58] Mingqing Xiao, Shuxin Zheng, Chang Liu, Yaolong Wang,

Di He, Guolin Ke, Jiang Bian, Zhouchen Lin, and Tie-Yan

Liu. Invertible image rescaling. ECCV, 2020. 2, 3, 4, 5

[59] J. Yang, D. Ruan, J. Huang, X. Kang, and Y. Shi. An embed-

ding cost learning framework using GAN. IEEE Trans. Inf.

Forensics Secur., 15:839–851, 2020. 2

[60] Kevin Alex Zhang, Alfredo Cuesta-Infante, Lei Xu, and

Kalyan Veeramachaneni. SteganoGAN: High capac-

ity image steganography with GANs. arXiv preprint

arXiv:1901.03892, 2019. 2, 3, 6

[61] Li Zhi, Sui Ai Fen, and Yang Yi Xian. A LSB steganography

detection algorithm. In PIMRC, volume 3, pages 2780–2783,

2003. 2

[62] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei.

Hidden: Hiding data with deep networks. In ECCV, pages

657–672, 2018. 1, 2, 3, 6

[63] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, Oct 2017. 3

[64] Xiaobin Zhu, Zhuangzi Li, Xiao-Yu Zhang, Changsheng Li,

Yaqi Liu, and Ziyu Xue. Residual invertible spatio-temporal

network for video super-resolution. In AAAI, volume 33,

pages 5981–5988, 2019. 3

10825

