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ABSTRACT
A variety of representations are available for describing the shapes of curves. This paper
suggests combining a number of alternative curve representations (€.g. lines, superellipses,
codons). These are arranged to form a hierarchy of increasing specificity, ranging from
qualitative through to quantitative representations. Different levels provide different trade-
offs between the various desirable but mutually incompatible properties of shape
representations. Depending on the application, the model and image curves may be
represented by the complete hierarchies or by the subset of the representations for each sub-
sections that is most appropriate in terms of robustness, flexibility, etc. Each representation

needs to be applied at the scales which isolate important structures, and so the curve's
"natural” scales are selected by an automated process. This multi-scale analysis produces a

hierarchy of parts, and thus a hierarchy of hierarchies is formed.

1. Introduction

Many different representations have been suggested or developed for describing the
shapes of curves for use in computer vision systems. Examples include straight lines,
circular and elliptical arcs, splines, Fourier descriptors, codons, the curvature primal
sketch, and scale-space plots of zero-crossings. This paper suggests combining a number
of such representations to form a hierarchy of representations.

Hierarchical representations have played an extensive role in Artificial Intelligence. Their
advantage is that they provide a more powerful (in terms of flexibility, expressibility, etc.)
representation than single flat representations. One of the most common applications of
hierarchical representations is for decomposing a model into parts. However,
decomposing a model is carried out top-down, with a priori knowledge about the
identification and function of its various parts. Since this information is not directly
available when analysing an image curve bottom-up it can only be inferred. This 1s usually
performed by analysing the curve at multiple scales. The order of emergence of parts over
scale determines their levels in the tree. Of course, this spatial organisation will not always

correspond to a functional part decomposition.

Another popular model hierarchy is the specialisation tree. This enables a model to be
identified by increasingly precise classifications. These classifications usually require top-
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Three benefits of combining the various representations are:

e Robustness - The most appropriate curve representation obviously depends on the shape
of the model. For example, for a restricted set of models such as geons, a curve
representation consisting of just concave/convex/straight arcs would be entirely adequate
[4). However, the representation's appropriateness is also affected by the context of the
scene in which the object is viewed. For instance, a circular boundary of an object may be

detected by representing the image curve by ellipses. However, if there is inadequate data
either due to noise, occlusion, or because the component appears too small, then ellipse

fitting is likely to be unreliable and therefore unsuitable

e Flexibility - Combining different curve representations enables a model to be described
by a mixture of feature types. This is particularly interesting if different parts of the model
are described by representations at different levels of the qualitative/quantitative spectrum.
Certain portions may then be described more rigidly than others. For instance, a section
might be constrained to be precisely specified by straight lines and elliptical arcs.
Conversely, another section could be allowed some variation of its shape parameters (e.g.

size, skewness, compactness) by representing it by codons. This approach has some
relation to work done to model industrial parts, allowing tolerances for various types of

deviations (e.g. variations in translation, orientation, and area between lines and circles).
But rather than a precise metric technique, our method is more qualitative.

e Comparability - An additional benefit of the multi-representation scheme 1s that it
enables comparisons to be easily made between different representations. This will be

useful if just a simplified description using a single representation is eventually preferred
Although the design criteria detailled above are one way to compare representations,
viewing the results of the fitted representations provides a more experimental approach.

3. Combining Representations

In order to easily combine different curve representations the various feature primitives
should share endpoints. Often the determination of breakpoints when segmenting a curve

depends on the type of feature being fitted (e.g. straight lines versus circular arcs [16]) or
the particular segmentation algorithm (e.g. recursive subdivision [16] versus seed growing

[13]). One possibility would be to use one representation to determine the potential
breakpoints for other representations. For instance, this is the case when circular arcs are

fitted to curves which have already been segmented into straight lines, and subdivision is
only considered at line endpoints [16].

However, rather than preselecting some privileged representation, a more general
approach will be taken. Segmentation will be based on the singular points of curvature.

These have the advantage that they are intrinsic, local properties, and so are invariant
under occlusion and Euclidean transformations of the curve within the plane. Under 3D
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transtormations only the zeros of curvature (and not curvature extrema) are invanant [14].
In addition, curvature has been shown to be a perceptually significant feature for human
Perception of shape [2]. Because of these properties, and because they contain much
information about the curve, the singular points of curvature have been a popular tool for
analysing curves [5]. Therefore, an important benefit of using singular points is that it
enables some of these representations (e.g. codons) to be incorporated.

One of the problems of analysing the curve based on its singularities of curvature is that

curvature measurements are extremely prone to noise. However, this can be overcome if

the curve is smoothed as part of the multi-scale processing. Since most curve

representations operate at a single scale they can then be applied to the curve at each
scale.

4. Multiple Model Representations

In addition to representing the image curves in different ways the hierarchical
representation approach can be applied to the model boundaries. This would enable a
hierarchical matching scheme to be applied to the representation type as well as
hierarchical matching of parts (i.e. the multi-scale analysis). Matching between image and
fnodel.:cprves would be performed first between the most qualitative representation. The
mitial-potentia! matches would. then be refined and verified by progressing down the tree
to more quantitative representations until reliable image feature extraction or adequaté
image. to model feature matching can no longer be performed.

Alternatively, each model part could be described by only a single or a few of the
representations from the hierarchy. Several approaches are possible to decide which
representation is the most. appropriate.  First, as mentioned above. is robustness. . This
suggests that certain representations should be eliminated as unsuitable. For Instance,
small, short, curved sections of a model will generally not be adequately imaged to provide
good ellipse fits. Knowledge of the expected nature of the scene can also be used to
Influence this decision. Noisy, cluttered outdoor scenes will require more robust

representations than well controlied indoor ones. For instance, if occlusion is likely then
global features, such as Fourter descriptors and moments will pertorm poorly. h

Second, the range of shapes' within the object models may eliminate certain
representations. This can arise either because the representations are not complete ‘and
cannot represent some of the shapes, or because the representation would be unnecessarily
cumbersome. For instance, the set of codons defined by Hoffman and Richards [5] are
restricted to continuously varying, smooth, closed curves. Curves with straight sections,
cusps, or open énds cannot be represented by such codons. and so an alternative
repl:esentati‘on 1s required. Another example of an unsuitable representation is the use of
straight lines for a model consisting of curved surfaces. Individual curves might have to be
represented by many lines, complicating subsequent matching.
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The range and similarity of the models to be recognised is also important. If all the models
are relatively distinctive then an imprecise, qualitative representation may be sufficient.
Otherwise more quantitative representations are necessary to discriminate between more
subtle differences in shape. However, only the distinguishing features may need to be
represented in this manner. Also discussed above was the issue of flexibility. If some parts
of the model are allowed greater variation than others, they can be defined by a qualitative

representation rather than a more precise, quantitative representation.

Finally, the requirements of the task of the vision system will indicate the appropriate
representations. Certain features can provide more suitable information than others. For
instance, concave and convex sections of curves determine the type of adjoining surface
curvature (hyperbolic or elliptical), and can be used for reconstructing the 3D shape of the
object. Another example is the ellipse which, if it is the projection of a circular feature 1n

the object, determines the pose of the object (with two fold ambiguity).

S. Additional Hierarchies and Axes

There are several other hierarchies and ranges or axes related to the representations.

Associated with each curve representation will be a suitable method for assessing
correspondences  between model and image features. Just as the representations range
from qualitative to quantitative, the ‘methods for matching will range from high level
symbolic ones to more numeric.-ones, The more qualitative representations will only be
described by labels (e.g. concave/convex/straight) and so matching icould simply be a test
for identical labels or application of a shape deformation grammar [11]. More quantitative
representations provide more information, and comparisons will have to be made between
their parameters; resulting in a similarity measure (or equivalently a distance in feature

space).

We stated that the curve. would, be analysed at multiple -scales, -and the various
representations independently applied to the curve at each of these, scales. However, there

are a range of approaches between standard single and multi-scale techniques, such as
determining the natural scales [10]. These . methods -pravide a trade-off between

compactness and expressiveness of the representation.

Another issue is the manner;in which the multiple scales are generated. The most common
technique is to smooth the curve, although alternatives include grouping and pyramids.
Smoothing can be performed so -that the topology of the curve is preserved (e.g. by
smoothing along the curve) or is not preserved (e.g. by smoothing the region the curve
encloses). Again there is a range of intermediate approaches [6].

6. An Example Hierarchy

Figure 1 shows an example of a hierarchy of representations. The two most qualitative
representations are formed by segmenting at either the zero crossings of curvature to form
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concave/convex/straight codons/extended codons
straight lines codons + shape labels
cllipses codons + shape values

' .
superellipses codons + pixels
pixels

figure | - an example of a hierarchy of representations

concave/convex/straight sections. or at the minima of curvature to form codons. Either the
restricted set [5] or the extended set [11] of codons can be used. The latter IS more
complete, and can cope with straight lines, open curves. and cusps, but has the
disadvantage that many more codon labels are required. Therefore, whichever is most

described with increasing fidelity by straight lines, ellipses, superellipses, or ultimately, the
raw pixel data. Codons can also be described with Increasing amounts of detail by
Incorporating shape labels (e.g. left-skew, very-compact), which can then be quantified
(e.g. compactness = 0.68) and augmented by additional metric techniques such as Fourier
descriptors and moments. Methods for calculating the codon shape measures of skew,
roundness, compactness. length, and orientation are given in [11].

Matching the concave/convex/straight sections or the basic codons would only require
checking that they have identical type and shape labels. The codon shape values, and also

!

Smoothing zildng the curve is performed. using Lowe's correction technique [7] to prevent
the curve shrinking towards the centre of curvature.

In this example the curves are only represented at their natural scales [10]. Gaussian

The concave/convex/straight sections are determined as the portions of the curve bounded
by the zero crossings of curvature, The codons are terminated by curvature minima,. and

their labels are identified by examining triples of signed curvature extrema and/or the

curvature signs at the ends of the curve [11]. Straight lines are fitted by connecting their
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straight lines drawn through the singularities of curvature, (e) ellipses fitted to the
concave/convex sections, (f) superellipses fitted to the concave/convex sections, and ()
the sections between minima labelled as the extended set of codons.

Figures 2 and 3 show two views of the gizmo - a simple manufactured object. The natural
scales capture: (i) the fine noise and quantisation effects, (ii) the basic shape without the
noise, and (ii1) an overall blob. The open curve is slightly distorted as the highest scale.
This is due to difficulties in estimating extensions of the curve which are necessary for the
convolution process of Gaussian smoothing. At the finest scales the noise creates
numerous spurious singularities of curvature, causing the curve to be segmented into many
tiny sections which are of little use when performing object recognition. The coarser scales
provide more useful descriptions. Since the descriptions are local they are insensitive to
the transformation and occlusion of the gizmo. Comparing the representations at the
middle scale the lines are less appropriate since the bulges of the gizmo are fragmented. In
contrast, each bulge can be represented by a single convex section. In this example, the
superelliptic arcs are only slightly more accurate than the ellipses. The codon
'representation s similar to the arcs although each bulge is broken into its two halves. This
Is because even though the ends may appear straight there is a shght curvature. Reliably
determining straight sections based on curvature is problematic [11]. At the coarsest scale
the two sets of descriptions obtained in figures 2 and 3 are very similar with the exception
of_ the codons. This arises because specific labels are generated for curve sections
adjoining open boundaries. While this also occurs at the previous scale the curve sections
are relatively short with respect to the complete curve. At the coarsest scale all the curve
sections terminate at an open end of the curve. The improvement of the superelliptical arcs
over the elliptical ones is more evident at the coarsest scale. If each section of curve were
to be described by a single representation then at the medium scale the ellipses or codons
are most suitable. The superellipses do not provide enough improvement in shape fidelity
over the ellipses to be worth the additional processing and potential instabilities of the
fitting process. However, at the coarsest scale both codons and lines are unsuitable since
the former are sensitive to occlusion and the latter do not describe the shape accurately.
The ellipses or superellipses are more appropriate.

7. Conclusions

We have described how various curve representations can be combined to form a
hierarchy of representations. This allows the strengths of one representation to be played
off against the weaknesses of another. In addition it facilitates the comparison of different
representations which is especially useful for complex shapes where the most appropriate

representation is not otherwise immediately obvious. The multi-scale analysis (coarse —
fine spatial scale) and multiple representations (qualitative — quantitative shape

descriptors) can be thought of as two axes of a two dimensional feature space. The

complete feature space 1s useful for describing shapes rather than just representations at
points or lines within the space as is the more common practice.

ere can be extended in many Wways. Additio.nal
d more degrees of freedom given to the existing

representations (e.g. tapering and bending of superellipses). Another approach would be

to add representational layers to support higher level grou;?ings of consecutive fe;turf]s(i
For instance, sequences of straight lines can be combined into corners and arcs [8] a

codons can be combined to form various bumps [11]. The current selection mechanism for

breakpoints could also be extended to provide greater sensit?vity to subtle variations 1r;
shape. One approach would be to use singularities of higher order derivatives O

curvature.

The example hierarchy presented h
representations could be included, an

t to investigate the pertormance of human visual perception

. more detail. Earlier an analogy was made between the top-down specialisation hierarchy

and the shape representation hierarchy. Rosch [9] ha.s shqwn that humans first ref:ogmfg
objects at a specific "basic level" in the specialisation hierarchy, and then continue

categorise them n more detail. Likewise, there may be some suppoxjt for the hypoth:SlS
that object shapes are best initially described at some partncular: le\{e:l in the repreisenta 1on
hierarchy. Currently we have only informally discussed the suitability of particular curve

representations for each model curve section in terms of robustness, c#scnmmlablll.ty,
flexibility, etc. Future work will concentrate on methods for automatically selecting

appropriate representations by assessing their suitability.

Finally, it would be of interes
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ABSTRACT

A unified distance-driven algorithm is presented to extract the skeleton of a digital pattem
from its distance map. The algorithm equally runs whichever distance 1s selected to compute
the distance map, among four commonly used path-based distance functions. The resultung

skeletons are compared on a large set of 512x 512 input pictures. in erms of reversibility
and computation ume.

1. Introduction

Distance maps, computed according to different distance tunctions, can be adopted
to guide pattern skeletonization. On the discrete plane, path-based distances are
commonly used, where the distance between two pixels is defined as the length of a
shortest path linking them. The degree of approximation to the Euclidean distance
depends on the number of different unit. moves permitted along the path, and on the
weights used to measure them. City-block distance (one unit move, unitary weight) and
chessboard distance (two unit moves, both with unitary weight)) [1] are a natural choice
on the square grid, but roughly approximate the Euclidean distance. Better
approximations are obtained by using weighted distance functions allowing two (or three)
differently weighted unit moves [2-5]. | '

Skeletonization algorithms driven 'by the city-block distance d;, the chessboard
distance d; 1, the two-weight distance d3 4 and the three-weight distance ds 7,11 can be
respectively found in [6-9]. N

In this paper we provide a unique skeletonization algorithm equally running,
whichever among the previouﬁs four distance functions is used to build the distance map
DM of the pattern to be skeletonized. After computing the DM, the skeletal pixels (1.e. the
centres of the maximal discs, the saddle points and the linkin ¢ pixels) are identified and



