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Abstract

In this paper, we propose a new cross-lingual font style transfer model, FCAGAN, which enables font style transfer

between different languages by observing a small number of samples. Most previous work has been on style transfer

of different fonts for single language content, but in our task we can learn the font style of one language and migrate it

to another. We investigated the drawbacks of related studies and found that existing cross-lingual approaches cannot

perfectly learn styles from other languages and maintain the integrity of their own content. Therefore, we designed a

new full-domain convolutional attention (FCA) module in combination with other modules to better learn font styles,

and a multi-layer perceptual discriminator to ensure character integrity. Experiments show that using this model

provides more satisfying results than the current cross-lingual font style transfer methods. Code can be found at

https://github.com/jtlxlf/FCAGAN.
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1. Introduction

Fonts are an essential visual design, a carrier of high-level semantic information, and the primary way to convey

our messages. In today’s globalized world, language barriers no longer constrain information exchange, and fonts

from diverse language systems are ubiquitous in our daily lives. Designers of posters, advertisements, and logos often

have to consider supporting multiple languages in their work. However, designing a large number of complex glyphs

in a consistent style (which is required for good graphic design) for different languages is both time-consuming and

expensive. Recently, with the rapid development in the field of deep learning, several font generation methods have

emerged to help designers reduce the workload of font design. Some of these methods can accomplish the task of
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Figure 1: Column 1 is the style font image, columns 2, 3, 4, 5 and 6 are the generated results of font style transfer methods such as EMD [1],

DFS [2], MF-NET [3], CFFont [4] and FTransGAN [5]. In that order, and column 6 is the result generated by our model. It can be seen that the

current method suffers from missing textual content and insufficient style learning ability, and our model can generate better results.

cross-lingual generation, allowing users to extend their language’s font style to other languages’ texts and create a

new multilingual font library. Although these methods have shown promising results, challenges still exist, such as

missing character strokes or difficulties in learning the font styles of different languages.

To address these issues, we propose a new model, FCAGAN, which generates a font library of the target language’s

font styles by observing multiple samples from the target language. We only need to enter characters from one

language as the content map and characters from another language as the style map, and the model will make the

source language characters have the style of the other language, thus enabling font style migration. Because it uses

an end-to-end model, it has a high level of real-time performance. Similar to a traditional Generative Adversarial

Network (GAN), our network contains a generator and two discriminators. The generator consists of two encoders (a

content encoder and a style encoder) and a decoder. The content encoder extracts the content features of the source

language characters, while the style encoder extracts the style features of the other language characters. The outputs

of the two encoders are then fed to the decoder and undergo a simple kind of fusion to generate the target image. In the

style encoder, we design a new full-domain convolutional attention-based style extractor, which is described in 3.1.1.

It mainly includes three modules: a full-domain convolutional attention (FCA) module, an adaptive fusion module,

and a channel-dependent multi-level feature extraction module. In full-domain convolutional attention (FCA), we use

full-domain convolution to construct attention maps for feature maps of different layers, which helps this attention

module obtain a more detailed representation of the style. Full domain convolution is different from the traditional

convolution since it introduces a convolution kernel that can span the entire feature map, thus obtaining the full domain

information of the feature map, effectively taking into account both global and local information. The adaptive fusion
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module is used to assist FCA for better results, and the channel-dependent multi-level feature extraction module

is responsible for extracting the final style code from multiple style feature maps. The specific details are shown

in figure 2. We believe that using attention networks and combining multi-layer features can better extract style

information from character images and accomplish font style migration for arbitrary languages. We then design a

multi-layer perceptual discriminator to check similarity from both content and style perspectives. To validate the

effectiveness of our proposed approach, our experiments compare FCAGAN with other approaches that allow for

cross-language font style migration. In conclusion, our contribution is as follows:

• A new model FCAGAN is proposed, applying an end-to-end solution to cross-lingual font style transfer.

• We synthesize the advantages of self-attentive mechanism and convolution, and propose the full-domain con-

volutional attention (FCA) module to extract information from feature maps of different sizes. Furthermore,

we use a channel-dependent multi-level feature extraction module to extract style encodings from style feature

maps at different scales.

• We designed a multi-layer perceptual discriminator that takes into account both global and local aspects and

more accurately identifies whether the samples are real or not.

• The experimental results demonstrate that our model performs well in cross-lingual font style transfer, effec-

tively extracting font styles and ensuring the integrity of content.

2. Related Work

2.1. Style Transfer

The style transfer method works by combining the content of one image with the style of another image, aiming

to simultaneously preserve the content as much as possible, whilst also swapping style as best as possible, ultimately

generating a new image. The style transfer methods are divided into fixed style transfer and arbitrary style transfer. A

representative work on fixed style transfer is Gatys et al.’s neural style migration [6], which generates target images by

using convolutional neural networks (CNNs) to extract content and style features and optimise content loss and style

loss. And in the area of arbitrary style migration, Huang et al. proposed adaptive instance normalization [7], which

uses an encoder-decoder network to achieve efficient style transfer of arbitrary images. As mentioned earlier, font

style transfer requires considering structural variations among fonts, their distinctive stylistic features, and ensuring

the semantic content of characters remains intact. Therefore, font style migration can be borrowed from image style

transfer, but it also needs to be improved to some extent for font characteristics.

2.2. Image-to-Image Translation

Image-to-image translation approaches convert the appearance of images from a source domain to a target domain,

e.g., horses to zebras. [8] With the continual development of Generative Adversarial Networks, image-to-image trans-

lation models like PixPix [9], CycleGAN [10], etc. have gained increasing popularity. However, these methods are
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only applicable between two domains and are less practical. StarGANv2 [11] enhances the flexibility of the mapping

network by incorporating domain information and designing a new mapping network for generative style coding, ulti-

mately enabling multi-source domain to multi-target domain image transformation. However, none of these methods

can solve the task of translating images of unknown target style. Thus, FUNIT [12] proposes a few-shot unsupervised

image generation method. They combine adversarial training with a novel network design (encoder-decoder), testing

with just a few sample images specified to generate images with that style and other content. InjectionGAN [13]

unifies generative adversarial networks(GAN) and VAE [14] to explore the latent space and combines the input image

with latent variables to address the inefficiency of redundant translation. Similarly, some few-shot image translation

methods [15] [16] have been proposed, and they can also generate the original image into an arbitrary style.

2.3. Attention Mechanism

The attention mechanism can be seen as a signal processing mechanism, enabling the network to prioritize crucial

aspects of the input data, thereby enhancing overall network performance. It is used for many vision tasks, such as

image classification, object detection, semantic segmentation, etc. Attention can also be divided into four basic cat-

egories: channel attention, spatial attention, temporal attention, and branching attention [17]. Each of these methods

can focus on localised areas to propagate features, and they can be combined to obtain a more diverse set of support

relationships from a number of different levels [18]. Later, Vaswani et al. proposed the self-attention mechanism [19]

and used it in the Transformer module, which greatly improved the accuracy and parallelism of the translation model.

Self-Attention is a unique attention mechanism that can correlate information from different locations in a sequence,

effectively capture distant dependencies, is highly adaptable, and is gradually playing an increasingly important role

in computer vision. Previously, SA-GAN [20] successfully applied a self-attentive layer to the image generation

task. Guo et al. [21] proposed a new linear attention mechanism, KLA, and first optimally decomposed large kernel

convolutions in spatial and channel directions.

Recently, networks often use a combination of convolutional and attention layers to improve performance when

processing font tasks. In this work, we employ a combination of full-domain convolution and attention mechanisms to

enhance feature extraction. The full-domain convolution can generate an attention map by acquiring the full-domain

information of the feature map, which can effectively process local contextual information while considering global

and local features, improve generalization ability, and better acquire font style information.

2.4. Font Generation

Font generation is an image generation technique that generates other characters in the same style as the sample,

based on a model and a sample of characters. In the field of computer vision, it can also be seen as a particular case

of image style transfer. Image style transfer refers to transferring the styles (e.g. color, texture, brushstrokes, etc.) of

one image onto another image, while font generation specifically converts the style of characters to a designated font

style.
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The traditional approach to font generation is based primarily on contour shape modeling. Zhou et al. [22] pro-

posed a Chinese character radical composition model to generate handwritten fonts. This method ensures that the

structure of the characters is correct, but it is difficult to capture the detail and personality of handwritten fonts. With

the popularity of generative adversarial networks(GAN), font generation methods such as zi2zi[23], PEGAN [24],

and CalliGAN [25] have emerged. These methods typically require a pair of matched images as training data and then

use the network to learn the mapping between different image domains. However, in real life, the acquired sample

images are generally uneven, and none of these methods can solve the unpaired font migration task. Zhang et al. used

the idea of extracting and combining character style and content features to design a font migration network EMD

(encoder mixer decoder) [1] by exploiting the conditional dependency between the style and content of text images.

The method extracts font style and content features from the style image set and content image set, respectively, and

then synthesizes the input to the decoder through a mixer (Mixer) without matching the source-target character im-

age pairs, which is more flexible and versatile. Jiang et al. have designed an end-to-end font generation network,

DCFont [26], which means that no human intervention is required during offline training and online generation. MC-

GAN [27] provides an end-to-end solution for style migration of few-sample fonts by designing a style encoder to

check for commonalities and differences between multiple fonts. It only needs a few samples to generate an entire

library of fonts.

Recently, several methods have been proposed for migrating few-shot font styles. Zhu et al. [28] proposed a deep

feature similarity framework for style migration of a few samples, which generates target characters by exploiting the

deep feature similarity between the input content character images and style character images. Subsequently, several

methods were proposed for various font generation tasks. Deepimitator [29] and SDT [30] can imitate and generate

personal handwriting from a small number of handwriting images using sequence processing models (e.g., RNN).

FontTransformer [31] and DeepVecFont-v2 [32] can generate high-quality fonts from a small number of samples by

using a multilayered attention-based Transformer. VQFont [33] utilizes cross-attention for feature fusion and achieves

better results in few-shot font generation within a single language. Junbum, Cha, et al. propose a few-shot font genera-

tion method, DM-Font [34], which achieves good results in implementing the transfer of Chinese font styles to foreign

language fonts such as Korean and Thai. However, they require external auxiliary information such as character com-

ponent information to be added at training time, and for multilingual datasets, character component information is

exceptionally tedious to obtain. Li et al. proposed a cross-lingual font style transfer network (FTransGAN) [5],

which is theoretically applicable to various languages and does not require the assistance of other components, but

also suffers from incomplete character generation and insufficient style learning ability. Our method introduces full-

domain convolutional attention to enhance the ability of style extraction, and improves the discriminator architecture

to strengthen adversarial training for ensuring character integrity.
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Figure 2: Network Architecture. The generator consists of three parts: style encoder, content encoder and decoder. The content encoder consists

of three convolutional layers (Conv layers). The style encoder is based on the structure of the content encoder with the addition of a full-domain

convolutional attention-based style extractor, as described in Section 3.1. Zs and Zc denote the extracted style coding and content coding, respec-

tively. The decoder consists of six ResNet blocks and transposed convolution layers (Deconv layers). Multi-Layer Perceptual Discriminator is used

to distinguish between true and false for content and style. where the weight vector is the optimal weights obtained after many experiments.

3. Method Description

Our method aims to achieve cross-lingual font style transfer. In the network, we extract content features using

a single source language character image, while deep style features are accurately captured by utilizing multiple

character images of the same font in the target language. Therefore, we input a content image of a source language

but multiple target style images of another language. For example, if the content image is a Chinese character, then

the style image could be six English font character images.

We will then use these images to generate a new image that will contain the content of the selected Chinese

character image and the image of the selected English font style. Furthermore, we set all the input and output images

to be grayscale images of size 64×64. To train the model, we randomly selected images from large-scale Chinese and

English datasets as content images and style images, respectively, and input them into the network.

As shown in Figure 2, we use an end-to-end training approach where the network has one generator and two

discriminators (content and style discriminator). The two discriminators have different inputs but the same structure

and are used to discriminate the truth of a patch locally. See 5 for details of implementation. The generator consists

6



of a style encoder, a content encoder, and a decoder. The two encoders extract style features and content features,

respectively, and then the outputs of the two encoders are concatenated in the channel dimension as the input to

the decoder. The content encoder consists of three convolutional layers, each followed by a BatchNorm layer and a

ReLU layer. The style encoder is based on the structure of the content encoder with the addition of a full-domain

convolutional attention-based style extractor, which consists of three modules: a full-domain convolutional attention

(FCA) module, an adaptive fusion module, and a channel-dependent multi-level feature extraction module. The details

are described in 3.1. The decoder consists of six ResNet blocks and transposed convolution layers.

3.1. Full-domain Convolutional Attention-based Style Extractor

As shown in Figure 3, its input comes from the feature map s1 obtained after three convolutional layers, and the

feature maps s2 and s3 obtained by subjecting s1 to two downsampling processes. During the downsampling process,

since the receptive field in the feature map output by the shallower layer is small, it only contains local features. As

the convolutional layer deepens, the receptive field will gradually expand until it even contains almost global features.

In this way, the network can acquire both local and global features at all levels.

3.1.1. Full-domain Convolutional Attention Module

We use the feature map si(i = 1, 2, 3) as the input to the attention module. The key to the attention mechanism is

the construction of the attention graph, and in this module, we use a full-domain convolutional layer to construct the

attention graph. This approach combines the excellent ability of the traditional attention mechanism to obtain long-

range dependencies and the ability of convolution to extract contextual information. The full domain convolution

kernel can cover the entire graph information so that each region of the output feature graph contains global informa-

tion. Of course, for feature maps of different sizes, different convolution is used to obtain the full domain information

of the feature map. Since the feature maps s1, s2 and s3 are of different sizes after downsampling, we notice that

using a single convolution to obtain full-domain information for larger feature maps requires massive computational

consumption. To solve this problem, we use multi-layer convolution to achieve the same effect.

As shown in Figure 4, the large convolution kernel used for larger feature maps can be divided into a small

convolution kernel and a dilated convolution kernel. To increase its channel adaptation, we connect a convolution

kernel size of 1 × 1 to the later convolution [35]. In order to keep the input and output sizes consistent, we need to

compute the full-domain convolution parameters for the feature maps of different layers. The calculation is detailed

in Algorithm 1.

After the above steps to obtain the attentional map Mi, we multiply si with Mi to obtain the feature map Att(si).

Att(si) = Mi × si (1)
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Figure 3: A specific design diagram of a style extractor based on full-domain convolutional attention. It consists of several modules, where

blue arrows indicate the input and red arrows indicate the output. Among them, s1 is the input style feature map. It undergoes convolutional

downsampling to obtain s2 and s3, which have different receptive fields. p1, p2, and p3 are the style encodings obtained by applying global

convolutional attention and adaptive fusion modules (marked in blue) to each of them. Then, they are combined with s3 and input into the CMFE

module (marked in green) for further refinement to obtain the final style encoding Zs.

3.1.2. Adaptive Fusion Module

After that, we use an adaptive fusion module to enhance the network’s performance. Using the attention Weighted

fusion mitigates the loss of font structure and information caused by attention mechanisms, while adaptive methods

dynamically adjust the weights to assist the network in focusing on more crucial features.

Specifically, we provide two adaptive parameters w1 and w2 as the weights of the input images si and Att(si),
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Figure 4: The full-domain convolution process in a two-dimensional view. Our approach can algorithmically design the convolution in such a way

that each field of the output feature map contains the full domain information of the feature map and keeps the feature map scale constant. For

smaller feature maps, we use a large convolution kernel (only K1-convolution) to achieve this. For larger feature maps, we use a weighted sum

of the convolution of each local region instead of a single large convolution kernel. This helps reduce computational resource consumption. The

K1-convolution represents the convolution in each local region, while the K2-convolution refers to the process of obtaining a weighted sum of the

K1-convolution results from each region. The details regarding the parameter can be found in Algorithm 1.

respectively. In this case, we can consider them as learning parameters to train the model by back-propagation and

adjust the size according to the gradient of the loss function. Finally, the output image Pi is obtained by weighted

summation of si and Att(si), where w1 and w2 are initialized to 0.5, and a constraint is added to require that their sum

is always 1.


















w1 + w2 = 1

Pi = w1 × si + w2 × Att(si)
(2)

The details of this module and the calculation process are detailed in Figure 3 and Algorithm 1.

3.1.3. Channel-dependent Multi-level Feature Extraction Module

As shown in Figure 3, the output feature maps P1, P2 and P3 are of different sizes and contain style features in

different perceptual domains due to downsampling. In order to better learn the style features and match the output size

of the content encoder, we use this module to extract the style features we need from Pi(i = 1, 2, 3). Here, we will use

Vr(r = 1, 2, 3, ...,W × H) to denote each region of the feature map Pi.

We follow a self-attentive mechanism approach to make the network focus more on regions that contain important

stylistic information. The network needs to construct an attention graph Mpi to determine the value of the contribution

of each region Vr of Pi to the overall style. We consider the correlation between channels, so the attention graph Mpi

is required to be the same for each channel of Pi. Therefore, the network first needs to effectively fuse the values of

each region Vr on different channels before constructing the attention graph. Specifically, we first transform Pi into a

feature map Ui with 100 channels using the linear layer and the ELU function as the neural network layer, and then

use the adaptive vector vi of length 100 as the weights to weight the fusion of regions Vr on different channels, and
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Algorithm 1 Full-domain Convolutional Attention

Input: Feature maps si

Data: Parameters of undecomposed Full-domain Convolution: Ks, Pads; Parameters of Full-domain Convolution:

K1, Pad1,K2, Pad2, dila2

1: size = S hape(si)[−1] //Find the size of the input feature map

2: Pads = (Ks − 1)/2 ≤ Ks − size→ Ks ≥ 2size − 1

//Ensure that the convolution kernel covers the full domain of the feature map

3: if size ≤ 5 then

4: K1 = Ks = 2size − 1

5: Pad1 = Pads = size − 1

6: AttConv = Conv(K1, Pad1)

7: else if size > 5 then

8: K1 = 5, Pad1 = 2, dila2 = 3

9: K2 = 2n + 1, n ∈ N∗ //Convolution kernel size is odd.

10: Ks = 3(K2 − 1) + 1 //When dilation rate is 3, the relationship between Ks and K2

11: Ks = 6n + 1 ≥ 2size − 1→ n ≥ (size − 1)/3, n ∈ N∗

12: K2 = 2nmin + 1, Pad2 = Pads = 3nmin

13: AttConv = Conv(K1, Pad1)+Conv(K2, Pad2, dila2)

14: end if

15: Mi = AttConv(si)

16: Mi = Pointwise Conv(Mi) //Calculate the attention map Mi

17: Att(si) = Mi × si

18: Pi = w1 × si + w2 × Att(si),w1 + w2 = 1 //Adaptive Fusion

Output: Feature maps Pi

finally obtain the attention map Mpi by softmax. Where vi is randomly initialized and jointly trained for the whole

model.

Ui = ELU(WcPi + bc) (3)

Mpi = so f tmax(UT
i vi) (4)

Then we use the attention map Mpi to extract the important style information from the feature map. Since there are

multiple channels, we should end up with a one-dimensional feature vector fi(i = 1, 2, 3).

fi =

H×W
∑

r=1

Mpi(r) × Pi(r) (5)

where Mpi(r) denotes the value of each pixel point of Mpi and Pi(r) denotes the value of each pixel point of Pi.

The vectors f1, f2, and f3 contain different degrees of style information, and we use the style image itself to

determine the importance of the respective information and finally extract more accurate style features. Therefore,

we use a pointwise convolution to reduce the dimensionality of s3 and then assign weights g1, g2, g3 to the feature

vectors f1, f2, f3 using a fully connected layer and a softmax function.

g1, g2, g3 = so f tmax(tanh(wk s3 + bk)) (6)
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Z =

3
∑

i=1

gi × fi (7)

where Z is the weighted sum of the three feature vectors.

The size of the content feature map output by the content encoder is C×H×W, and Z is a C-dimensional vector, so

we need to expand Z to Zs to match the size of the content feature map. The detailed calculation process is described

in Algorithm 2.

Algorithm 2 Channel-dependent Multi-level Feature Extraction

Input: Pi(i = 1, 2, 3), s3

1: Ui = ELU(Linear(Pi)), channel : 256 => 100

2: Li = Linear(Pi), channel : 100 => 1

3: Mpi = S o f tmax(Li)

4: Fi = Hadamard Product(Ui,Mpi)

5: for f ield in Fi do

6: fi = fi + f ield

7: end for

8: Vector = Tanh(Linear(s3))

9: V s = S o f tmax(Vector)

10: Z = fiV s

11: Zs = Expand(Z)

Output: Zs

3.2. Discriminator

However, cross-lingual font generation is a complex task, as ensuring that the generated font images are satis-

factory in both content and style is challenging due to the inconsistent languages between content images and style

images.

Therefore, we propose a multilayer perceptual discriminator that allows the network to pay better attention to

global and local information, and the details are shown in Figure 5. We believe the discriminator can be seen as a

feature extractor [36]. Inspired by UNet [37], we think that the performance of the network can be effectively improved

by processing the discriminatory results of the outputs of the different layers. In a common patchGAN, the image is

mapped to an N×N matrix after various convolutional layers, and the evaluation value of each point in the N×N matrix

is used to evaluate the veracity of a small region (i.e., the perceptual field) in the original image. However, in character

images, the style of the text should be determined by a combination of global and local information. So we extract

feature maps with different receptive fields from four different layers and then output four various discriminations

through the discriminator. We set a weight vector to guide the discriminator’s global and local attention degree. In

this way, the discriminator has a more accurate discrimination ability, which helps the network generate better images.
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Figure 5: Detailed Structure of Multi-Layer Perceptual Discriminator.

3.3. Loss Functions

As mentioned earlier, our model consists of two discriminators, Dcontent and Dstyle. Dcontent receives the

generated image and content image, checking whether they are the same characters, and Dstyle receives the generated

image and style image, checking whether they are the same style. We concatenate the respective input images in the

channel dimension and input them into the discriminator. The real images are also inputted to the discriminator in the

same way as the generated images, and the adversarial loss is constructed based on the results obtained from both.

The whole model is trained jointly in an end-to-end manner. We define three loss functions in the network: L1 loss,

style loss Lstyle, and content loss Lcontent.

We aim to stabilize GAN training and make the results convergent and closer to real images. Among them,

LcontentD and LstyleD use the quadratic smoothing hinge loss function. LcontentG and LstyleG continue to use the tradi-

tional hinge loss. Hinge loss measures the distance between the model’s predicted output and the actual output and

is used in networks to minimize this distance. It encourages the model to find a decision boundary that maximizes

the difference between the two classes. The quadratic smoothing hinge loss helps the model to converge better and

produce higher quality results while ensuring its excellent generalization ability. We construct the loss function based

on the output of the discriminator, as shown in Eqs. 8 and 9. where Lstyle and Lcontent are obtained by summing the

respective corresponding losses.
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





































































Lcontent = LcontentG + LcontentD,

LcontentG = −WcE x̂,c∼P(x̂,c)[Dc(x̂, c)],

LcontentD =
1
2
WcE x̂,c∼P(x̂,c)[max(0, 1 − Dc(x̂, c))2]+

1
2
WcEIg ,c∼P(Ig ,c)[max(0, 1 − Dc(Ig, c))2]

(8)


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


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






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


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


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
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




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






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











Lstyle = LstyleG + LstyleD,

LstyleG = −WsE x̂,s∼P(x̂,s)[Ds(x̂, s)],

LstyleD = 1
2
WsE x̂,s∼P(x̂,s)[max(0, 1 − Ds(x̂, s))2]+

1
2
WsEIg ,s∼P(Ig ,s)[max(0, 1 − Ds(Ig, s))2]

(9)

where Ig is the ground truth image, x̂ is the generated image, c and s denote the content and style images, respectively,

and E denotes the mean value. Wc/Ws is the weight value of the discriminator output, and Dc/Ds is the real/fake value

of the discriminator output.

To stabilize our training, we also use L1 loss in our objective function to calculate the pixel-by-pixel error between

the generated image and the ground truth image as follows:

L1 = E x̂,Ig∼P(x̂,Ig)[
∥

∥

∥Ig − x̂
∥

∥

∥

1
] (10)

where Ig is the ground truth image, x̂ is the generated image, and E denotes the mean value. Above all these loss

terms, the loss function of our cross-lingual font style transfer model is as follows:

L = λ1L1 + λsLstyle + λcLcontent (11)

where λ1, λs, and λc are the three weights used to balance these terms.

4. Experiments

4.1. Font Dataset and Compared Methods

To conduct our experiments, we use a multilingual dataset for training and testing. In our experiments, English

style images are used as style inputs to the network, and Chinese content images are used as content inputs to the

network. Chinese characters are so numerous and have such complex geometrical structures, so simple glyph gen-

eration methods often cannot guarantee the structural correctness of the resulting Chinese glyphs [31]. On the other

hand, English has fewer and simpler structures. Therefore, this design scheme can better demonstrate the ability of

our model to migrate font styles between different languages.
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Figure 6: Visual comparison of our FCAGAN (row 7) with EMD [1](row 2), DFS [2] (row 3), MF-net [3] (row 4), CFFont [4] (row 5) and

FTransGAN [5] (row 6) on different test datasets. Row 1 shows the stylized font image and row 8 shows the target image.

During testing, the model was able to transfer the style of English letters to Chinese characters by inputting only

a small number of English style images and the desired Chinese content images. To test our method, we selected 30
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Figure 7: Visual comparison of complex style fonts in terms of content completeness. Comparative Methods: EMD [1](row 2), DFS [2] (row 3),

MF-net [3] (row 4), CFFont [4] (row 5), FTransGAN [5] (row 6).

unseen Chinese characters and 30 varieties of unseen English fonts as the test set. We used a standard font (such as

Microsoft YaHei) as the input of Chinese content, so as to ensure that the synthesized character type conforms to our

expectations. Subsequently, we selected 800 fonts to build the training set for comparison experiments and ablation

studies. Each font contains approximately 1000 Chinese characters and 52 Latin characters of the same style, with the

size of each character image being 64 × 64. In addition, we also separately selected 400 fonts and 1200 fonts to build

the training set to evaluate the impact of different dataset sizes on the generation results.

At present, among the known models for font style conversion, most of them cannot perform style conversion

between any two languages well. We have selected several networks that can be used on arbitrary language datasets

for comparison, including EMD [1], DFS [2], FTransGAN [5], MF-NET [3] and CFFont [4]. English fonts were

chosen uniformly as the style map and Chinese images as the content map. English has a simple structure compared to

other languages, so extracting styles from English fonts for conversion to more complex Chinese fonts is a challenging

task, and we are also able to visually better compare the ability of each model to migrate font styles between different

languages.

4.2. Implementation Details

In the following experiments, we fed six images of the target font into the style encoder and set λ1=100 and

λc=λs=1. We trained 20 epochs with an initial learning rate of lr=0.0002, which gradually reduced in each epoch

starting from the 11th epoch. Our learning rate dynamic adjustment scheme is shown in Figure 8. We can observe

that the L1 loss undergoes significant changes from epoch 0 to 10, while it remains relatively stable from epoch 11 to

20. Starting from the 10th epoch (indicated by the vertical line), the learning rate lr decreases by 0.0002 per epoch.

This helps the network to search for local optimal solutions.
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Figure 8: The blue line in the figure represents the change in L1 loss, the red line represents the change in learning rate (lr), and the green line

represents the point in time at which the learning rate begins to change.

4.3. Evaluation Metrics

Evaluating font style conversion can be a complex task, as the effectiveness of converting different font styles

may vary subjectively. Therefore, our evaluation criteria need to consider multiple aspects. To address this, we have

established three distinct types of metrics for model evaluation: pixel-level evaluation, perceptual-level evaluation,

and artistic-level evaluation.

1) Pixel level evaluation

The pixel-level evaluation compares pixels at the exact location between the model-generated image and the

sample real image. We use multi-scale structural similarity (MS-SSIM) to evaluate the performance of the model.

Structural similarity (SSIM) is a metric used to measure the similarity of two images. It takes into account not only

the pixel-level similarity of luminance and color but also the similarity of image structural information, so it better

reflects the human eye’s perception of image similarity. Multi-scale structural similarity (MS-SSIM) is calculated by

dividing the image into multiple scales, calculating an SSIM value for each scale, and then weighting and averaging

these SSIM values to obtain the final similarity index. It can detect the structural information of images at different

scales, capture the image features, and evaluate the structural similarity of images more comprehensively

2) Perceptual level evaluation

FID (Fréchet Inception Distance) is a metric proposed by Salimans et al. [38] for evaluating the differences be-

tween images generated by models and real images. It is mainly based on two aspects: first, the extraction of image

features using the Inception network, and second, the use of the Fréchet distance to measure the differences in the

distribution of these features. Liu et al. [12] proposed a modified FID metric called the conditional version of mFID

(conditional mFID). It calculates the FID metric for each target class and then takes the average value. This modified

conditional version of the mFID metric can be better suited for scenarios such as few-sample learning because it con-

siders the similarity differences between different target classes and better reflects the performance of the generative
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Figure 9: Visual comparison of the style transfer capabilities of complex stylised fonts. Comparative Methods: EMD [1](row 2), DFS [2] (row 3),

MF-net [3] (row 4), CFFont [4] (row 5), FTransGAN [5] (row 6).

model on different target classes.

In this paper, we evaluate the generated images from both style and content perspectives. We trained two multi-

layered ResNet networks to classify and extract features for both character content and font style. During evaluation,

we used the pre-trained ResNet network models to compare the generated images with the real images in terms of

content and style. We calculated the percentage of generated images that correctly matched the content category and

style category, and selected the highest values as the metrics for content perception accuracy and style perception

accuracy, respectively. Additionally, we used the content and style features extracted by this network as activations

to calculate content FID and style FID, and took the average as the metrics for content perception mFID and style

perception mFID.

3) Art level evaluation

To explore the ability of our method on font style transfer, we used ArtFID [39], a method for quantitative eval-

uation of neural style transfer proposed by Wright and Ommer, to evaluate the ability of the model. Previously,

the quantitative assessment of style migration still lagged compared to other visual domains. To address this issue,

Matthias adopted a different approach from other evaluation schemes, taking into account both the degree of content

preservation and style matching of the generated stylized imag/es and combining the two to form a more convincing

metric for assessing style migration-ArtFID. In our experiments, we evaluated ArtFID for each font in the test set, and

the final metric presented is the average of the results obtained by evaluating all fonts.
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Figure 10: A detailed demonstration of the comparative learning ability of complex stylised fonts. Column 1 shows the stylised font image, column

2 shows the results of the baseline method, column 3 shows the generated results of our model, and column 4 shows the target image.

4.4. Quantitative and Qualitative Results

To better describe the quality of images generated by our method, we divide font styles into regular and complex

styles. In Figure 6(a) and Figure 7, we respectively demonstrate the visual effects of simple and complex styles on

an unknown content dataset. In Figure 6(a), EMD [1], DFS [2] and MF-net [3] all have obvious problems of missing

strokes, while CFFont [4] and FtransGAN [5] also have missing issues for some finer strokes. In contrast, our method

has better content completeness. In Figure 7, complex font styles have a greater impact on the generation effects

of other models. Relative to Chinese characters, the cross-language font generation capability of the CFFont [4]

method is slightly insufficient during testing, and the content fusion module sometimes cannot find a suitable solution

when facing complex font styles, so it does not have advantages in generating effects for characters from the test set

with unknown content. FTransGAN [5] accurately learns the overall style, but its detail style extraction and content

completeness are not as good as ours. As shown in Table 1, our method generally outperforms other methods on this

dataset in terms of indicators.

For datasets with unknown style and known content, Figure 6(b) shows the visual results of all methods. Among

them, EMD [1] and DFS [2] fail to recognize character content, and MF-net [3] does not satisfy the generation of

character images in terms of shape and stroke details. CFFont [4] uses a content fusion module to extract content

features, which can enhance the generation effect of content. However, the multiple base font images used by the

network for content reconstruction can also mislead the network, resulting in generated font images that are similar

to the target font but not identical. This also explains why this method has a better content-aware mFID but slightly

inadequate style performance in the unknown style test set in Table 1. FTransGAN [5] still has the problem of missing

content details in its generated results. In Table 1, this model achieves a higher style-aware accuracy, but this only
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Methods
Pixel-level Content-aware Style-aware

↓ArtFID
↑MS-SSIM ↑Accuracy(%) ↓mFID ↑Accuracy(%) ↓mFID

Seen styles and Unseen contents

EMD [1] 0.467 81.2 116.9 24.4 597.1 14.19

DFS [2] 0.231 89.2 150.0 2.7 820.9 12.49

MFNet [3] 0.477 96.0 76.2 45.4 428.9 13.18

CFFont [4] 0.499 96.7 51.3 57.8 311.1 12.99

FtransGAN [5]. 0.492 97.0 49.6 58.3 308.1 12.10

Ours 0.502 97.7 43.5 63.0 286.6 11.98

Unseen styles and seen contents

EMD [1] 0.388 85.5 184.4 4.4 623.2 13.87

DFS [2] 0.201 91.7 230.7 0.7 662.4 12.38

MFNet [3] 0.354 97.7 135.7 8.9 552.7 12.65

CFFont [4] 0.389 99.9 80.4 9.5 441.4 12.45

FtransGAN [5]. 0.383 99.8 97.6 11.7 419.4 12.33

Ours 0.393 99.9 96.6 10.8 416.2 11.73

Table 1: Quantitative Evaluation on the adopted dataset. ↑ means larger numbers are better, ↓ means smaller numbers are better.

represents a decent effect on a certain style. On the contrary, certain fonts may yield better outcomes, but the style-

aware mFID does not stand out, indicating a relatively weaker generalization capability.

To demonstrate the remarkable ability of our method to capture font style details, in Figure 9,we selected some

distinctive fonts as references. These fonts have the same basic outlines as regular fonts but possess unique designs that

are more challenging to handle in specific aspects. In Figure 10(a), there are white fine lines interspersed within the

characters, and compared to the baseline, our method clearly exhibits this alternating black-and-white style. In Figure

10(b), we can observe that due to the scarcity of black pixels within the strokes, these details are easily overlooked

in style capture. However, our method is able to capture them, resulting in results closer to the reference. In Figure

10(c), the characters are composed of individual dots connected together, and although the spacing between each dot

is minimal, our method still pays attention to this detail. In Figure 10(d), apart from the overall bold style, there

is also a slight local indentation at the end of the strokes. Capturing such subtle styles in English characters with

fewer strokes and simpler structures is a challenging task, and our method demonstrates superior performance in this

aspect. In summary, our method is highly sensitive to style details, demonstrating good performance when dealing

with complex styles that involve multiple details.

4.5. Ablation Studies

We will conduct experiments to verify the effectiveness of each key component in the model. We use the same

settings for training and evaluation for each part. In Table 2, All denotes our proposed model.

1) Version A represents the model after replacing the full-domain convolutional attention (FCA) module in the

proposed network with the traditional self-attention. Compared to the traditional SA-GAN [20], FCA captures long-
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Figure 11: Variation curves of the adaptive weights w1,w2 and the corresponding style-aware accuracy(Acc).

term dependencies better and acquires more subtle features. Therefore, when the model does not use FCA, the learning

ability of the network decreases, especially for styles already present in the training set.

2) Version B represents the model after removing the adaptive fusion module from the proposed network. As

shown in Figure 11, the module adaptively adjusts the fusion parameters to follow the network to obtain the best

values. From the metrics in Table 2, it can be seen that the removal of this module not only negatively affects the

overall performance, but also reduces the performance of the model in the unknown style domain. It can be seen that

this module can effectively solve some overfitting phenomena and improve the generalization ability of the model.

3) Version C represents our proposed network without using the multi-layer perceptual discriminator and the loss

function designed for it. As can be seen in Table 2, this scheme has a great impact on the overall learning ability of

the network, especially on the completeness of the content. In the face of different styles and complex contents, this

superior discriminator is better able to distinguish between generated and real samples. It uses perceptual features of

varying scales in different domains to provide finer guidance for the generator in terms of content and style learning,

resulting in overall improved performance.

4) Version D represents our proposed network without the improved channel-dependent multi-level feature extrac-

tion module. As can be seen in Table 2, this scheme has a beneficial effect on the overall performance of the network,

although it makes a slight impact on the unknown content accuracy and unknown style-aware FID. The module can

extract more critical information from multiple features at different levels and integrate them, while allowing the im-

portance of high and low frequency information to be determined by the image itself, further enhancing the feature

extraction capability of the network.

In summary, we consider each module essential in the model. These modules play their respective roles to help

the model to have stronger learning ability and generalisation, so that the results can achieve better performance in

pixel-level, perceptual-level, and art-level metrics.
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Methods
Pixel-level Content-aware Style-aware

↓ArtFID
↑MS-SSIM ↑Accuracy(%) ↓mFID ↑Accuracy(%) ↓mFID

Seen styles and Unseen contents

All 0.502 97.7 43.5 63.0 286.6 11.98

Version A 0.498 97.0 50.8 58.9 306.5 12.73

Version B 0.501 97.3 48.4 62.2 300.9 12.51

Version C 0.503 97.0 46.2 60.0 305.1 12.57

Version D 0.501 98.0 43.9 62.5 290.9 12.08

Unseen styles and seen contents

All 0.393 99.9 96.6 10.8 416.2 11.73

Version A 0.385 99.8 98.3 11.7 418.6 12.02

Version B 0.390 99.9 97.4 10.0 428.4 12.38

Version C 0.393 99.8 96.9 10.9 414.9 11.86

Version D 0.387 99.9 96.8 10.5 415.6 11.98

Table 2: Ablation study on the adopted dataset.↑ means larger numbers are better, ↓ means smaller numbers are better. For ease of observation, we

mark the optimal values in bold and the worst values in underline.

The data proves that we produce the best results when we blend the various components, achieving excellent

results on pixel-level, perceptual-level, and art-level metrics.

4.6. Effect of Dataset Size

To investigate the impact of sample size on model performance, we conducted additional experiments using train-

ing sets with 400 and 1200 fonts respectively. We compared our method with the approach (FTransGAN [5]) that

yielded similar generated results in Table 1. Table 3 reflects the results obtained by these methods with training

sets containing 400, 800, and 1200 fonts. It can be observed that as the sample size increases, there is a signifi-

cant improvement in various aspects of performance. However, our method still produces relatively excellent results,

demonstrating that our approach outperforms the previous method in overall performance, rather than being limited

to gains for individual fonts.

In addition, when there is a wide variety of font styles in the samples, there may be a potential issue in correctly

distinguishing between different styles in the input. To evaluate our model, we conducted two separate tests on 60 font

styles, with different content in the style images for the two tests. As shown in Figure 12, the results for two different

English characters are most similar only when they are in the same font style. Therefore, our model is not influenced

by the content of style images and will not be misled into thinking that similar font styles are the same.

4.7. Chinese Font Style to English Character

Figure 13 demonstrates the model’s ability to migrate Chinese font styles to english characters. Compared with

other models, FCAGAN can better ensure the integrity of English character content while learning Chinese font styles.
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Seen styles and Unseen contents

Dataset size Methods ↑MS-SSIM ↓Content-aware mFID ↓Style-aware mFID ↓ArtFID

400
FTransGAN 0.529 44.2 239.2 12.43

Ours 0.536 42.6 229.2 12.72

800
FTransGAN 0.492 49.6 308.1 12.10

Ours 0.502 43.5 286.6 11.98

1200
FTransGAN 0.518 34.7 261.1 12.11

Ours 0.528 32.5 243.5 12.01

Unseen styles and seen contents

Dataset size Methods ↑MS-SSIM ↓Content-aware mFID ↓Style-aware mFID ↓ArtFID

400
FTransGAN 0.335 83.8 423.1 12.66

Ours 0.351 83.4 415.9 12.48

800
FTransGAN 0.383 97.6 419.4 12.33

Ours 0.393 96.6 416.2 11.73

1200
FTransGAN 0.390 80.7 335.2 12.09

Ours 0.406 79.6 336.2 11.76

Table 3: Experimental results on the effect of dataset size. ↑ means larger numbers are better, ↓ means smaller numbers are better.

Figure 12: The heat map of the SSIM matrix. The horizontal and vertical axes of the chart represent the indices of 60 different fonts for two sets

of distinct English letters. The color of the coordinates represents the SSIM value between the generated results obtained from different English

character images as style inputs. The darker the color, the more similar the results are.

4.8. Statistical Significance Test

In order to demonstrate the superiority of the method, we perform a test for statistical significance of the difference

between the proposed network model and baseline (FTransGAN[5]). Our sample source contains two sets of image

sets, which come from the generation results of our model FCAGAN and the generation results of baseline method.

Both sets of images contain the same 50 random fonts, and each font contains the same Chinese content. We calculate

its style FID value for each font, so our sample contains two sets of data, each with 50 style FID values. The specific
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Figure 13: Visual comparison of Chinese font styles migrating to English characters. Comparative Methods: EMD [1](row 2), DFS [2] (row 3),

MF-net [3] (row 4), FTransGAN [5] (row 5).

Average value ↓ H-statistic P-value

FCAGAN 280.54
4.71 0.029

Baseline 330.26

Table 4: Experimental results of the Statistical Significance Test. This includes the mean of the sample data corresponding to the two models, and

the H-statistic and P-value obtained from the Kruskal-Wallis test

data are shown in Figure 14.

We formulate the null hypothesis H0: the performance of our proposed method is similar to the baseline, i.e., the

two data sets in the sample are in the same overall distribution. In addition, we set the significance level α = 0.05. We

used a rank-based non-parametric test and Table 4 shows the results of the Kruskal-Wallis test on both sets of data.

The p-value is less than the α-value, and so the original hypothesis H0 is rejected, indicating that the FID metrics

obtained by our method, and thus its performance, are significanctly better than those of the baseline method.

4.9. Limitations

In order to investigate the model’s ability to generalise to other languages, we use it to test the transfer of known

English styles to (a) Japanese, (b) Korean (b) and (c) Thai, respectively. The experimental results are shown in

Figure 15. Since the structure of Japanese is simpler than that of Chinese, the results generated in experiment (a) are

generally better. Korean is similar to Chinese in that the characters are made up of components. In experiment (b),

the model basically meets the requirements in terms of content completeness, with only minor stroke misalignments

in individual words. In experiment (c), the generation result of style letter r is content-incorrect. Secondly, since there

are many similar words in Thai, the requirements for content completeness are higher. In the marked red box, some
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Figure 14: Visual presentation of two sets of experimental data from the Statistical Significance Test. Where the smaller the FID value, the better

the effect.

strokes are different from the content image, which may cause people to regard it as another similar character. Our

model should further improve the precise expression of content and avoid content recognition errors.

In FCAGAN, we lack the processing of content features, which may lead to some content errors in the generated

results when facing other languages. Therefore, in future work, we can consider adding some auxiliary factors (such

as stroke information in various languages) to help generate better results.

5. Conclusion

We propose an end-to-end approach to transfer font styles between languages using only a few samples. The key

idea is to construct a style encoder based on the full-domain convolutional attention module and utilize a multi-layer

perceptual discriminator to guide it in accomplishing more precise font style extraction. Additionally, the adaptive

fusion module is employed to enhance the model’s generalization capability, and the channel-dependent multi-level

feature extraction module assists in feature refinement. To obtain higher quality results and ensure stable network

training, we introduce an improved quadratic smoothing hinge loss. Extensive experiments demonstrate that our pro-

posed FCAGAN exhibits superior performance for cross-lingual font style transfer tasks, surpassing existing methods.

It has the ability to capture subtle styles that are difficult to capture, thereby generating results that are more satisfac-

tory. We hope the proposed method can provide valuable aid for issues related to style extraction in style transfer tasks

and challenges regarding character integrity in font generation tasks. In the future, we will strive to further strengthen

the model’s capability of extracting styles and contents, aiming for more satisfactory results when faced with different

languages and unusual fonts.
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Figure 15: Cross-lingual inference on (a) Japanese glyphs, (b) Korean glyphs, and (c) Thai glyphs, where the horizontal line indicates that Thai has

no relevant groundtruth for the style. Since the generated Thai glyphs are not easily observable, content references are added to the second line in

c.
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