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Abstract  Semantically rich 3D building models give the potential for a wealth of 

rich geo-spatially-enabled applications such as cultural heritage augmented reality, 

urban planning, radio network planning and personal navigation. However, the ma-

jority of existing building models lack much if any semantic detail. This work 

demonstrates a novel method for automatically locating subclasses of windows and 

doors, using computer vision techniques including the histogram of oriented gradi-

ent (HOG) template matching, and automatically creating enriched CityGML con-

tent for the matched windows and doors. Good results were achieved for class iden-

tification with potential for further refinement of subclasses of windows and doors 

and other architectural features. It is part of a wider project to bring even richer 

semantic content to 3D geo-spatial building models. 
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1. Introduction 

The built environment is of fundamental importance to society: 80% of GDP is gen-

erated within its walls (Hampson et al. 2014) and its buildings variously provide 

shelter and a sense of home or belonging, not to mention a source of pleasure. On 

this latter note it has, for example, been estimated that Britain’s built heritage alone 

attracts £6.5 billion of foreign spending per year (Dawe 2013). Potential applica-

tions for computerised 3D building models include those for cultural heritage, lei-

sure (think how many attractions, such as shopping centres, now have interactive 

plans for visitors to navigate), urban planning such as the emergent field of Building 

Energy Modelling or BEM e.g. Ham and Golparvar-Fard (2015), radio network 

planning, cultural heritage tours, personal navigation systems and augmented reality 

or AR (Döllner and Hagedorn 2007; Sivic and Efros 2014). 
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Whilst detailed Architecture, Engineering and Construction industry (AEC) 

building models have existed in the world of Computer-aided Design (CAD) for 

some decades, the arrival of Web 2.0 has also led to the advent of building models 

generated by members of the public. The Trimble 3D Warehouse is one such freely 

available repository, while TurboSquid provide commercially sourced models for a 

fee1. CAD building models, increasingly conforming to the standards of Building 

Information Modelling (BIM), contain both structured geometry and semantic con-

tent, although the semantic content tends to be focussed on the needs of the AEC 

industry rather than those of other disciplines. Moreover, CAD content is often the 

intellectual property of AEC companies and not generally in the public domain. 

Meanwhile, those models outside of the sphere of CAD lack much if any semantic 

content (Jones et al. 2014). 

Why is semantic content important? Imagine a mobile application which allows 

the user to explore a city, neighbourhood or building via augmented reality learning 

of important cultural heritage and architectural features through superimposed an-

notations. Or, as a radio network planner, having access to a city model which con-

tains semantic content representing the materials for the individual building’s fa-

çade components thus enabling a more refined network planning model which takes 

account of the effect of different materials on the amount of radio wave attenuation 

(de Fornel and Sizun 2006). 

National Mapping Agencies, such as Ordnance Survey in Great Britain, have 

traditionally been concerned with the two-dimensional measurement of topographic 

features. As a potential data provider for some of the applications listed above, there 

is now increasing demand for such agencies to provide richer content, not just in 

the geometry (e.g. moving to the collection of 3D data) but also in the attribution of 

topographic features. This semantic content is likely to become ever more im-

portant, as it enables users to answer more complex queries than can be answered 

by geometry alone. 

The method presented in this paper uses automated computer vision techniques, 

allied to 2D-3D geometry conversion, to identify different architectural features in 

the texture maps associated with a CityGML building model and to auto-create new 

semantic and geometric CityGML content for those features. 

 

2. Previous Work 

2.1. Architectural Object Detection in Images 

As early as 1993, Koutamanis and Mitossi (1993) outlined the potential for com-

puter vision to determine architectural components, specifically from scanned ar-

chitectural drawings, including the use of simple template matching on line draw-

ings. Whilst subsequent work such as that from Debevec et al. (1996) reconstructed 

buildings in 3D – using a form of structure from motion (SfM) – it did not focus on 

                                                           
1 https://3dwarehouse.sketchup.com/    https://turbosquid.com/ 

https://3dwarehouse.sketchup.com/
https://turbosquid.com/
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recognising façades or architectural features. The determination of façades, floors 

and architectural features are inextricably linked. As Johansson and Kahl (2002) 

assert, if one can delineate a row of windows then floors might be inferred. 

An early foray into the identification of architectural components came from 

Iqbal and Aggarwal (2002) who used edge-detection. Johansson and Kahl (2002) 

attempted to detect windows in city scenes for AR city tours, learning window 

shapes using a Support Vector Machine (SVM). An alternative approach from Dick 

et al. (2004) used Markov Chain Monte Carlo (MCMC), generating possible build-

ing model forms and then comparing those possibilities to actual buildings. 

Mayer and Reznik (2005) extended Dick’s work by using MCMC to reconstruct 

buildings to obtain façade planes as Johansson and Kahl had done previously. They 

also matched windows, using an implicit shape model. Mayer and Reznik made 

assumptions about aspect ratios, rectangularity and that window panes had lower 

pixel intensities. They extended this approach in later work (Reznik and Mayer 

2007) by considering the principle of repeatability to define columns and rows for 

windows. More recently, Meixner et al. (2011) used Harris corners, K-d trees and 

match-cost histograms to obtain an accuracy of 87% for dormer identification. 

The idea of using generative modelling concepts to infer façades in real images 

(related to the aforementioned repeatability) was picked up by Ok et al. (2012) who 

created possible façade-component combinations and compared test image façades 

to them via pixel, local and patch-based descriptors such as difference of Gaussian 

(DoG) and scale-invariant feature transform (SIFT). In contrast, Dick’s façade-

component combinations came from manual work carried out by architects. As with 

Mayer and Reznik’s work, possible matches from Ok et al’s work were refined us-

ing RANSAC (Fischler and Bolles 1981), an iterative parameter estimation ap-

proach. 

Koziński and Marlet (2014) used graph grammars and Markov random field 

(MAP-MRF) to infer the positions of architectural components. Finally, Dore and 

Murphy (2014) created shape grammars for architectural styles, as a library for the 

ArchiCAD BIM software. These grammars can then be used in façade reconstruc-

tion, the parameterised templates providing a speed-up in the reconstruction pro-

cess, reducing manual intervention. However, at the time of publication only a few 

architectural styles (including a few window types) were included in the library. 

In summary, whilst there is a rich history of façade interpretation, identifying 

individual subclasses of architectural features e.g. structural descriptions of a win-

dow such as ‘3x3 panes’ or styles such as ‘Baroque’, is far less researched. 

2.2. Semantic Content for Building Models 

The XML-based CityGML from the Open Geospatial Consortium (Gröger et al. 

2012) appears to be becoming the format for storing both geometric, semantic and 

geo-spatial building content, catering for a number of levels of detail (LOD) and for 

the inclusion of semantic attributes (van den Brink et al. 2013). This is in contrast 

to KML and many of the formats used in graphic design (Stadler and Kolbe 2007; 
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Smart et al. 2011). Indeed Ross et al. (2009) suggest that GML (on which CityGML 

is based) should become the standard for the interchange of data for all involved in 

the realm of urban planning whilst Döllner and Hagedorn (2007) and Zhu et al. 

(2009), in researching the practice of 3D modelling in the field, conclude that 

CityGML is the most suitable standard for semantic attribution. With respect to in-

terchange of data with the world of BIM and CAD Isikdag and Zlatanova (2009), 

Kolbe (2009) and Gröger and Plümer (2012) outline how CityGML needs to be-

come and is increasingly becoming interchangeable with the standard BIM data for-

mat namely Industry Foundation Classes (IFCs). 

Here we present a new method to auto-generate new CityGML content for archi-

tectural features on existing 3D building models, using the building’s texture maps. 

We focus particularly on styles (sub-types) of windows that could be used in cul-

tural heritage applications that allow the user to explore the architectural details of 

a building. 

 

3. Methodology 

There were two stages in the method for this work: (i) performing histogram of 

oriented gradients (HOG) based template matching, using the approach of Zhang et 

al. (2013) and Xiao (2013); and (ii), taking the output of the first step to create new 

CityGML content containing the matched architectural features, representing the 

semantic and geometric enrichment. Fig. 1 shows a summary of the method. 

 

Fig. 1  
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3.1.  HOG-based Template Matching 

Within computer vision, template matching is a standard method for identifying 

objects in images (Sonka et al. 2014). A template image (e.g. containing a single 

window object) is scanned across a test image (in our case a texture map from a 

building model) in order to find matching occurrences in the test image of the object 

contained in the template. Traditionally good matches are identified as locations 

producing large correlation values between the template and the corresponding test 

image windows. We use a recent alternative (Zhang et al. 2013; Xiao 2013) that is 

based on comparing HOG descriptors (Dalal and Triggs 2005) instead of directly 
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comparing pixel intensities. The HOG method is based on edges, i.e. gradients or 

changes in pixel brightness. A template is decomposed into a grid of cells, and 

within each cell the orientations of edges are computed and histogrammed. The his-

togram is subsequently normalised, and forms the HOG descriptor. In a similar 

manner, the HOG descriptor is extracted from windows in the test image. HOG 

descriptors are not sensitive to variations in lighting or to small local geometric 

deformations, and so the HOG-based template matching approach can be more ro-

bust than standard template matching, i.e. it is not so sensitive to the exact location 

and appearance of the particular features of an object. This means that objects in a 

test image are more likely to be matched when they are stretched, compressed or 

where their component parts (e.g. individual window panes within a window object) 

are distributed with differing proportions, when compared to the template. Such a 

scenario is likely to occur in the real world, considering the potential variety in ar-

chitectural design and in building methods. Prior to using HOG-based template 

matching we trialled a standard template matching approach, that of (Kroon 2011). 

However its sensitivity to the location of the features within an object meant that 

superior results were obtained using HOG-based matching. The aim of our study is 

to assign generic labels to objects in the texture maps on the building models. Meth-

ods such as SIFT are seen as too instance-based for such an aim, though may be 

used in a later stage of our work. It was therefore determined that HOG-based tem-

plate matching should be used instead. 

Preliminary runs of the HOG-based approach used a test image of the British 

Classical style heritage property Belton House, in Lincolnshire, UK (Pevsner et al. 

1989) taken from Wikipedia. Belton House was chosen as a useful starting point 

due to the repeatable nature of architectural components within the building. The 

initial template used was of a tightly cropped sash window common to the period, 

but from a different building, found via a Google Image search. Three further Flickr 

test images were used, each of a different UK heritage property and of similar ar-

chitectural period and style (1660-1714). Corresponding templates were obtained 

from Google Image and Flickr searches, again from entirely different buildings. 

Test images and templates photographed square-on to the façade were chosen and 

manually corrected for perspective distortion in advance. The centroids of the win-

dows on the test images were recorded manually as ground truth (verification data) 

for the purposes of evaluation. 

The match-scores are the result of running convolution on the HOG descriptors 

(Felzenszwalb et al. 2010, on which HoG-based template matching is partly based) 

for a template and a test image. To obtain a more meaningful value our work then 

divides the match-score by the area of the input template, multiplied by 100. Note 

that whilst match-scores tend to be less than one, a value close to zero does not 

necessarily represent a poor result, nor are they always less than one. How the 

match-score compares to other match-scores is more important. The HOG-based 

method was further extended by applying a pre-determined match-score threshold 

and by recording the true and false positives and computing precision, recall and F-
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measure. We use micro-averaging rather than macro-averaging to calculate preci-

sion and recall (based on the recommendation of Sebastiani 2002, their text 

classification focus being equally applicable to computer vision). During early runs 

the F-measure allowed the threshold value to be determined empirically and the 

starting size of the template to be optimised, using the size of the ground truth win-

dows in the respective test images as a starting point. Initially, the threshold and 

template size were set per building. 

The HOG-based method matches over a number of scales using an image pyra-

mid. Our work extends the approach by non-maximally suppressing the results thus 

removing overlapping matches. This was achieved by reducing to zero those match 

scores which were less than any within a neighbourhood the size of the template. 

Matches were recorded as bounding boxes, centred on the pixel location which 

achieved the match and sized according to the template size which achieved the 

match. 

The method was further extended to accommodate multiple templates (from 

Google Image, Flickr and the Pevsner Architectural Glossary App2), eliminating 

lower scoring overlapping matches by a further round of non-maximum suppres-

sion, regardless of the class of template that achieved the match. In order to obtain 

match-scores which were comparable across multiple templates the starting dimen-

sions of the templates were made similar. 115 ground truths in total, across all four 

building test images were recorded in advance. This study only recorded ground 

truths which discriminated between windows and doors (classes), between the num-

bers of panes horizontally and vertically within the window class (subclasses) and 

between ‘single’ and ‘double’ doors (subclasses) and did not attempt to distinguish 

the named architectural styles, such as the Classical styles Palladian or Baroque, 

explicitly. The same set of templates was then used with all four buildings, the start-

ing size of the template being the same, regardless of building. The threshold was 

set per class (‘door’ or ‘window’) not per building as had been the case previously. 

Fundamentally, these two steps test the ability of the solution to work for many 

buildings and many templates. 

Finally, the approach was trialled with texture maps, taken from a Trimble 3D 

Warehouse model of Belton House, the model having been previously converted 

from the Trimble SketchUp format into CityGML using 3DIS’ CityEditor plug-in 

for SketchUp, noting that the converted model needs to be a minimum of LOD 3 to 

accept window and door elements. 

3.2. Semantic & Geometric Enrichment of CityGML 

To ensure that a CityGML model is truly geo-spatial, a CityGML viewer will obtain 

real-world coordinates for its geometric components via a transformation from their 

model-space 3D Cartesian coordinate system to that in the spatial reference system 

attribute srsName (Whiteside 2009). The matching process previously described has 

                                                           
2 From yalebooks.co.uk 

http://yalebooks.co.uk/pid/page/index
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obtained the 2D pixel coordinates for each vertex of the bounding boxes of the 

matches. Those coordinates then need to be converted to 3D Cartesian coordinates 

of the building model, which is achieved as follows. 

CityGML specifies that texture map files (images) appear as covers for each 

linearRing, each linearRing representing a polygon in the building model 

(Gröger et al. 2012). It is feasible that the person who created the model cropped 

(or masked) the image file, perhaps only selecting part of that file to represent the 

texture map for the corresponding linearRing. CityGML records such cropping 

within 2D ‘texture space’, using textureCoordinates in the [0,1] interval 

regardless of aspect ratio (Gröger et al. 2012). An example of such masking is 

shown in Fig. 2a. Consequently, matches that fell outside of this space were re-

moved. Currently our work is only able to address rectangular polygon shaped 

linearRings and textures which do not repeat (or wrap) within a linearRing 

since the elimination of any cropped matches is more complex for non-rectangular 

polygons and repeating textures. 
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Fig. 2a  Example of how CityGML 

allows masking of an image 

file used as a texture map. 

The image is represented in 

‘texture space’ in the range 

[0,1] regardless of aspect ra-

tio. The mask, defined by the 

textureCoordinates 

for points A, B, C & D crops 

the image. The cropped im-

age then maps on to a lin-

earRing in the building 

model. Based on Gröger et 

al. (2012) 

Fig. 2b  Visual representation of the 

terms in (1.1-1.3), as used to 

transform a 2D texture space 

match coordinate (u,v) into 

3D Cartesian coordinates of 

the corresponding point P. Q, 

H and K define the plane and 

correspond to the vertices of 

the linearRing on which 

a texture map sits. The tex-

ture map has been cropped 

following that in Fig. 2a 
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Remaining matches are then converted from pixel coordinates into texture space 

[0,1]. This is achieved by converting the pixel coordinates into a value proportional 

to their position along their respective axes. The gml:posList for the line-

arRing contains the coordinates representing its vertices in 3D space. CityGML 

specifies that a linearRing must sit in a plane. Three points define a plane so 

we choose the coordinates of three of the linearRing’s vertices, denoting the 

corresponding points as Q, H and K, where 𝐻̅ and 𝐾 are the vectors for points H 

and K respectively and Q the origin. A 2D match coordinate in texture space is 

denoted as (u,v). This arrangement is illustrated in Fig. 2b. Thus, we are able to 

linearly interpolate to transform the 2D match coordinate (u,v) into 3D coordinates 

for point P using (1.1-1.3). 

 

𝑃𝑥 = 𝑄𝑥 + 𝑢𝐻𝑥 + 𝑣𝐾𝑥   (1.1) 

𝑃𝑦 = 𝑄𝑦 + 𝑢𝐻𝑦 + 𝑣𝐾𝑦  (1.2) 

𝑃𝑧 = 𝑄𝑧 + 𝑢𝐻𝑧 +  𝑣𝐾𝑧   (1.3) 

 

The results were then validated by computing precision, recall & F-measure for 

each texture map and by checking qualitatively (visually) in a 3D graphing tool that 

the coordinates of the matches lay in the plane of the corresponding linearRing. 

Each match then generates a CityGML <bldg:opening><bldg:Window> 

or <bldg:opening><bldg:Door> text string, containing a gml:pos for 

each 3D Cartesian coordinate for the vertices of the match and a gml:name for 

bldg:WindowType or bldg:DoorType containing the type of template and 

the match-score. The latter is recorded as ‘Match-score’ followed by the corre-

sponding score. The match-score is intended to give a confidence measure for the 

match that resulted in the geometry. The process is repeated for each texture map in 

the CityGML and for each linearRing. 

 

4. Results 

4.1. HOG-based Template Matching 

Operating with just one template per building and using the test images from Flickr 

and Wikipedia, the results of the HOG-based template matching on the five test 

images can be seen in Fig. 3. Strong F-measures between 0.74 and 0.88 were rec-

orded, with one outlier, Blenheim Palace, of 0.34. Looking at the outlier result in 

detail it is clear that the template has in fact achieved a successful partial match, 

identifying ground truth windows which have more panes than the template. It 

proved possible to refine the results further through fine-tuning of the threshold per 

test image (per building). However, crucially, the approach allowed for the use of 

the same threshold (0.3) for all test images of the same class of architectural feature 

used (windows). This demonstrated early on that HOG-based template matching 

represented 



 
 

 

  

Fig. 3  HOG-based template matching over varying scales on Flickr images of UK heritage properties Welford Park3 (top-left) 

and Holyrood Palace4 (top-right), a Wikipedia image of Belton House5 (bottom-left) and a Flickr image of Blenheim Pal-

ace6 (bottom-right). For each image the template used is shown top-left, with matches as thick white bounding boxes. 

                                                           
3“Welford Park, Newbury, Berkshire” by Amanda Slater is licensed under CC BY-SA 2.0; Template: from a Google Image Search result 
4 “Holyrood palace” by Asif Musthafa is licensed under CC BY-NC-ND 2.0; Template: “IBM Hursley” by Alexis Birkill is licensed under CC BY-NC-SA 2.0 

5 “South facing front to Belton House” by Wehha is licensed under CC BY-SA 3.0; Template: “IBM Hursley” by Alexis Birkill is licensed under CC BY-NC-SA 2.0 

6 “Blenheim_Palace: Unprocessed (img_8298_hdr)” by Peter Gawthrop; Template: “Winslow Hall” by Lesley; both licensed under CC BY-NC 2.0 

https://flic.kr/p/7FxhsS
https://www.flickr.com/photos/pikerslanefarm/
https://creativecommons.org/licenses/by-sa/2.0/
http://www.remodelista.com/posts/architect-visit-chris-dyson-in-spitalfields
https://flic.kr/p/xcQzU
https://www.flickr.com/photos/asifch/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://flic.kr/p/zvQtf
https://www.flickr.com/photos/abirkill/
https://creativecommons.org/licenses/by-nc-sa/2.0/
http://commons.wikimedia.org/wiki/File:Belton_House_South_Elevation.jpg
http://commons.wikimedia.org/wiki/User:Wehha
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://flic.kr/p/zvQtf
https://www.flickr.com/photos/abirkill/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://flic.kr/p/4yjmuv
https://www.flickr.com/photos/gawthrop/
https://flic.kr/p/58PhUn
https://www.flickr.com/photos/doeth/
https://creativecommons.org/licenses/by-nc/2.0/


a method which could extend to multiple test images and multiple templates, some-

thing which is fundamentally advantageous. 

Successful tests with intentionally incorrect templates (architectural styles not ap-

pearing in the test images) and those not optimally sized for the ground truths in the 

test image demonstrated further potential for the method to match multiple tem-

plates on one test image. Fig. 4 shows the templates used for the multi-template 

matching stage. Note the relative morphological, brightness and colour similarity of 

many of the templates, illustrating the challenge for the method to correctly match 

at a subclass level, e.g. distinguishing a 3x3 pane window from a 3x4 pane window. 

 

  

  
   

  
   

  

     

  

Fig. 4  Template corpus used for multi-template matching7 

 

The results of matching against one of the four buildings, the Flickr image of 

Welford Park, can be seen in Fig. 5, where the text beside each bounding box rep-

resents the subclass of the template and the ‘match-score’. Note that for texture 

maps one can trivially remove / ignore matches in the sky or off the building. 

Extending the method to multiple templates per test image, and using the same 

corpus of templates to run matching on multiple test images, proved feasible. The 

method demonstrated a low sensitivity to choice of template between different test 

images. This, alongside the low sensitivity to the match-score threshold, meant that, 

importantly, the HOG-based template matching has real potential for operating ef-

fectively across multiple templates and buildings. Incidentally, further refinement 

for the removal of false positives could potentially be carried out with heuristics 

utilising the likely number of doors and their likely relative height. 

With a successful implementation of multi-template matching against the Flickr 

test images, our work then moved on to matching the same templates to the texture 

                                                           
7 From top-left to bottom-right, derivatives of 1-11: “Winslow Hall” by Lesley, is licensed under CC 

BY 2.0; 12: “Arched window (8034234792).jpg” by russavia is licenced under CC BY 2.0; 13 and 14: 

“St Chad” & “Lytham Hall” from Pevsner Architectural Glossary App by Yale University Press are 

copyright, used with permission; 15: “Portico” by Arthur John Picton is licenced under CC BY-NC 2.0; 

16: combination of “Dublin yellow and red Georgian doors” by hugovk is licensed under CC BY-NC-

SA 2.0; 17: “Dublin Doors” by Jim McDougall is licensed under CC BY 2.0, and 16 

https://flic.kr/p/58PhUn
https://www.flickr.com/photos/doeth/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:Arched_window_%288034234792%29.jpg
https://commons.wikimedia.org/wiki/User:Russavia
https://creativecommons.org/licenses/by/2.0/
http://yalebooks.co.uk/display.asp?K=e2013012516430528
http://yalebooks.co.uk/pid/page/index
https://flic.kr/p/6ymf2u
https://www.flickr.com/photos/arthurjohnpicton/
https://creativecommons.org/licenses/by-nc/2.0/
https://flic.kr/p/fqJcQH
https://www.flickr.com/photos/hugovk/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://flic.kr/p/7SYJkk
https://www.flickr.com/photos/jimmcd/
https://creativecommons.org/licenses/by/2.0/
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maps of a Trimble 3D Warehouse building model of Belton House (containing 

twenty-four texture maps). Table 1 shows the results by F-measure, in detail. With 

the results grouped by class the F-measure of 0.92 indicates a high level of success 

in distinguishing between classes (window from a door). With the results grouped 

by subclass the F-measure of 0.61 demonstrates that the ability of the method to 

distinguish between a subclass was less successful. However, improvements could 

be gained using a wider range of templates. Fig. 6 shows the matches displayed on 

the model itself. 

 

 

Fig. 5  HOG-based template matching on a Flickr image of Welford Park using 

multiple templates, bounding box text represents the subclass of the 

template (line 1) and the ‘match-score’ (line 2) 

 

 
Table 1: Multi-template matching F-measure for Belton House 3D model 

Correct Subclass Identification Correct Class Identification

e.g '3x3 Pane Window' e.g. 'Window'

Building 

Aspect

Total 

Relevant

Total 

Retrieved

True 

Positives

False 

Positives

Total 

Relevant

Total 

Retrieved

True 

Positives

False 

Positives

Front 50 61 37 24 50 61 49 12

Rear 44 52 30 22 44 52 42 10

Left 31 31 17 14 31 31 31 0

Right 30 30 16 14 30 30 29 1

All 155 174 100 74 155 174 151 23

Precision 0.57 Precision 0.87

Recall 0.65 Recall 0.97

F-measure 0.61 F-measure 0.92
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Fig. 6: Results of multi-template matching (thick white bounding boxes) on 

Belton House 3D model8 

4.2. Semantic & Geometric Enrichment of CityGML 

Figs. 7a and 7b show examples of the auto-generated CityGML from the matching. 

 

                                                           
8 “Belton House” by Johan is licenced for public use by Trimble 

 

 
Fig. 7a: Example auto-generated CityGML for window matches 

https://3dwarehouse.sketchup.com/model.html?id=90458ae24303c8951b594454f7e18a
https://3dwarehouse.sketchup.com/user.html?id=0063868824001025998211411
https://3dwarehouse.sketchup.com/tos.html
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This represents the semantic and geometric enrichment of the model. Future work 

will determine the correct location to auto-inject the corresponding textual de-

scriptors into the existing CityGML model. 

 

5. Conclusions 

Using multiple buildings and with multiple templates this work has shown impres-

sive results for automatically identifying different classes of architectural features 

(windows and doors) on the texture maps of CityGML building models, using a 

HOG-based template matching approach. Results were measured quantitatively us-

ing the precision and recall of matches, based on ground-truthing. The results were 

better than standard template matching. 

Our study has also presented promising potential for identifying subclasses of 

architectural feature (different types of windows or doors). We have introduced a 

method for automatically converting the 2D pixel coordinates of window and door 

matches in to 3D CityGML coordinates. Our approach also auto-generates the cor-

responding new CityGML. 

Future work will focus on the refinement of subclass identification to improve 

matching scores, the addition of new classes and subclasses, machine learning of 

optimized templates, richer semantic descriptions of the architectural features and 

automatic injection of the enriched CityGML content into the models. 

 

 

 
 Fig. 7b: Example auto-generated CityGML for door matches 
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