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A variety of error of fit (EOF) functions have been proposed

for use in the least-square fitting of ellipses. We describe four
measures for assessing the suitability of such EOFs, quantifying Thus, many different ellipse estimation techniques de-
their linearity, curvature bias, asymmetry, and overall good- pend on a suitable error term, although there has been
ness. These measures enable a better understanding to be gained little comparison between them (but see [3, 4, 8]). The
of the individual merits of the EOF functions.  1996 Academic Euclidean distance from Xj to the ellipse boundary would
Press, Inc.

be a good choice for ej , but requires solving a quartic
equation which may have up to four solutions, requiring
the one with the minimum distance to be determined [10].1. INTRODUCTION
To avoid the complexity of evaluating the true Euclidean
distance it is usual practice to approximate it by someThe fitting of ellipses to edge data is a common task in
measure—the error of fit (EOF) function—that is simplercomputer vision. In particular, this often arises in the con-
to calculate. The simplest approximation is the algebraictext of industrial inspection since circular parts in the scene
distance [2] calculated from Xj to the ellipseare projected into the image as ellipses. There are many

algorithms for ellipse fitting, but in this paper we shall
EOF1 5 Q(xj , yj) 5 Ax2

j 1 Bxjyj 1 Cy2
j 1 Dxj 1 Eyj 1 F,concentrate on minimization techniques rather than others

such as the Hough transform voting method. Despite its (1)
sensitivity to non-Gaussian noise, least-squares (LS) fitting
is probably the most widely used approach for estimating where Q(x, y) 5 0 is the general equation of a conic,
the ellipses’ parameters, due to its computation efficiency describing ellipses when B2 2 4AC , 0. An advantage of
and its high efficiency as an estimator. It operates by min- (1) is that a closed form LS solution is available whereas
imizing the sum of squares of some error term ej measured the other EOFs described below must be minimized by
at each data point Xj 5 (xj , yj). Thus for N points the iterative procedures. However, many more accurate ap-
parameters P of the best fit ellipse are obtained by proximations have been suggested, most prominently the

algebraic distance inversely weighted by its gradient [1,
11, 13]
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EOF2 5
Q(xj , yj)

u,Q(xj , yj)u
. (2)

Alternatively, techniques from robust statistics have re-
cently become popular [7, 9] since they have a strong immu- Safaee-Rad et al. [10] provide an alternative weighting.
nity to outliers (i.e., a high breakdown point) although A ray is drawn between Xj and the center of the
they are often computationally expensive and their results ellipse C, intersecting the ellipse at Ij . The lengths of the
can have lower accuracy. As an example, the least median bisected portions of the ray mj 5 CIj and nj 5 IjXj are
of squares (LMedS) approach is commonly used. The best determined. The approximate distance is then given by
fit ellipse would then be obtained by

EOF3 5 mj
1 1 nj /(2a)

1 1 nj /(2mj)
Q(xj , yj), (3)
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FIG. 1. Iso-distance contours.

where a is the length of the semimajor axis of the ellipse. EOF6 5 ã 2 a. (6)
We discount the additional 1/a multiplying term given by

To calculate ã an initial estimate is made first to the approx-Safaee-Rad et al. because we can ignore constant scalings
imate distanceof the error measure. Since nj is normally much smaller

than mj or a they further approximate the distance by

dest 5
ãest 2 a 1 b̃est 2 b

2
,

EOF3 P EOF4 5 mjQ(xj , yj). (4)

whereNakagawa and Rosenfeld [6] used

EOF5 5 nj (5) ãest 5
uXj 2 F1u 1 uXj 2 F2u

2

alone as an error measure. b̃est 5 Ïã 2
est 2 a2 1 b2 .

Stricker [12] proposed that an approximation to the dis-
tance from Xj to the ellipse E be determined by generating F1 and F2 are the focal points of E, and b is the length of
a new ellipse Ẽ which passes through Xj and has the same the semiminor axis of E. The focal points of Ẽ are1

center and orientation as E. Letting the length of the semi-
major axis of ellipse Ẽ be ã, he takes the approximate 1 Note the corrected expression for F̃1 and F̃2 provided by Stricker

(personal communication, 1995).distance as
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FIG. 1—Continued

tive analysis has been carried out.2 Previously, to better
F̃1 , F̃2 5

F1 1 F2

2
6 c̃

F1 2 F2

uF1 2 F2u
, understand the different nature of the approximations,

we visualized the EOFs by plotting their iso-distance
contours at regular intervals of the EOF [8]. Figure 1where
shows the iso-distance contours for the different EOFs
(the ellipse boundary is drawn bold) from which we can
make several observations. First, EOF1 demonstrates thec̃ 5 Ï(a 1 dest )2 2 (b 1 dest )2

so-called ‘‘high curvature bias’’ in that the spacing be-
tween the contours becomes wider at the pointed endsenabling the semimajor axis of Ẽ to be calculated as
of the ellipse, i.e., near the regions of high curvature.
This is overcompensated by EOF2 , which also exhibits
a bowing out of the contours near the pointed endsã 5

uXj 2 F̃1u 1 uXj 2 F̃2u
2

.
of the ellipse. EOFs 3–5 also demonstrate substantial

2. ASSESSMENT MEASURES 2 Gross and Boult [5] experimentally evaluated four EOFs for super-
quadrics using graphical plots comparing scaled summed EOF against

Despite the variety of approximations to the distance the true RMS error, as well as showing one dimensional cross sections
of the errors of fit.from a point to the boundary of an ellipse little compara-
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FIG. 2. Mean Euclidean distances of iso-distance contours of EOFs.

curvature bias—but only in the interior of the ellipse. fitting due to the varying weights they assign to the data.
Even EOF6 has some curvature bias, again more obvious Curvature bias causes data near the ends of the ellipse
inside the ellipse. Second, it can be seen that the sign to have more or less influence on the fit. In the case
of the gradient of the measure perpendicular to the of EOF1 their influence is reduced, often resulting in an
ellipse differs between the measures. With EOF1 the overestimate of the eccentricity of the fitted ellipse. The
contours get closer with increasing distance out from second factor is the relationship between the EOF and
the ellipse, whereas for EOF2 the contours drift apart. the Euclidean distance as a function of the Euclidean
Moreover, we can see that for EOF2 the magnitude of distance. Ideally they should be linearly related; a con-
the gradient of the measure inside the ellipse is consider- stant scaling factor has no effect and can be ignored. A
ably larger than on the outside.3 superlinear relationship causes the outlying data to have

These three factors have different effects on the ellipse a stronger influence on the fit than a linear or sublinear
relationship. Finally, the third factor is the asymmetry
between the distance approximation inside and outside3 Artifacts from the plotting process have caused some contours to be

missed near the center of the ellipse. the ellipse. Using EOF1 the data inside the ellipse has
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FIG. 3. Variance of Euclidean distances of iso-distance contours of
FIG. 4. Asymmetry of Euclidean distances of iso-distance contoursEOFs plotted against their mean Euclidean distances.

of EOFs plotted against their mean Euclidean distances.

less influence than the exterior data, which could cause
the size of the fitted ellipse to be overestimated. The
opposite effect occurs with EOF2 since the interior data r 5

oX(eX 2 ēX)(dX 2 dX)

ÏoX(eX 2 ēX)2oX(dX 2 dX)2
. (7)

has a disproportionate effect on the fitting.
Although visualizing the iso-distance contours is a useful

The value of r lies between 61, although in our contexttool for the qualitative analysis of EOFs, a quantitative
negative values are unlikely, and we can think of r [ [0, 1]assessment would be valuable for objectively comparing
with increasing values meaning a better linear correlation.them. We develop assessment measures based on the three

A problem with (7) is that equidistant values furtherfactors of deviation from the Euclidean distance described
from the ellipse will have greater effect on the measureabove. One consideration is that the degree of deviation
than close values since as iso-distance contours becomemay not be constant with increasing distance from the
more distant from the ellipse they become longer. Thisellipse. Therefore it may be necessary to make the mea-
can be compensated by weighting points in R2 by the lengthsures a function of the distances. Second, although we show
of the iso-distance contour through the point. Since de-the measures applied to all values X 5 (x, y) in the R2

termining the length is not straightforward we take anplane, in practice we must discretely sample a subset of R2.
alternative approach which is to sample a set of iso-distanceThis leads to the problem of which subset? One solution is

to assume a noise model which, given an ellipse, specifies contours at regular intervals of the distance approximation.
where the data is expected to occur. For instance, for noise The iso-distance contour of the distance approximation at
with a Gaussian distribution N(0, s) we can weight the some value4 Ei is at dX u eX 5 Ei , and the mean Euclidean
data in R2 by distance along each contour is

w(d) 5
1

sÏ2f
e2d2/2s 2

, ei 5 E[dX u eX 5 Ei]. (8)

The correlation coefficient is then calculated between thewhere d is the Euclidean distance to the ellipse boundary.
iso-distance values and their Euclidean distance meansAlternatively, for uniform noise U(R) in the range [2R,

R] we can weight the data by

L 5
oi wi(Ei 2 Ei)(ei 2 ēi)

Ïoi wi(Ei 2 Ei)2oi(ei 2 ēi)2
. (9)

w(d) 5H1/(2R) if 2R , d , R

0 otherwise.
Thus each distance is now given equal weight in the assess-

2.1. Linearity ment measure. In addition, we have included the term wi

To test for a linear relationship between the Euclidean
distance values dX and their approximations eX , it is natural 4 To avoid confusion we assume distances inside and outside the ellipse

are signed, or can be made so.to use the Pearson correlation coefficient
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TABLE 1 2.4. Overall Goodness
Normalized Assessment Results with N(0, 2) Noise Model

Rather than individually assess the three specific charac-
EOF L C A G G9 teristics described above, sometimes it may be more conve-

nient to produce a single overall assessment of the distance1 1.000 1.000 1.000 1.000 1.000
approximations, ignoring the details. One approach would2 0.987 0.011 3.977 0.808 0.841

3 1.000 0.127 2.042 0.998 0.967 be to produce a weighted sum of the three measures above.
4 1.000 0.146 2.808 0.994 0.965 Instead, we use an alternative which avoids the need for
5 1.000 0.127 2.396 1.012 0.976 deciding on suitable weights and use the squared difference
6 1.000 0.106 4.393 0.996 1.001

between the approximation and the true Euclidean dis-
Note. a 5 400, b 5 100. tance

G 5 O
X

wX(dX 2 SeX)2. (13)
for each contour corresponding to the weighting factor
associated with the noise model, where wi 5 w(ēi).

Since we can ignore uniform scalings of the distances, we
allow the approximation to be scaled by some constant S,2.2. Curvature Bias
and choose S so as to minimize G. This is found when dG/

To measure the departure of the iso-distance contour dS 5 0, yielding
from the desired constant Euclidean distance we use the
variance of the underlying Euclidean distance

S 5
oX wXeXdX

oX wXe2
X

.
s 2

i 5 Var[dXueX 5 Ei]. (10)

Since this is a local measure it must be combined over
3. RESULTScontours to give a global measure

We show the results of generating and applying theC 5 O
i

wis
2
i . (11)

assessment measures described in the previous section
to the six error of fits given in Section 1. A quadrant
of a single ellipse with semimajor axis a 5 400 andThe ideal error of fit should have no curvature bias which
semiminor axis b 5 100 and centered at the origin wasis obtained when C 5 0.
used. The Euclidean distance was found by plotting the

2.3. Asymmetry ellipse into an image followed by performing a Euclidean
distance transform. The distance was made signed byAssuming signed distances, the mean Euclidean dis-
setting negative all nonzero distance values 4-way con-tances along corresponding iso-distance contours inside
nected to the origin. The EOFs were generated andand outside the ellipse are calculated
sampled at unit increments in one quadrant of size
1 000 3 300. Iso-distance contours crossing the Y axise1

i 5 E[dX u eX 5 Ei]
at 10 pixel intervals were detected, and the average and

e2
i 5 E[dX u eX 5 2Ei]. variance of the Euclidean distances (8) and (10) along

the contours were calculated. The mean distances are
Asymmetry is calculated at each contour pair as the nor-
malized difference in their mean Euclidean distances,

TABLE 2
Normalized Assessment Results with N(0, 64) Noise Modelai 5

ue1
i 2 e2

i u
e1

i 1 e2
i

.
EOF L C A G G9

Again, a weighted sum of the local measures over the 1 1.000 1.000 1.000 1.000 1.000
2 0.877 0.041 8.404 2.771 0.099contours is made to produce a global measure
3 1.005 0.054 1.475 0.309 0.310
4 1.003 0.067 1.270 0.282 0.288

A 5 O
i

wiai (12) 5 1.004 0.056 2.997 0.584 0.262
6 1.004 0.042 1.547 0.218 0.179

Note. a 5 400, b 5 100.which would equal zero for the ideal error of fit.
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TABLE 3 ness assessment values G and G9 of the various EOFs
Normalized Assessment Results with U(10) Noise Model are similar.

With increased s—effectively including a larger portionEOF L C A G G9
of R2—the differences become more noticeable, while

1 1.000 1.000 1.000 1.000 1.000 some rankings change. EOFs 3–6 now do slightly better
2 1.000 0.008 2.870 0.509 0.162 than EOF1 while EOF2 is significantly worse. EOF2’s result
3 1.000 0.117 1.833 0.964 0.744

is degraded due to its marked asymmetry. EOF1 still has4 1.000 0.152 1.685 0.943 0.727
the greatest curvature bias, but the bias of the remaining5 1.000 0.123 2.111 1.025 0.728

6 1.000 0.108 1.852 0.957 0.874 EOFs now appear comparable with each other. Again
EOF1 still has the least asymmetry. Now EOF2 has a much

Note. a 5 400, b 5 100.
worse asymmetry than the other EOFs, while EOF6 is
relatively low. The overall rating G assigns the best score
to EOF6 and good scores to EOF3 and EOF4 . The poor
rating given to EOF2 is incurred by its asymmetry, as canshown in Fig. 2. The linearity and asymmetry aspects

of the EOFs become clear on looking at these plots. Most be seen by the excellent score achieved with G9 when only
exterior values are considered. Applying the uniform noiseEOFs exhibit either a sub- or superlinear relationship with

Euclidean distance, while the degree of asymmetry is model over different distances we can see similar effects
to the Gaussian noise model.accentuated toward the center of the ellipse.

Figure 3 shows the variance of the Euclidean distances The effect of changing the eccentricity e of the ellipse
is investigated, where e2 5 1 2 b2/a2 . The length of the(10) for the iso-distance contours. So that variance plots

for all the different EOFs can be plotted together with minor axis was fixed at b 5 100 and the length of the major
axis varied as a 5 h100, 120, 150, 200, 300, 400j, givingthe same scales, they have been plotted against the mean

Euclidean distance of each iso-distance contour rather e 5 h0, 0.55, 0.74, 0.86, 0.94, 0.96j. The various measures are
plotted in Fig. 5 using the Gaussian noise model with s 5than its EOF value. For much of the extent shown,

EOF1 has the worst, and EOF2 the least, curvature bias. 64. It can be seen that the linearity of all the EOFs is
roughly independent of eccentricity. The curvature bias ofSince the curves cross, none of the EOFs has the lowest

curvature bias over all R2. EOF1 increases exponentially with eccentricity; the re-
maining EOF curvature biases also increase exponentially,To simplify calculation of the measures and ensure uni-

form sampling, for both the average and variance of the Eu- but less dramatically. While the asymmetry of EOF2 ,
EOF5 , and EOF6 increases with eccentricity, the asymme-clidean distance values along the contours the EOF, values

were resampled at unit intervals using linear interpolation. try of EOF1 , EOF3 , and EOF4 decreases. Finally, all the
EOFs show increasing G and G9 against eccentricity.It is then straightforward to find the corresponding points

e1
i and e2

i . Figure 4 shows the asymmetry measures for the
different EOFs. Again, they have been plotted against the 4. CONCLUSIONS
mean Euclidean distance to facilitate comparison. It is diffi-
cult to discern clear trends, but we note that asymmetry We have described four measures for assessing the

suitability of EOF functions used for the fitting of ellipses.fluctuates considerably with distance from the ellipse, ex-
cept for EOF2 which monotonically increases, reaching a This allows us to compare different EOFs in an objective,

quantitative manner. Applying the measures to six differ-substantial level.
Tables 1–4 give the assessment values for the Gaussian ent EOFs we see that the choice of the most suitable

EOF depends in part on the degree of noise present innoise model with s 5 h2, 64j and uniform noise with R 5
h10, 160j. To facilitate comparison, all values have been
scaled w.r.t. the corresponding EOF1 value. Recall that we
wish to maximize L and minimize the remaining assess- TABLE 4
ment measures. To factor out the extreme asymmetry Normalized Assessment Results with U(160) Noise Model
shown by EOF2 , we also show the overall goodness mea-

EOF L C A G G9sure applied only to values outside the ellipse, denoted by
G9. Considering Gaussian noise first, we see that close to 1 1.000 1.000 1.000 1.000 1.000
the ellipse (i.e., for small s) all measures have similar 2 0.907 0.049 8.629 2.826 0.082

3 1.000 0.045 1.464 0.293 0.297linearity. But even close there are large variations in curva-
4 1.000 0.062 1.266 0.254 0.257ture bias: EOF1 performing relatively poorly and EOF2
5 1.000 0.044 3.065 0.473 0.235performing well. On the other hand, EOF1 has the lowest
6 1.000 0.026 1.596 0.174 0.150

degree of asymmetry, while EOF2 and EOF6 have the
Note. a 5 400, b 5 100.greatest degrees of asymmetry. However, the overall good-
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FIG. 5. Effect of eccentricity on measures.

the data with respect to the size of the ellipse, the nature fitting technique such as LS is used rather than a robust
algorithm such as LMedS.of the data, and the fitting algorithm. For instance,

curvature bias tends to have less effect if data describing In general, some EOFs have good properties close to the
ellipse (e.g., EOF2’s overall assessment) but dramaticallythe complete ellipses is available compared to data de-

scribing only small arcs of the ellipse. Likewise, the degrade at further distances. Thus we can conclude that
for small amounts of noise EOF2 is the overall best approxi-linearity of the EOF is more important if a nonrobust
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