
Chapter 5
Edge Detection Using Cellular Automata

Paul L. Rosin and Xianfang Sun

Abstract. Edge detection has been a long standing topic in image processing, gen-
erating hundreds of papers and algorithms over the last 50 years. Likewise, the topic
has had a fascination for researchers in cellular automata, who have also developed
a variety of solutions, particularly over the last ten years. CA based edge detection
has potential benefits over traditional approaches since it is computationally effi-
cient, and can be tuned for specific applications by appropriate selection or learning
of rules. This chapter will provide an overview of CA based edge detection tech-
niques, and assess their relative merits and weaknesses. Several CA based edge de-
tection methods are implemented and tested to enable an initial comparison between
competing approaches.

5.1 Introduction

Edge detection is a fundamental tool for computer vision systems. The original use
of boundaries detected in a scene was for object detection, as they provide a set of
features suitable for model matching. However, edge maps are nowadays applied
to a host of different ways, such as preventing removal of significant structures in
anisotropic blurring [23], indicating salient regions [33], selecting redundant seams
in image resizing [1], image registration [25], depth from focus [8], extended depth
of field, etc.

From Roberts’ early work [31] in 1963 through to Canny’s influential pa-
per [4] in 1986, most methods have used first-order derivatives to estimate edge
magnitude and orientation. Subsequently, the edgels (i.e. edge pixels) are often
thresholded, linked, and thinned. Edge detection is normally carried out using lo-
cal operators, and since edges may not be locally distinct in the image this means
that edge maps are prone to fragmentation. Thus, research into new methods of edge
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detection continues to be an active area. For instance, more recent approaches try to
combine changes in brightness, colour, and texture [18], and use machine learning
to determine how these multiple cues are combined.

During the last decade or so there has been considerable interest in using cellular
automata to perform edge detection. They have several potential benefits, such as:

• Efficiency – Cellular automata are both inherently parallel and computationally
simple, which means that they can implemented very efficiently in hardware.

• Global properties – Since multiple iterations of cellular automata rules can lead
to emergent global behaviour it is feasible that a cellular automaton approach
could provide benefits regarding the tendency of existing methods to produce
fragmented output where there is locally inconsistent data.

• Application specificity – Rules can be selected (e.g. learnt from training data) to
operate better than general purpose edge detectors for demanding applications,
e.g. noisy modalities such as ultrasound and SAR.

There are many applications of CA based edge detection. For instance, in med-
ical image processing some examples are: detection of tumours [7], identification
of the pectoral muscle in mammograms [43] and diagnosis of lung cancer [30].
Other applications include: analysis of antibiotic images [19], detection of fabric
defects [42], detection of grain boundaries in rocks [11], horizon tracking [9] and
content based image retrieval (see chapter 8).

However, it is difficult for the general reader to gain an understanding of the
state of the art in cellular automata based edge detection as the relevant papers are
dispersed over many conferences and journals, which are often not specific to either
cellular automata or image processing/computer vision. This chapter aims to collect
together descriptions of these methods, and to provide a critical assessment of their
merits.

Another obstacle in the path of the reader is the lack of performance evaluation. In
the general area of computer vision there has been considerable work on comparison
of edge detectors, using various methodologies, e.g. human assessment, comparison
to (human) ground truth [12, 13, 40]. However, the majority of papers on developing
cellular automata methods for edge detection simply show a few examples of their
results alongside the Sobel or Canny outputs. Ideally this should be replaced by
quantitative evaluation scores. However, this process is generally complicated by
the need to process the raw outputs of the edge detectors before comparison, and so
would depend on parameters for thresholding, thinning, etc.

5.2 Boundary Detection

The classical or the most popular cellular automata (CA) are binary, so it is natural
to use CA for binary image processing. Edge detection of binary images can be
considered as finding the boundaries of objects or regions in an image, and thus it is
also called boundary detection.

When CA are used for image edge detection, the image to be detected is usu-
ally considered as a cellular automaton, each pixel of which is taken as a cell that
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connects to its neighbouring pixels (cells), and the pixel values (0 or 1 in binary
images) are the state values. Basically, the process of edge detection takes several
iterations of state transition from the initial states (the input image pixel values) to
the final states (the output image with 1 representing edge pixels and 0 the others).
It is critical to find good state transition rules for the CA.

The state transition rule proposed by Wongthanavasu and Sadananda [45] is prob-
ably the simplest one, where a cell changes its state from 1 to 0 only if all its von
Neumann neighbours have state value 1, otherwise it retains its original state (either
1 or 0). Though simple, this rule can produce reasonable results. It is intuitively un-
derstandable why this simple rule works. Suppose that we have a contiguous region
of 1 as the foreground, then one iteration of CA evolution using this rule will result
in all the inner pixels (which have all 1 in their neighbourhoods) changing to 0 (non-
edge), while the boundary pixels (those have at least one 0 in their neighbourhoods)
to remain as 1 (i.e. edge). More iterations will not change the pattern. The weakness
of this rule is also obvious: if noisy pixels (value 0) exist inside a foreground region,
the neighbouring pixels of a noisy pixel will remain unchanged, and wrongly clas-
sified as edges. Thus, this approach is not able to work effectively in the presence of
noise.

To find optimal state transition rules, several researchers resorted to genetic algo-
rithms. As early as in 1994, Sahota et al. [35] used a genetic algorithm to train CA
to find optimal rules for edge detection. They used three simple original/edge image
pairs as the training samples, and the obtained rules were then used in edge detec-
tion. They did not describe the rules they obtained, and only showed the detection
results of two manually designed toy images.

Selvapeter and Hordijk [37] adopted the same method as in [35] to train CA,
where they used similar original/edge image pairs as the training samples. The con-
tribution of their work was to deal with real images with noise. They simply used a
CA-based image noise filter [38] as the first step to denoise the image, and then used
the trained CA rules for edge detection. They showed that the CA-based method can
produce comparable results to the other methods such as Canny, Prewitt, Sobel, and
Laplacian of Gaussian operators when the image is noiseless, and it can also pro-
duce reasonable results when the image is noisy, while the other methods failed
to produce meaningful edge detection results. However, their comparisons in noisy
cases are unfair because they had first denoised the image before using the CA to
detect the edges, while they used the other methods to directly detect the edges in
the noisy image.

Batouche et al. [3] also applied genetic algorithms to train CA for binary image
edge detection. Instead of training rules for all the 29 = 512 pixel patterns in a Moore
neighbourhood, they assigned those rotational symmetric patterns (that rotate 0◦,
90◦, 180◦, 270◦, or flip horizontally or vertically) the same state transition rule. A
weak matching criterion was introduced, so that some patterns with a difference less
than a similarity threshold were further merged into a single rule. They assembled
15 state transition rules into a packet, which is represented by a chromosome, and
trained to produce optimal rules. Experiments showed that edges are successfully
detected, but are a little bit thick.
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Slatnia et al. [41] assigned rotational symmetric patterns the same rule, but they
were not training symmetric state transition rules as was done in [3]. Inspired by
Rosin’s work [32], they instead used genetic algorithms to train only a single power-
ful rule, that is, the central cell changes its state only when its Moore neighbourhood
matches a specific pixel pattern. Interestingly, they got an optimal rule which was
the same as that proposed by Wongthanavasu and Sadananda [45]. Again, they com-
pared their results with Canny’s, and claimed that they had better results, although
this is not obvious from the figures they provided.

Yang et al. [46] proposed a CA approach for a specialised form of edge detection.
Instead of using binary state transition rules to evolve the CA, they complicated the
algorithm by introducing more state values. Their method consists of two steps. The
first step sets the state value of each pixel. It uses the Prewitt operator, rotating in
eight angles (from 0◦ with interval 45◦, numbered as direction 1 to 8), to compute
eight direction values for each pixel, and takes the direction number (called the lo-
cation coordinate in their paper) with maximal direction value as the state value
(called the characteristic vector). The state value is changed to 16 if the maximal
direction value is less than 3. The second step evolves the CA based on the states
(represented by values in 1∼ 8, or 16) in the neighbourhood of each cell. The differ-
ences of the state values between the central cell and its neighbours are calculated,
and the number of neighbours with differences 0, 1, or 7 is counted. If the number is
not equal to 2, the state of the central cell is changed to 16. After several iterations,
the pixels with state values other than 16 are classified as edge pixels. One iteration
of the algorithm will result in reasonable edge detection results. More iterations will
delete irregular edges, and only the edges of the objects that are strictly rectangular
survive.

In fact, we can simply describe Yang et al.’s algorithm by binary state transition
rules also in two steps. The first step performs only one iteration with the rule that if
three contiguous neighbours of a central pixel have the value 1 and the other three
contiguous neighbours symmetric to them about the central pixel have the value 0,
then the central pixel keeps its state (either as edge or non-edge), otherwise it is
non-edge. The second step performs several iterations based on the rule that an edge
pixel remains as edge if exactly two pixels in its von Neumann neighbourhood are
edge pixels, and all the other pixels in its Moore neighbourhood are non-edge.

It should be mentioned that most of the proposed CA-based binary image edge
detection methods were compared against Canny’s method. This is inappropriate
because Canny’s method was not designed specifically for binary image edge detec-
tion, but rather for grey-scale image edge detection. In fact, Canny’s method is not
poorer than the above-mentioned methods even when dealing with binary images.

Another issue is that, from an image processing perspective, detecting bound-
aries in binary images is a relatively trivial task, and is not generally considered to
be a research problem. In comparison, detecting edges in intensity images (which
often also involves estimating edge magnitude and orientation as well) still regularly
generates many papers in high ranking journals and conferences in the field of image
processing/computer vision.



5 Edge Detection Using Cellular Automata 89

5.3 Edge Detection in Intensity Images

For edge detection of intensity images, some approaches first convert the intensity
images into binary ones, and then evolve two-state cellular automata using specific
state transition rules to determine edge pixels, while the others directly update pixel
states based on the relationship of the central pixel with its neighbourhood, mostly
a 1-ring von Neumann or Moore neighbourhood.

Popovici and Popovici [26] proposed an edge detection approach based on the
state differences between the central pixel and the pixels in its von Neumann neigh-
bourhood. If all the absolute state differences are less than a threshold ε , then the
state of the central pixel becomes 0, otherwise it remains unaltered. The rule can be
formulated as:

v+c =

{

0 , if |vi − vc| ≤ ε, ∀i ∈ Nc

vc , otherwise.

where vc and v+c are the current and the updated states of the central cell c, Nc is the
von Neumann neighbourhood of the cell c, and vi is the current state value of the
cell i in Nc.

Gorsevski et al. [11] used Popovici and Popovici’s approach to detect the grain
boundaries in deformed rocks, but they did not cite [26].

Wongthanavasu and Sadananda [45] proposed a conditional rule to update the
cellular state as:

v+c =

{

vc , if vc ≤ vmax − vmin

vmax − vmin , otherwise.

where vmax and vmin are the maximum and minimum states, respectively, in the von
Neumann neighbourhood of the central cell c. The above rule can be described the-
oretically by a state transition table. However, it is hard to construct and use such a
table in practice, because there are 2565 entries in the table for a 256 greyscale image
with the von Neumann neighbourhood. Wongthanavasu and Sadananda provided a
partial transition table for illustration. Our experiments show that only a single it-
eration of this state transition will produce reasonable results. Multiple iterations
actually degrade the results.

Wongthanavasu and Lursinsap [44] also extended the above-described condi-
tional rule into 3D image edge detection with the only difference that the neigh-
bourhood is now 3D von Neumann. Their experiments showed that the CA approach
exhibited better performance than the Sobel and the Laplacian detection algorithms
on average.

Kumar and Sahoo’s method [15] also directly utilizes the intensities of the central
pixel and its neighbourhood to detect edges, but the algorithm description is unclear,
and it is hard to figure out how the algorithm is actually implemented.

Diwakar et al. [7] presented an approach that first convert an intensity image to
a binary image through thresholding, and then use rules similar to Conway’s Game
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of Life to detect the edges. Unfortunately, their description is unclear.1 Essentially
they are using the thresholding to do the majority of the work, and then the CA just
finds the boundaries in the binary image. Otsu’s method [21] is used for threshold-
ing. The resulting pixel value 0 represents background, and 1 represents a potential
edge pixel. The cellular automaton rule used is totalistic, and (to the best of our
understanding given the inconsistencies of their description) is:

v+c =

⎧

⎨

⎩

1 , if |Mc|= 5
vc , if |Mc|= 3,4,6,7
0 , otherwise.

where |Mc| is the number of edge pixels (value 1) in the Moore neighbourhood of
the central cell c (including c itself). Since the thresholding is global, it will miss
many edges and also find spurious edges!

Another method that first converts an intensity image to a binary image and then
uses CA to detect edges, was proposed by Qadir and Khan [29]. Although 2512

possible rule sets exist for a CA with a Moore neighbourhood, there are only 512
linear rule sets among them. Qadir and Khan tested all the 512 linear rule sets,
and found that some of them showed no edge detection, some showed strong edge
detection, while the others showed weak detection. They compared their results
with Sobel’s and Canny’s, and claimed that their results are better, but this is not
obviously clear from their example images provided.

The state transition rules of the above-mentioned approaches are all specified
manually, and are not necessarily optimal. Some researchers tried to find optimal
rules for edge detection using genetic algorithms or evolutionary algorithms.

Kazar and Slatnia [14] used genetic algorithms to construct CA rules for edge
detection of intensity images. One novelty in their approach is that they do not use
pixel intensities as state values, but rather label different intensities in the Moore
neighbourhood of a central pixel, and take the labels as the state values. In this
way, they significantly reduced the possible number of neighbourhood patterns from
2568/5 to 88/5 for 256 greyscale images, and thus constructing state transition ta-
bles becomes computationally affordable.

Sato and Kanoh [36] introduced rule-changing cellular automata for edge detec-
tion, and used a form of genetic programming, namely gene expression program-
ming (GEP) – an evolutionary algorithm to optimise the CA rules. The idea of
rule-changing CA is to execute an array of transition rules Ri for Mi iterations in
sequence. Each rule Ri is represented by a binary expression tree with the leaf nodes
being the pixel states in the Moore neighbourhood of a central pixel or the constants
0, 127, and -128, and the non-leaf nodes functions max(), min(), saturated addition,
or saturated subtraction. GEP were used to optimise both Ri and Mi. Experiments
showed that better results are obtained using two rules (the rule-changing CA) than

1 Diwakar et al.’s neighbourhood appears to contain the central pixel, which is not consis-
tent with the standard descriptions of Conway’s Game of Life. Moreover, they describe
their system as implementing Wolfram’s rule 124, which is however normally used to de-
scribe a one dimensional (rather than two dimensional) cellular automaton.
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using only one rule (the ordinary CA). The paper provided their optimal rules and
iterations R1,M1 and R2,M2. Unfortunately, it seems that errors or typos existed in
R1 because it is not a binary expression tree with two arguments for each function
as stated in their algorithm specification.

Priego et al. [27] describe an approach for edge detection from hyperspectral
(i.e. multi-band) images. Rather than input the hyperspectral values directly into
the CA, they first extract a set of features from each pixel’s neighbourhood (first
the eight spectral angles are computed, and these are then described by their mean,
directional gradients and standard deviation). A genetic algorithm is then employed
to learn M = 20 rules, each consisting of a tuple mapping an instance of the six
feature elements to a real valued output value in the range [0,1]. Once the rules have
been learnt, the CA is run by applying at each pixel the closest matching rule (in
terms of its Euclidean distance to the six feature elements). The output at each pixel
is thresholded at 0.5 to produce a binary edge map.

Beside traditional CA approaches, cellular automata combined with other tech-
niques were also proposed for edge detection of intensity images.

Mirzaei et al. [20] used fuzzy cellular automata for edge detection. They de-
signed eight masks, each of which separates the Moore neighbourhood into two
groups. The average of the absolute state differences between the central pixel and
the pixels within each group is calculated, and then fuzzified into a fuzzy descrip-
tion of ‘High’ and ‘Low’. Thirty-two fuzzy rules are used for fuzzy state transition,
and the resulting fuzzy description is defuzzified to produce an updated numerical
state. The authors claim that their method has better efficiency than the Robert and
Sobel edge detectors, and moreover that they have largely overcome detection errors
(missed edges and false edges). However, their published results do not support this
claim.

Chen and Yan [6] proposed an approach for edge detection which first uses a CA-
based diffusion model for image smoothing, and then detects the image edges by
finding the zero-crossings of the second order derivative of the image defined as the
difference between the smoothed and the original images divided by the diffusion
time. Experiments showed better results were obtained by the proposed method than
that by Laplacian of Gaussian, Laplacian, Canny, and Sobel operators. However, the
final results are heavily dependent on the suitable choice of the number of iterations
in the smoothing stage.

Other methods, including cellular neural networks [2, 17], fuzzy cellular neural
network [39], cellular learning automata [10], and cellular automata transformation
methods [24], all produced reasonable results, which shows that CA combined with
other techniques are promising tools for image edge detection.

Finally, we describe a method developed by one of this chapter’s authors. In an
attempt to retain the simplicity of binary CA with the ability to process intensity (i.e.
non-binary) images, Rosin [34] applied threshold decomposition, a technique often
used in image processing. This involves decomposing a gray level image into the set
of binary images obtained by thresholding it at all possible gray levels. A single set
of two-state CA rules is learnt which is applied independently to each binary image.
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The resulting binary output images are then combined as a simple summation to
produce the edge magnitudes.

To find suitable rules a deterministic approach was used, namely sequential float-
ing forward search (SFFS) [28], which starts from the empty set and iteratively adds
the best performing rule. The objective function was such that the edge magnitudes
constructed from the CA with threshold decomposition should provide a good match
– in terms of root mean square (RMS) – to the gray level target ground truth edge
map.

The final rule set that was learnt from the training data simply consisted of a
single rule. It specified that any white pixel in a 3× 3 homogeneous (i.e. all white)
neighbourhood is set to black (inverted). For each of the binary images that the
input is decomposed into, this causes all white pixels to be replaced by black ex-
cept for pixels adjacent to black pixels in the input image. Thus, a black image
is formed containing a one pixel wide white strip along the original black/white
transitions, and these images are summed at the reconstruction stage of threshold
decomposition.

5.4 Post-processing of Edges

In the introduction we stated how, after an initial edge detection, the results are often
thresholded, linked, and thinned. Clearly, cellular automata have been designed for
thinning – see chapter 3. They are also suitable for performing linking, although this
is less common.

Lee and Bruce [16] describe a method for edge detection that is initialised with
computing a gradient angle and edge magnitude for each pixel using an algorithm
mimicking the Prewitt edge detector. They then use CA to perform adaptive thresh-
olding based on the gradient angle and edge magnitude information. The edges are
typically overestimated after adaptive thresholding, and each edge pixel is tested,
and removed if it has the lowest edge magnitude in its neighbourhood and removal
of this pixel will not bisect the edge. Further post-processing is performed using CA
to thin wide edges, remove short edges, and delete the edges which enclose small
regions.

Chang et al.’s [5] approach to edge detection involves using an “orientation infor-
mation measure” that essentially estimates edge strength, and is used to provide an
under-thresholded sparse binary edge map (the mark matrix). CA rules are then ap-
plied to link the edge pixels. A set of 3×3 edge (line) patterns are defined based on
the assumption that the width of edges is one pixel, and the CA updates a pixel state
to edge if it matches an edge pattern when taking as edge the pixel with maximum
orientation information measure in its neighbourhood or semi-neighbourhood.

Like Chang et al., the method of Peer et al. [22] starts with a mark matrix, which
is however undefined. Therefore, it is not possible to replicate their algorithm. The
next stage of their method is to apply Conway’s Game of Life to the mark matrix to
generate a binary edge map.
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Cloud models are the extension of fuzzy models, which combine fuzziness and
randomness into the transformation between the qualitative linguistic description
and the quantitative numerical values. Zhang et al. [47] combined a cloud model
and cellular automata in edge detection. They used the direction information, the
neighbour edge intensity, and the width of the neighbour edge isolation as the input
to a cloud reasoning system, which produces a binary edge map as the mark matrix.
The same CA rules as Chang et al.’s [5] are then used to link the edge pixels. Their
experiments showed that the proposed method can detect edges appropriately, but
the resulting edges are wide.

5.4.1 A Simple Edge Linking Scheme

To link disconnected thin edges using cellular automata, we propose a simple four-
step method whose input is a thresholded edge map. Some of the rules are based on
the 3× 3 Moore neighbourhood, while other rules use just a 1× 3 neighbourhood.
In addition to the two states of the initial image, two more states are introduced, to
represent the ends of open curves and ‘T’-junctions. These extra states enable us
to use a 1D rather than 2D neighbourhood at times. The rules use X , the crossing
number at a pixel which is the number of transitions from white to black and vice
versa when the pixel’s eight neighbours are traversed in a circular fashion.

Essentially, each iteration of the CA extends open end points of edge curves by
one pixel. Any further extension is terminated if the end point touches an existing
edge (i.e. the point becomes a junction). After completing the extension of edges,
those that did not reach an existing edge, i.e. end points at the end of open curves,
are contracted back to their initial length.

Using the 3 × 3 neighbourhood, edges can be extended in the eight principal
directions (0◦, 45◦, . . . ). If a larger neighbourhood were used, then not only could
more orientations be used, but curved extensions could also be accommodated.

1. detect end points (one iteration):
if p = edge and X = 2 then p = end

2. extend open ends (n iterations):

a. detect junctions (one iteration):
if p = end and X = 6 then p = junction

b. extend open ends (one iteration):
if p = end and number of non-background = 1
and any of the 1D patterns in figure 5.1 match then update

3. contract open ends (n iterations):
if p = end or junction and number of non-background = 1
then p = non-edge

4. relabel pixels:
if p �= non-edge then p = edge
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 back
ground

 back
ground

end end endedge edge

endend end end end

Fig. 5.1 1D CA rules for extending open ends for edge linking. The rules use a 1× 3 pixel
neighbourhood containing pixel labels: edge, end, background. All 45◦ rotated versions
are also required.

5.5 Experiments

In this section we show results of applying several cellular automata edge detection
methods. We start with Rosin’s [34] method; the original training data was a 750×
750 image mosaic containing sub-images from the University of South Florida data
set which contains images along with manually generated ground truth edges; see
figure 5.2. Note that in this chapter all edge maps are inverted for display purposes.
Since there is likely to be some positional error in the ground truth edges (which are
one pixel wide) the target edge map was dilated twice, with the new edges set each
time to an increasingly lower intensity.

The CA rules were tested on four independent images, not included in the training
data (figure 5.3), and produced the results shown in figure 5.4. The cellular automa-
ton converged after a single iteration of the single rule. It can be seen that the results
are fairly similar to the Sobel edge maps.

a b

Fig. 5.2 USF training data: (a) input image, (b) target ground truth image (inverted for display
purposes)
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Fig. 5.3 Sample test images containing indoor, outdoor, man-made and natural scenes. Also
are shown the Sobel edge maps for comparison.

Fig. 5.4 Edges detected using Rosin’s [34] method trained on data in figure 5.2

a b

Fig. 5.5 RADIUS training data: (a) input image, (b) target ground truth image
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For comparison, several other training sets were used to learn rule sets for edge
detection. Figure 5.5 shows the 1314× 1044 image J25 of a 40× 40 inch model
board especially created for the RADIUS project, along with its associated manu-
ally generated ground truth edges. After training a single rule was learnt that was
identical to that learnt for the USF data set.

a b

Fig. 5.6 BSDS training data; (a) input image, (b) target ground truth image

Fig. 5.7 Edges detected using Rosin’s [34] method trained on data in figure 5.6

Figure 5.6 shows a 1200× 1200 image mosaic created from a subset of sub-
images from the BSDS300 Berkeley Segmentation Dataset and Benchmark.
Whereas the previous two sets of ground truth were explicitly made up of edges, the
BSDS300 contains object boundaries. Since objects are defined at a higher semantic
level than low level edges, it can be seen that there is often a poor correspondence
between the two, and thus it poses a greater challenge to the cellular automaton. A
larger set of rules is learnt from this data compared to the previous training data.
The new rules consist of the single rule learnt previously plus another eight. The
effect (see figure 5.7) is to emphasise the corners more than previously, and to re-
duce the response at some edges. Since there was a less direct match between the



5 Edge Detection Using Cellular Automata 97

a b c d

Fig. 5.8 Edge detection applied to an image which has had salt and pepper noise added. a)
Sobel, b) CA rules learnt from training set in figure 5.2, c) CA rules learnt from a version of
the training set in figure 5.2 with added salt and pepper noise, d) CA rules learnt from noisy
data applied to both the image and an inverted version.

Fig. 5.9 Edges detected using Wongthanavasu and Lursinsap’s [45] method (upper row: sin-
gle iteration; lower row: iterated until convergence)

training source data and the ground truth, the CA requires more iterations to achieve
convergence (typically about four iterations).

A final example of Rosin’s method [34] is given where the USF training data had
salt and pepper noise with probability of 0.1. This enables a set of seven rules to
be learnt that are robust to similar noise. Results are shown in figure 5.8 for edge
detection on a noisy version of the MIT image. Application of the Sobel produces a
very noisy edge map (figure 5.8a), while applying a CA with the original rule learnt
from the clean USF data also fares poorly (figure 5.8b). Using the set of rules learnt
from the noisy training data produces a much better result (figure 5.8c), requiring
on average about fifteen iterations of the rules. However, since the rule learnt for
edge detection is restricted to inverting white pixels then the ‘salt’ (white noise)
is effectively removed, but the ‘pepper’ (black noise) remains. The solution taken
in Rosin [34] is to also apply the rules to the inverted image so as to remove the
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Fig. 5.10 Edges detected using Popovici and Popovici’s [26] method (upper row threshold =
4; middle row threshold = 16; lower row threshold = 64)

Fig. 5.11 Edges detected using Diwakar et al.’s [7] method (upper row: single iteration;
lower row: iterated until convergence)
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Fig. 5.12 Binary edge maps (left) post-processed to link fragmented edges by running five
iterations of the rules described in section 5.4.1 (right); inserted edgels are coloured red. The
bottom row shows two close ups from the second example.

inverted pepper. The logical AND operation is applied to the two edge maps which
effectively eliminates both salt and pepper (figure 5.8d).2

2 There can also be a single pixel translation between the edge responses of the two outputs,
and so better results were achieved by translating one of the images by {−1,0,1} in X and
Y before the logical AND operation. The outputs were then combined using a logical OR
operation.
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We now show results for a variety of other CA based edge detectors. In figure 5.9
is shown Wongthanavasu and Lursinsap’s [45] method. For a single iteration the
results look reasonable. Additional iterations degrade the results.

Figure 5.10 shows results from Popovici and Popovici’s [26] method (which con-
verged after three iterations).3 They require an application specific threshold param-
eter to be specified, and it can be seen to alter the density of the detected edges. The
best results in figure 5.10 might be considered to be with the threshold set to 16,
although even then the results are generally inferior, containing thick edge regions
whilst also retaining many scattered and disconnected single pixel edges.

Figure 5.11 shows results from Diwakar et al.’s [7]. As expected, since the
method is based on global thresholding, it has missed many edges and found many
spurious ones. If more than a single iteration of the CA is run, the results degrade
even further.

The results of applying a post-processing step of edge linking are shown in fig-
ure 5.12. The input image is edge detected using Rosin’s method [34], and then
thresholded to create a binary edge map. In addition, isolated edge pixels were re-
moved. The linking method described in section 5.4.1 was applied for five iterations.
It can be seen that many fragmented edges have been successfully linked (as shown
by the red edgels).

5.6 Conclusions

As stated in the introduction, it is difficult for the general reader to gain an under-
standing of the state of the art in cellular automata based edge detection since papers
are dispersed over many conferences and journals. Our brief survey shows that there
exists a relatively large number of relevant papers, although a number of them were
not clearly written, with details missing or occasionally inconsistent. Moreover, a
number of papers are misleading, in that, according to common usage within image
processing, they actually perform (binary image) boundary detection rather than
(intensity image) edge detection.

The papers and the results of the experiments included in this chapter demonstrate
that cellular automata are indeed capable of performing edge detection, i.e. process
a grey level input image to produce an edge magnitude image (either binary or e.g.
256 values) as output. The results were of variable quality, but in order to be able to
confidently evaluate and compare edge detectors a more systematic and quantitative
analysis should be carried out. This has not been done to date.

The experiments revealed that for all the CA only a very few iterations were
necessary to achieve their optimal results (such details were often missing from the
descriptions of the methods in their original publications). Specifically, the meth-
ods of Rosin [34] (when trained on the USF dataset), Wongthanavasu and Lursin-
sap [45] and Diwakar et al. [7] should generally run for only a single iteration.

3 Popovici and Popovici’s [26] paper described a von Neumann neighbourhood, but we
found better results (those shown in figure 5.10) to be obtained using a Moore neigh-
bourhood.
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Although for Rosin’s method the CA converged after that iteration, this was not the
case for the other methods, whose results steadily degraded when further iterations
were applied. Popovici and Popovici’s [26] method converged after three iterations,
and Rosin’s [34] method also converged after a similar number of iterations when
trained on the BSDS300 dataset. This suggests that none of the above approaches
are using the full power of CA to capture more global image structure by propagat-
ing information across the image via a larger number of iterations. The version of
Rosin’s method [34] trained on the noisy version of the USF training data required
more (typically fifteen) iterations, and this is consistent with the denoising rules
in [32]. The latter were found to be competitive with alternative denoising methods,
and also required several tens of iterations of the rules (depending on the level of
noise).

Nevertheless, cellular automata based edge detection holds promise since it is
computationally efficient, and can moreover be tuned to specific domains (i.e. ap-
plications and/or image types) by appropriate selection/learning of rules. Not only
that, but pre-processing and post-processing stages such as noise filtering, thinning
and edge linking can also be easily included in the cellular automata framework.
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