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ABSTRACT

The advancement of knowledge distillation has played a cru-
cial role in enabling the transfer of knowledge from larger
teacher models to smaller and more efficient student mod-
els, and is particularly beneficial for online and resource-
constrained applications. The effectiveness of the student
model heavily relies on the quality of the distilled knowl-
edge received from the teacher. Given the accessibility of
unlabelled remote sensing data, semi-supervised learning
has become a prevalent strategy for enhancing model perfor-
mance. However, relying solely on semi-supervised learning
with smaller models may be insufficient due to their lim-
ited capacity for feature extraction. This limitation restricts
their ability to exploit training data. To address this issue, we
propose an integrated approach that combines knowledge dis-
tillation and semi-supervised learning methods. This hybrid
approach leverages the robust capabilities of large models to
effectively utilise large unlabelled data whilst subsequently
providing the small student model with rich and informative
features for enhancement. The proposed semi-supervised
learning-based knowledge distillation (SSLKD) approach
demonstrates a notable improvement in the performance of
the student model, in the application of road segmentation
surpassing the effectiveness of traditional semi-supervised
learning methods.

Index Terms— Knowledge Distillation, Road Detection,
Semi-supervised Learning, Cross-supervision

1. INTRODUCTION

Road detection plays an important role in urban planning,
navigation and routing, traffic management, emergency re-
sponse, environmental impact assessment, and infrastructure
maintenance [1–4]. In recent years, deep learning in com-
puter vision has provided an efficient way for automated
road detection and has become a common segmentation task
in the literature. However, manually annotating large-scale
and high-resolution remote sensing images is exceptionally
time-consuming and expensive. One solution is to use semi-
supervised learning approaches, which enable deep learning
networks to learn from a small amount of labelled data to-
gether with a large amount of unlabelled data, thereby elim-

inating the labour-intensive and expensive annotation stage.
Exploring additional unlabelled data through proper semi-
supervised learning approaches offers significant benefits in
training deep learning networks. These methods can attain
competitive performance, compared even to those achieved
by fully supervised learning approaches [5–9].

A significant challenge of (near-) real-time segmentation
tasks like road surface detection is the trade-off between the
accuracy of the segmentation and the speed at which it can
be executed. More accurate methods generally require more
model parameters and higher running time for inference.
Whilst employing small models often leads to quicker task
execution, they may lack the capacity to efficiently grasp and
represent knowledge when provided with comparable com-
putational resources and data as larger models. To solve this
problem, knowledge distillation is used to transfer knowledge
from large models to smaller ones without loss of valid-
ity [10]. However, nowadays, the majority of knowledge
distillation studies in the field of remote sensing primarily
focus on employing labeled data for training both teacher and
student models, while not sufficiently investigating the use of
unlabeled data to enhance the performance of student models.

This work proposes a semi-supervised learning-based
knowledge distillation (SSLKD) method to train an efficient
and lightweight machine learning model. Whilst leveraging
an extensive pool of unlabelled data, the objective is to aug-
ment the variety of training samples for instructing both the
teacher and the lightweight student models. This approach
is crucial as the student model possesses limited capabilities
in feature extraction, despite access to a substantial amount
of unlabelled data. Simultaneously, knowledge distillation is
employed to empower the lightweight student model to capi-
talise on the abundant features inherent in the more complex
teacher models.

Specifically, the contributions of this work are as fol-
lows: (1) We introduce a knowledge distillation process
and a framework comprising two distinct teacher models
to enhance the effectiveness of a lightweight and fast stu-
dent model designed for road segmentation. Essentially,
the framework undertakes extensive knowledge distillation
across various levels, encompassing features, probabilities,
and labels. Moreover, this distilled knowledge can be consis-
tently applied to diverse segmentation tasks. (2) We employ



a combination of semi-supervised learning and knowledge
distillation methodologies. This strategy involves leveraging
a significant volume of unlabelled data to enhance the capa-
bilities of the lightweight student model. Simultaneously, the
larger teacher models contribute comprehensive and informa-
tive guidance for the process of knowledge distillation.

2. RELATED WORK

Automatic road segmentation has been widely explored in the
literature for decades [11–14]. Also, as the task of semantic
segmentation has seen significant advancements in the com-
puter vision field in recent years, a variety of deep learning
models have been introduced in the literature, such as UNet
[15], SegNet [16], PSPNet [17], DeepLabV3+ [18]. These
networks not only offer efficiency for pixel-wise road detec-
tion but also act as fundamental frameworks that researchers
can refer to and modify to create networks specifically op-
timised for road detection [19, 20]. In semi-supervised seg-
mentation within the computer vision domain, DeepLabV3+
has emerged as one of the most used segmentation networks.
This prominence is attributed to its advanced architecture,
which combines the strengths of spatial pyramid pooling and
encoder-decoder structures.

As a classic semi-supervised learning approach, consis-
tency regularisation forces networks to give consistent predic-
tions for unlabelled inputs that undergo diverse perturbations.
Cross-consistency training (CCT) [21] employs an encoder-
decoder architecture with multiple auxiliary decoders where
the consistency loss for unlabelled data is defined by mean-
square-error (MSE) loss between predictions of the main de-
coder and the auxiliary decoders. Apart from introducing
perturbations by using auxiliary decoders, network perturba-
tion is used by guided collaborative training (GCT) [22] and
cross pseudo supervision (CPS) [23] for consistency regular-
isation. Specifically, each of the aforementioned models uses
two identical network structures but with different weight ini-
tialisation. CPS forces consistency by using pseudo labels,
which are generated from network predictions, to mutually
supervise the networks, whereas GCT achieves consistency
regularisation by utilising predictions of networks cooperat-
ing with a flaw detector. CPS and CPS-to-n-networks (n-
CPS) [24] show considerable success with network perturba-
tion on semi-supervised segmentation, which yields state-of-
the-art semantic segmentation for benchmark datasets such as
Cityscapes. However, CPS and n-CPS still restrict the diver-
sity of pseudo labels and tend to output similar predictions
since both of them use the same network architecture to gen-
erate pseudo labels. To increase the diversity of pseudo la-
bels along with consistency regularisation, CGSSL [25] and
CNN&Trans [26] use different segmentation networks to cre-
ate pseudo labels and reach better segmentation performance
for remote sensing and medical images, respectively.

Knowledge distillation employs a process of transferring

rich and useful knowledge from a complicated teacher model
to a smaller and faster student model [10]. Since the features
and outputs from large models generally carry abundant and
instructive information, they are regarded as soft labels to
guide the supervision of a student. Feature-based knowledge
distillation uses feature maps as knowledge sources for reg-
ular students [27]. Nevertheless, when there is a substantial
disparity in the model structures, identifying the specific ar-
eas where the features of the student and teacher demonstrate
significant correlation, and can be efficiently employed for
knowledge distillation, becomes a challenging task. To ad-
dress this issue, the solution involves employing probability-
based knowledge distillation, as proposed in studies such
as Zhou et al. [28] and Liu et al. [29]. In this approach,
the knowledge distilled from models relies on their outputs,
where irrespective of the model’s structure, the elements of
the n-dimensional output are ranged to [0,1] and sum to 1 and
represent the probabilities associated with each class. The
probability distribution takes different forms based on the
nature of the tasks at hand. In the context of segmentation,
it operates at a pixel-wise level, whereas for image classifi-
cation, it is established at an image-wise level. Nevertheless,
conventional knowledge distillation methods do not take into
account the potential enhancement of both the teacher and
student capabilities through incorporating unlabelled data.

Fig. 1. Steps of the Knowledge Distillation Procedure.

3. METHOD

The proposed knowledge distillation includes two steps, as
illustrated in Figure 1. In the first step, a small number of la-
belled data is used in a regular supervised learning manner to
train the multiple teacher models by using the supervised loss
Lsup between the kth ground truth yk and its corresponding
prediction pk. The number of teacher models can be more
than two. However, due to GPU memory limitations, we have
set the number of teacher models to two. The loss Lsup is
defined as



Fig. 2. Framework of Cross-model Supervision.

Fig. 3. Framework of the proposed semi-supervised learning based knowledge distillation (SSLKD).

Lsup =
1

W ×H

W×H∑
k=1

ℓce (pk, yk) , (1)

where W and H refer to the weight and height of the input
images whilst ℓce is the standard cross-entropy loss function.

Following this, to further improve the two teacher models’
representation to provide better features and pseudo labels for
knowledge distillation, we implemented cross-model super-
vision to train the teacher models by using a large amount
of unlabelled data. This is due to the fact that different net-
works typically possess complementary features and predic-
tions, and they are regarded as teachers for one another. The
framework of cross-model supervision is shown in Figure 2
where Teacher #1 refers to a DeepLabV3+ [18] architecture
with a Resnet-101 backbone, and Teacher #2 represents a
SegNet [16] with a VGG-16 backbone. Specifically, the pre-
dictions made by both teachers are employed to create pseudo
labels, which are then utilised in training the other network
through the cross-entropy loss function; however, these labels
are not employed in the process of self-training.

The 2nd step of the proposed knowledge distillation
method focuses on training a lightweight student model via
SSLKD which is depicted in Figure 3. The student model
is initialised by a small number of labelled data following
the regular supervised learning by using the cross-entropy
loss (1). After a certain number of training iterations, the
procedure of knowledge distillation starts. The backbone

knowledge fi of teacher #1 is used to guide the extraction
of feature f̂i from the backbone of the student by using the
distillation loss Lf

dis defined by mean absolute error (MAE)

Lf
dis =

1

C ×W ×H

C×W×H∑
k=1

|fi − f̂i|, (2)

where C, W and H refer to the channel, weight and height of
features, respectively.

The reason behind using backbone knowledge from
Teacher #1 lies in the fact that both Teacher #1 and the student
share an identical network framework, which is Deeplabv3+.
This similarity leads to their feature structure being closely
aligned. In particular, the difference between the teacher
and student models is in their respective backbones: the
teacher model employs a more complex ResNet101 structure,
whereas the student model utilises a lighter, less complex
ResNet50 backbone. In addition to transferring knowledge
at the backbone stage, the predictions from the two teach-
ers are aggregated and ranged to [0-1] to be the probability
for each class, and are then used to supervise the student
network through Lp

dis based on MAE. Additionally, the com-
bined predictions play a crucial role in generating pseudo
labels, contributing to the supervision of the student network
through cross-entropy loss Lunsup. The total loss is the linear
addition of the losses mentioned above. It is important to note
that the two teachers underwent training during Step 1 and
remained fixed in Step 2.



Table 1. Comparing the performance of individual student and teacher models, along with students trained using the proposed
method and other techniques, on the RoadNet dataset.

IoU OA Precision Recall F1 GFLOPs
Teacher #1 [18] 68.32% 95.40% 88.45% 90.15% 89.29% 19.82
Teacher #2 [16] 70.65% 95.82% 89.14% 91.37% 90.24% 40.17
Student [18] 66.53% 95.04% 88.02% 89.07% 88.54% 14.94

Teacher #1 w/ unlabelled data [18] 71.96% 95.96% 90.25% 91.15% 90.70% 19.82
Teacher #2 w/ unlabelled data [16] 73.47% 96.25% 90.50% 92.11% 91.30% 40.17

Student w/ unlabelled data (CMS) [25] 70.85% 95.74% 90.12% 90.38% 90.25% 14.94
CPS [23] 69.74% 95.66% 88.84% 90.95% 89.88% 14.94
CCT [21] 68.99% 95.45% 89.15% 89.91% 89.53% 14.94
Student (SSLKD) 71.89% 95.91% 90.57% 90.73% 90.65% 14.94

Fig. 4. Visual segmentation results of the student model in each method on the RoadNet dataset.

4. EXPERIMENTS AND RESULTS

We evaluated our method using the RoadNet dataset [30],
which consists of (1) image patches of size of 512 × 512, cov-
ering 21 city regions approximately 8 km2 with a spatial res-
olution of 0.21 meters per pixel. (2) Their manual labels for
road edge, centre line and surface segmentation. The num-
bers of samples for training and validation are 455 and 387,
respectively. The ratio of the number of labelled and unla-
belled data in experiments is 1:4.

Our experiments were implemented in Pytorch. We used
a mini-batch SGD optimiser that adopted a polynomial learn-
ing rate policy. All the experiments were performed on an
NVIDIA A100-sxm in a GW4 Isambard. We thoroughly eval-
uated all models using class-related performance metrics, in-
cluding overall accuracy (OA), precision, recall, intersection
over union (IoU), and F1-score.

The performance of teacher and student models trained
separately by supervised learning are shown in the top three
lines of Table 1. Both of the two teacher models show supe-
rior performance compared to the student model as expected.
Notably, the intersection over union (IoU) for Teacher #2
is approximately 4% higher than that of the student model.
However, the values of GFLOPs for the teacher models ex-
ceed that of the student model. There is a significant enhance-
ment in their performance after implementing cross-model
supervision with unlabelled data for both teacher models. For
instance, Teacher #1 exhibits a 3.64% improvement in IoU
(line 4 of Table 1).

Since the proposed SSLKD explored both labelled and
unlabelled data, we conducted a performance evaluation of
the proposed method against several state-of-the-art semi-

supervised learning approaches, such as Cross-Model Super-
vision (CMS) [25], CPS [23], and CCT [21], using the same
train and test data set. Although we used the best Teacher
#2 for cross-model semi-supervised learning to supervise the
student in CMS, the student performance of SSLKD is still
better as shown in Table 1, thanks to the proposed combina-
tion of semi-supervised learning and knowledge distillation.
Figure 4 demonstrates an example of predictions for all meth-
ods where SSLKD is predominantly closer to the ground truth
compared to the students in other methods.

5. CONCLUSION

In this study, we introduced a novel hybrid methodology
that combines knowledge distillation with semi-supervised
learning to address road segmentation in very-high-resolution
remote sensing imagery. The distillation process involves
three distinct phases: feature, probability, and label levels.
Our approach represents an expansion of traditional knowl-
edge distillation through integrating semi-supervised learn-
ing, making it adaptable for application in various knowledge
distillation frameworks. The proposed approach significantly
enhances the performance of the student model in road seg-
mentation, surpassing the effectiveness of previously pro-
posed semi-supervised learning methods. Due to significant
differences in model structures between Teacher #2 and the
student, feature-level knowledge distillation was not applied
from Teacher #2 to the student. In future work, we will
primarily concentrate on investigating techniques for trans-
ferring feature knowledge from the teacher to the student,
even in the presence of structural disparities between them.
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