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Abstract

In this paper we further develop the recent concept of multi-component shapes, which is applicable to
image processing and image analysis tasks. The domain of multi-component shapes is very diverse
and includes shapes that correspond to a group of objects that act together (e.g. a fish shoal), natural
components of a segmented object (e.g. cells in embryonic tissues), a set of shapes corresponding to the
same object appearing at different times (e.g. human gait in an image sequence), and many more.

So far, there are few methods for numerically evaluating multi-component shapes. In this paper we
introduce one such method: a disconnectedness measure, that naturally corresponds to multi-component
shapes, and has no analogue in single-component shape measures. The new measure depends on the
number of shape components, the whole shape but also the shape of its components, on the relative size
of the shape’s components and their mutual position. All these are natural requirements for a “discon-
nectedness” multi-component shape measure. In addition, the new measure is invariant with respect to
translation, rotation and scaling transformations. The measure is simple and fast to compute.

The disconnectedness measure introduced here is a generic image analysis tool. It has not been
developed for a specific application. As such, it can be applied to a variety of applications. Several of
them are provided in the paper, as well as synthetic examples that support a better understanding of the
behavior of the new measure.
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1. Introduction

Shape analysis is a perennial topic in computer vision, and the topic of many books [1–7]. Shape
based tools for image analysis have a wide spectrum of applications: astronomy [8, 9], medicine [10],
ecology [11], botany [12], agriculture [13], archaeology [14], transport [15], particle analysis [16], tech-
nology [17, 18], just to mention a few. This is because shape has a high discriminative capacity, and shape
properties can be evaluated numerically. Different approaches have been applied to characterize shapes
numerically. Some of them are generic ones [19–22], aimed to satisfy some specific properties (like rota-
tional [19, 22] or affine [21, 23] invariance, for example). There are also approaches designed to measure
specific shape properties. Shape convexity [24–26], circularity [27, 28], squareness [29], tortuosity [30],
ellipticity [8, 31–33], are examples of shape properties which have been studied and numerically evalu-
ated so far. Some methods for measuring shape properties are quite old [32], while others are recent [34].
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Figure 1: (a) Fish shoal (b) Palm-print (c) Zlatibor-region partitioned by the village districts (d) Embryonic tissue with indistinct
cell boundaries (e) Human gait – considered as a 13-component shape, whose components are the appearances of a walking person
in a sequence of 13 consecutive frames.

Also, a range of different methodologies have been applied: algebraic [19], geometric [35], logical [36],
fractal [37], and so on.

In this paper we further develop the fairly new concept of multi-component shapes [38, 39]. The
concept differs essentially from the existing ones, even if it might be understood as a natural one. Multi-
component (i.e. compound) shape is a very generic term. It may relate to: (i) Shapes corresponding to
a group of the objects that act together; for example, a fish shoal, in which each single fish shape is a
component of a multi-component fish-shoal shape (see Fig.1(a)). (ii) Shapes corresponding to an object
partitioned on a natural way; an example could be a hand, whose components are the fingers and palm
(Fig.1(b)). (iii) Shapes partitioned by criteria not directly or easily visible from an image; an example
is a region (e.g. state, country, continent, etc.) divided according to some administrative criteria [40]
(Fig.1(c)). (iv) Shapes partitioned with indistinct boundaries, but which still produce relatively naturally
recognizable components (Fig.1 (d)). (v) Shapes whose components are the shapes of the same object
appearing on consecutive sequence of frames (Fig.1(e)). Of course, there are many more examples. Some
of them can be found in Section 4, related to the experiments.

Being a conceptually new approach, the multi-component shape approach has specific demands. In-
deed, even a basic shape feature, such as the shape orientation of multi-component shapes, has additional
requirements that do not appear when working in the domain of single-component shapes. For example,
in the case of multi-component shapes that consist of a huge number of components (e.g. as a fish-shoal
does), the computed orientation of such a multi-component shape should be not depend on what portion
of the multi-component shape has been captured in the image frame.

In the example of the image in Fig.2, multi-component shape orientation (represented by shorter dark
blue arrows) is computed for both the whole image (Fig.2b) and also separately for its left and right halves
(Fig.2a). It can be seen that these three computed orientations coincide, which is the preferred outcome,
and suggests that the multi-component orientation exists and is an inherent property of the given fish-
shoal shape. If the whole shape and its halves are treated as single component shapes (such that all the
black pixels in that portion of the image belong to the shape), then the orientations computed (represented
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Figure 2: Orientations computed for (a) the separate left and right halves of the image, and also for (b) the complete image.
Shorter dark blue arrows correspond to the shape orientations computed for the three sets of data according to our multi-component
approach. In comparison, the long light red arrows correspond to the traditional method for computing orientation, in which each
of the three sets of data are considered as representing single-component shapes (each containing multiple fish).

by long light red arrows) differ substantially, as these represent the global pattern rather than its contents;
for more details see [39].

In this paper we introduce a new shape measure for multi-component shapes. It is named the dis-
connectedness of multi-component shapes or, for short, just the disconnectedness measure. The name
comes from an intuitive interpretation of what the properties of a disconnectedness measure (of multi-
component shapes) should satisfy. It ranges through the interval [0,∞) and returns the smallest possible
value (equal to zero) for single component connected shapes. The new measure depends on the number
of components, their mutual position (including the mutual distances among them) and relative sizes, the
shape of the components and the shape of the whole multi-component shape considered. This will be
illustrated and clarified with a number of synthetic experiments. Finally, the disconnectedness measure is
invariant with respect to rotation, translation, and scaling transformations.

In our derivation we have started with the interpretation of the first Hu moment invariant [19]1, in the
case of multi-component shapes. Neither an algebraic reasoning, applied in [19], nor geometric reasoning
from [35], were suitable for such an extension from single-component shapes to the multi-component-
ones. Another interpretation of the first Hu moment invariant, derived in this paper, has led to good
arguments to derive a new measure for multi-component shapes. This measure is a generic one, not
designed for a particular application. This has been demonstrated with applications on different shape
based image processing tasks, provided in this paper.

Naturally, each multi-component shape measure is expected to be dependent on the components of
the shape. An attempt to expand the Hu moment invariants to the multi-component shapes was carried
out in [41]. Different ideas of the averaging of the component values of the corresponding Hu invariants
was applied and used in a leaf classification task. To the authors’ best knowledge, there is just one more
measure defined so far for multi-component shapes. This is the anisotropy measure [38], whose role is to
evaluate the degree to which the components of a multi-component shape are oriented consistently.

The paper is organized as follows. The basic terms and notation are in the next section. Section 3 gives
a new interpretation of the first Hu moment invariant. This interpretation expresses the first Hu moment
invariant, of a single component shape, in terms of the integral of the squared distances between all the

1Hu moment invariants were originally designed for single-component shapes.
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pairs of the shape points. Such a new established relation leads to the definitions of the new analogues of
the first Hu moment invariant, this time defined for multi-component shapes. These definitions exclude
a ‘special’ role of the component centroids (see (5) and (6)), and give a more important role to the
mutual positions between multi-shape components than in the case of invariants derived in [41]. The
disconnectedness measure is also introduced and analyzed in Section 3. Section 4 provides a number of
experiments, including synthetic ones and also experiments on applications performed by others in the
literature. Concluding remarks are in the last section.

2. Preliminaries

Here we define the basic terms and introduce the notation used in this paper. Shape is one of the basic
object properties (like color or texture, for example). As such, shape does not need a formal definition.
Shape is represented by a planar region, usually displayed as a binary image. A multi-component shape
S = S1∪S2∪ . . .∪Sn, having components S1, S2, . . . , and Sn, is represented by n regions, corresponding
to its components.

Note that the regions representing a component Si do not need to be connected, in a topological sense.
Actually, a multi-component shape S = S1 ∪ S2 ∪ . . .∪ Sn, consisting of n components, can be formally
defined by a mapping F((x,y)) of a planar region, representing S, onto a set of integers {1,2, . . . ,n}. All
the points (x,y) with the same assigned value F((x,y)), from {1,2, . . . ,n}, belong to the same component.
Formally, the component Si, i = 1, . . . ,n is defined as follows

Si = {(x,y) | F((x,y)) = i} = F−1(i), for all i = 1,2, . . . ,n.

There is no formal restriction on how a given object, presented on an image, can be decomposed and
presented as a multi-component shape. From a practical view-point such a decomposition should be
meaningful in order to be beneficial for the desired application.

Two shapes will be considered to be equal if their set difference has area equal to zero – e.g. the open
ellipse {(x,y) | x2 +2 · y2 < 1} and the closed one {(x,y) | x2 +2 · y2 ≤ 1} are considered to be equal in
shape. Obviously, this is not a restriction once dealing with images of real objects.

The geometric moment, or simply moment, Mp,q(S) of a given planar shape S is defined as

Mp,q(S) =
∫
S

∫
xpyqdxdy. (1)

The moment Mp,q(S) has the order equal to p+q. Obviously, the zeroth order moment, M0,0(S), equals
the area of S, while the first order moments M1,0(S) and M0,1(S) are used to define the shape centroid,
denoted as (xc(S), yc(S)) and formally defined as

(xc(S), yc(S)) =

(
M1,0(S)
M0,0(S)

,
M0,1(S)
M0,0(S)

)
. (2)

Moments Mp,q(S) are not translation invariant, i.e. they change if the shape S is translated for a given
vector. Since translation invariance is a necessary property in shape based image processing and computer
vision tasks (shape does not change under translation), so called the central moments, Mp,q(S) have been
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used. They are defined as

Mp,q(S) =
∫
S

∫
(x− xc(S))

p (y− yc(S))
q dxdy

=
∫
S

∫ (
x−

M1,0(S)
M0,0(S)

)p(
y−

M0,1(S)
M0,0(S)

)q

dxdy. (3)

Central moments Mp,q(S) have translation invariance by definition.
Scaling invariance is also a requirement for the quantities used in shape based tasks. This is because

shape does not change under scaling transformations. Central moments Mp,q(S), as given in (3), are not
scaling invariant but they can be easily modified to provide the scaling invariance property. Indeed, if
the central moments Mp,q(S) are multiplied with a properly chosen constant we obtain scaled normalized
moments µp,q(S), defined as,

µp,q(S) =
1

M0,0(S)(p+q+2)/2 ·Mp,q(S) (4)

which are both translation and scaling invariance.
Another invariance property is also a requirement if shape based tools are designed. This property

is invariance under shape rotations. In his seminal work [19], Hu introduced seven quantities which are
rotational invariants. Hu used algebraic reasoning, but later on Xu and Li [35] showed that Hu invariants
are actually geometric invariants, and can be derived by considering certain geometric primitives defined
by the shape points. In this work we are interested in the geometric interpretation [35] of the first Hu
moment invariant.

The first Hu moment invariant [19]

H(S) = µ2,0(S)+µ0,2(S)

=
1

M0,0(S)2 ·
(
M2,0(S)+M0,2(S)

)
(5)

can be derived [35] by considering the integral of the squared distances of all the shape points to the shape
centroid. This integral can be expressed as M2,0(S)+M0,2(S), as shown by the equality in (6). We will
also later need the expression in (7).

M2,0(S)+M0,2(S) =
∫
S

∫ (
x−

M1,0(S)
M0,0(S)

)2

dxdy +
∫
S

∫ (
y−

M0,1(S)
M0,0(S)

)2

dxdy

=
∫
S

∫ ((
x−

M1,0(S)
M0,0(S)

)2

+

(
y−

M0,1(S)
M0,0(S)

)2
)

dxdy (6)

= M2,0(S)+M0,2(S)−
M1,0(S)2

M0,0(S)
−

M0,1(S)2

M0,0(S)
. (7)

Thus, the observations above, together with the equality in (5), give that the first Hu moment invariant
H(S) equals the normalized2 integral of the squared distances of all the shape points to the shape centroid.

2The normalization has been made taking into account the shape area and the requirement for scaling invariance.
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Such an interpretation of the first Hu moment invariant has been used in [41] to define three moment
invariants for multi-component shapes. Basically, such invariants are computed based on the different
averaging of the invariants of the shape components. In this paper we will give another interpretation of
H(S) which will be the basis for the developments in the rest of the paper.

3. Disconnectedness Measure for Multi-component Shapes

As it has been mentioned, in this section we give another interpretation of the first Hu moment invari-
ant and will exploit such an interpretation to derive a new measure for multi-component shapes. First, we
consider the integral T (S) of the squared distances between all the pairs of the shape points.

T (S) =
1
2
·
∫

(x,y)∈S

∫ ∫
(u,w)∈S

∫ (
(x−u)2 +(y−w)2)dxdydudv

=
1
2
·
∫

(x,y)∈S

∫ ∫
(u,w)∈S

∫ (
x2 +u2 + y2 +w2−2xu−2yw

)
dxdydudv

= M0,0(S) ·
(
M2,0(S)+M0,2(S)

)
−
(
M1,0(S)2 +M0,1(S)2) (8)

Note. The last equality comes from∫
(x,y)∈S

∫ ∫
(u,w)∈S

∫
xpyqurwsdxdydudv = Mp,q(S) ·Mr,s(S).

So, (7) and (8) give
T (S) = M0,0(S) ·

(
M2,0(S)+M0,2(S)

)
(9)

or, equivalently

1
M0,0(S)3 ·T (S) =

1
M0,0(S)2 ·

(
M2,0(S)+M0,2(S)

)
= H(S). (10)

In other words, the first Hu moment invariant can be expressed in terms of the normalized value of the
squared distances between all the pairs of points which belong to the considered shape.

If we progress with similar reasoning we deduce that for a given 2-component shape S = S1∪S2, the
following quantity

T (S1∪S2)−T (S1)−T (S2) =

= M0,0(S1∪S2)
3 ·H(S1∪S2)−M0,0(S1)

3 ·H(S1) − M0,0(S2)
3 ·H(S2) (11)

equals the normalized integral squared distances between points belonging to different components of
S = S1∪S2 (the equality in (10) has been used).
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The formula in (11) extends easily to n-component shapes S = S1∪S2∪ . . .∪Sn, as follows,

T (S1∪S2∪ . . .∪Sn)−
n

∑
i=1
T (Si) =

= M0,0(S1∪S2∪ . . .∪Sn)
3 ·H(S1∪S2∪ . . .∪Sn) −

n

∑
i=1

M0,0(Si)
3 ·H(Si) (12)

and the quantity T (S)−∑
n
i=1 T (Si) in (12) equals the normalized integral of the squared distances be-

tween all the pair of points in S1 ∪ S2 ∪ . . .∪ Sn, which do not belong to the same component. Such a
quantity may be expected to be an efficient and natural characteristic of multi-component shapes, since it
expresses somehow how much the set S1∪S2∪ . . .∪Sn is disconnected. Indeed, more shape components
and longer mutual distances between them would imply a larger value of T (S)−∑

n
i=1 T (Si).

The quantity T (S)−∑
n
i=1 T (Si) is translation and rotation invariant. This is because it can be

expressed (see (12)) in terms of the area and the first Hu moment invariants corresponding to the n-
component shape S1∪S2∪ . . .∪Sn and its components Si, i = 1,2, . . . ,n, which are such invariants. In or-
der to have the scaling property satisfied, the quantity T (S)−∑

n
i=1 T (Si) should be normalized. This can

be done in several ways. Herein the normalization is done by using the factor M0,0(S1∪S2∪ . . .∪Sn)
−3.

Such a normalized value obtained is named a multi-component shape disconnectedness measure, and will
be denoted asD(S1∪S2∪ . . .∪Sn), i.e. D(S). The formal definition forD(S1∪S2∪ . . .∪Sn) is as follows.

Definition 1. Given a multi-component shape S = S1∪S2∪ . . .∪Sn the disconnectedness measure D(S)
of the n-component shape S is defined as

D(S) =
1

M0,0(S1∪S2∪ . . .∪Sn)3 ·

(
T (S1∪S2∪ . . .∪Sn)−

n

∑
i=1
T (Si)

)
(13)

or equivalently

D(S) = H(S1∪S2∪ . . .∪Sn) −
1

M0,0(S1∪S2∪ . . .∪Sn)3 ·
n

∑
i=1

M0,0(Si)
3 ·H(Si). (14)

Several properties of the new multi-component shape measure D(S) are listed in the next theorem.

Theorem 1. Given a multi-component shape S = S1∪S2∪ . . .∪Sn the following statements are true:

(a) D(S) is invariant with respect to translation, rotation, and scaling transformations;

(b) If n = 1 (i.e. if S = S1), meaning that S consists of a single component, then D(S) = 0;

(c) D(S) ranges over the interval [0,∞);

(d) If n varies (i.e. the shape S is partitioned into various numbers of components), the following
estimate

D(S)<H(S) (15)

is true for all n and S;

(e) the upper boundH(S) in (15) is the best possible.

Proof. Each statement from the theorem is proven/discussed separately.
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(a) The translation and rotation invariance of D(S) comes from (14) and the fact that both the first Hu
moment invariant and the shape area are such invariants. The scaling invariance, i.e. the equality3

D(S) = D(r ·S)

for all shapes and all r > 0, comes from the expression in (14) and the facts:
–H(S) is scaling invariant, and
– M0,0(r ·S) = r2 ·M0,0(S);

(b) This follows from (14), by setting n = 1;

(c) This statement can be proven by setting n = 1 and the properties of H(S) (see the observations in
[28], for example);

(d) The estimate in (15) follows from (14) andH(Si)> 0, for all i = 1,2, . . . ,n;

(e) Let S be the square with vertices (0,0), (m,0), (m,m), and (0,m) partitioned onto n = m2 unit area
squares, determined by the vertical lines x = 0, x = 1, . . . x = m and the horizontal lines y = 0,
y = 1, . . . y = m. Thus, S can be seen as an m2-component shape:

S = S1∪S2∪ . . .∪Sn

having area n = m2 and each of its components Si (i = 1,2, . . . ,n = m2) has area equal to 1. Since
all the squares have the same first Hu moment invariant (equal to 1/6, see (5)), we have

H(S) =H(S1) =H(S2) = . . .=H(Sn) =
1
6
. (16)

Further, (14) and (16) give

|D(S) − H(S)| =
1

M0,0(S)3 ·
n

∑
i=1

M0,0(S)3 ·H(Si) =
1
n3 ·n ·

1
6
=

1
6 ·m4 . (17)

This establishes the proof, since lim
m→∞
|D(S) − H(S)|= lim

m→∞

1
6·m4 = 0. �

4. Experimental validation

In this section we provide a number of experiments. Synthetic experiments are in the first subsection;
they are given in order to support a better understanding of the disconnectedness measure D(S) that has
been introduced in this paper. The experiments in the second subsection illustrate the effectiveness of
D(S) in various tasks, performed on existing image data and in applications reported by others in the
literature.

4.1. Experimental Illustrations of D(S) Behavior

As it has been mentioned, in this section, we provide several experiments to illustrate the behavior of
the novel multi-component shape measureD(S). These experiments are designed to illustrate and validate
the theoretical considerations and properties of the new measure that have been proven in the previous
section.

3r ·S = {(r · x,r · y) | (x,y) ∈ S} equals the dilation of the shape S for a coefficient r > 0.
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(a) 0.1562 (b) 0.4868 (c) 1.0240 (d) 1.7678 (e) 2.7182

Figure 3: 4-component shapes and their assigned D(S) values (given below the shape)
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Fig.... .3(b)

Fig.3(a)

Figure 4: Plot of computed D(S) values for 4-component shapes, consisting of 4 identical squares, as given in Fig. 3.

First experiment. In order to illustrate how the measure D(S) depends on the distances between the
components, we consider multi-component shapes, consisting of 4 identical squares. The 4-component
shapes considered differ by the distance between the shape components (i.e. the distance between
squares). Several examples of such 4-component shapes, are given in Fig. 3, together with their com-
puted values of D(S). As expected, as the distance between the components (squares) increases then
the computed disconnectedness increases too. The largest D(S) value for the five 4-component shapes
presented in Fig. 3 is 2.7182. Of course, this is not the upper bound for the computed D(S) values of
such shapes. Actually, D(S) can be arbitrarily large for a sufficiently large distance between the shape
components. This is in accordance with formula (14), since all four squares (shape components) have the
same first Hu moment invariant, while the first Hu moment invariant of the 4-component shape considered
increases unboundedly, as the distance between the shape components increases too (which follows from
the first Hu moment interpretation given). A plot of D(S) values for 21 values of increasing distances
between the shape components (squares) is given in Fig. 4. The plot starts with D(S) value 5

32 ≈ 0.1562
for zero distance between the shape components (the shape in Fig. 3(a); white lines between the squares
are only indicative, i.e. they have the width equal to 0), and increases to the largest computed D(S) value
2.7182, corresponding to the shape in Fig. 3(e), that has the largest distance between the components,
among the shapes presented.

Second experiment. In this experiment we illustrate how the disconnectedness measure D(S) be-
haves as the shape of the components and their number change. In the first row in Fig. 5, a square is
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(a) 0.1562 (b) 0.1646 (c) 0.1660 (d) 0.1664

(e) 0.1445 (f) 0.1573 (g) 0.1614 (h) 0.1633

Figure 5: Multi-component shapes, consisting of 4, 9, 16 and 25 identical squares (first row) and 4, 9, 16 and 25 identical rectangles
(second row). D(S) values are below the shape related.

partitioned onto 4, 9, 16 and 25 squares. In the second row, the same square is partitioned onto 4, 9, 16
and 25 identical rectangles. In both the set of partitions presented in the first row and the set of partitions
presented in the second row, the computed D(S) values increase consistently with the number of the
components. The values of D(S) for the 4-component shape in the first row and 4-component shape in
the second row (0.1562 and 0.1445, respectively) differ because the disconnectedness value depends on
the shape of the components, and not only on their number. The same reasoning applies to the shapes in
the second, third, and fourth columns.

Third experiment. In this experiment we illustrate how the disconnectedness measure D(S) of a
multi-component shape depends on the mutual positions of the shape components, i.e. it is dependent on
the shape as whole. To illustrate this, three 4-component shapes, consisting of 4 identical discs arranged
in different ways, are given in Fig. 6, together with their assigned D(S) values. The computed values
of D(S) change as the overall structure of the 4-component shape changes. The obtained results are in
accordance with our expectations, since the most disconnected shape (among the 4-component shapes
displayed) is the shape on the left (D(S) = 0.6460), while the most connected one is the shape on the
right (D(S) = 0.2763). The obtained results are also consistent with the theoretical observations. Indeed,
in accordance with formula in (14), the change in the arrangement of the shape components only leads
to the change in the value of the first Hu moment invariant H(S) of the whole shape. Since H(S) can be
expressed in terms of the integral of the squared distances between all pairs of the points of S, as it has
been shown in this paper earlier, the ranking among the shapes presented in Fig. 6 is as expected.

4.2. Validation of D(S) in Different Applications

In this subsection we show that the new multi-component shape measure is a generic image analysis
tool that can be used efficiently for a spectrum of applications, which is why we provide a number of
essentially different experiments. The experimental procedures used are relatively simple. This has been
done in order to point out that the quality of the results is obtained by involving the new measure D(S),
rather than by employing additional existing techniques that are known to improve the performance of
image based tasks. For example, the classification experiments provided below, involve a small number
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(a) 0.6460 (b) 0.4612 (c) 0.2763

Figure 6: Three 4-component shapes are presented, each consisting of four identical discs arranged in different ways. Computed
D(S) values are given below each corresponding shape. The obtained ranking fits well with our perception of how the discon-
nectedness measure should act. In accordance with the measure D(S), the 4-component shape on the left is the most disconnected
one (the measured D(S) is 0.6460), while among the presented shapes the 4-connected shape on the right is most connected one
(D(S) = 0.2763).

of shape measures and low dimensionality feature vector spaces. Indeed, in the last experiment a single
feature has been used, whereas the results from [42] were obtained by using feature vectors of more than
150 dimensions.

To demonstrate the generality of the new measure and show situations in which it can be applied, the
following have been done as well:

– Different kinds of data sets have been used in the experiments below. These include black and white
images, color images, video sequences, and texture images.

– Various ways in which the disconnectedness measure can be applied to image data are shown. More
precisely, the following are applied:

1. Given a binary image containing foreground objects, connected component analysis is performed,
and the disconnectedness measure is applied to the set of connected components in the image.

2. The above approach can be applied locally, within all wi n× n windows that contain foreground
pixels, generating a set of disconnectedness values Dwi(S). The final measure is the mean of
Dwi(S).

3. Instead of a set of components contained within an image, a set of images can be processed, treating
all the foreground pixels in an image as a single component. In this approach we do not require
components to be connected. Examples of such a multiple image set could be binary images from
a time series (e.g. video), or else multiple binary image bands (e.g. a color image).

4. A gray level image can be thresholded at t levels to produce t +1 binary images, each of which are
treated as a single component. Again, components need not be connected.

5. Finally, the above approach (item 4) can be applied locally, to generate a feature map of local
disconnectedness values.

Fourth experiment. This experiment uses data from Yang et al. [43], who quantified the fabric
anisotropy of granular soil in order to investigate its response under applied loading. 29 samples of Toy-
oura sand (see Fig. 7 for examples) were prepared using two different methods: 1/ moist tamping (MT)
in which sand with 5% water content is laid down in layers and each layer is compacted, and 2/ dry depo-
sition (DD) in which oven dried sand is poured using a funnel. Yang et al. [43] differentiated between the
two preparation methods by characterizing the intensity of anisotropy of the preferred particle orientation
using a measure (denoted ∆) related to the circular variance of the directions of the components.

We have applied our proposed measure of disconnectedness (following method 1, listed at the begin-
ning of this subsection) to the soil samples in order to differentiate between the two preparation methods.
Nearest neighbour classification with leave-one-out validation was applied, and the results in Table 1
show that D(S) provides substantially better accuracy than the anisotropy measure ∆. The first Hu mo-
ment invariant H(S) yields the same accuracy as D(S). In addition, the local version of the measure
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0.2637 0.2786 0.2864 0.2943

0.3029 0.3063 0.3145 0.3324

Figure 7: Examples of boundaries of SEM images of Toyoura sand (Japanese standard sand) prepared using two methods: moist
tamping (first row), dry deposition (second row). D100(S) values are shown below each example.

(method 2 in Section 4.2) was used, with 100×100 local windows. Table 1 shows that D100(S) outper-
forms both D(S) and H(S). For comparison, the first Hu moment invariant was also computed as the
average of the local values, but its performed dropped compared to its global version.

Table 1: Results for leave one out classification of SEM images of Toyoura sand.

Method ∆ D(S) H(S) D100(S) H100(S)

Accuracy 62.07 89.66 89.66 93.10 82.76

Fifth experiment. This experiment uses a subset of 524 color galaxy images from Galaxy Zoo [44]
(see Fig. 8) that were selected4 by Shamir [45] to demonstrate machine learning based classification
into three classes: spiral, elliptical and edge-on galaxies. His approach uses a measure of spirality,
which requires finding the foreground object by applying Otsu’s thresholding algorithm [46], followed by
generating a radial intensity plot from the estimated center of the galaxy, and then computing the slopes of
the peaks detected in this plot. The images were manually classified by Shamir to provide a ground truth,
although he notes that there are many in-between cases, and so the ground truth is not totally reliable. He
achieves a classification accuracy of 88.76%.

Using disconnectedness along with a variety of other standard shape measures we achieve almost
the same result: a leave-one-out accuracy of 88.55%. Specifically, a minimum Mahalanobis distance
classifier was applied to the the first and fourth affine invariant moments [47], convex hull perimeter
based convexity (denoted as C3 in [26]), ellipticity (denoted EE in [31]), and compactness (i.e. the ratio
of the squar-ed perimeter and area) as well as three versions of disconnectedness:

• Otsu’s thresholding was applied to the three channels of the color image, and the three binary
images specified the three components (method 3, listed at the beginning of this subsection).

4Although Shamir [45] states the subset contains 525 images, the zip file that he provides only contains 524 images.
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Figure 8: Examples of the three classes of galaxy images selected from Galaxy Zoo. Rows (top to bottom): elliptical, spiral, edge-
on. Columns (left to right): original image; thresholded into five components; thresholded into three components with the bottom
two components merged; three color channels thresholded into two components (visualised as a color image).

• Multi-class Otsu thresholding was applied to a grayscale version of the image to determine four
thresholds, which segmented the images into five (potentially non-connected) components. The
component arising from the darkest pixels tends to correspond to background, and so only the
other four components were used (method 4, listed at the beginning of this subsection).

• The same as the above was applied, but using three thresholds, and keeping only the upper two
components.

We also note that when performing classification using a single feature that disconnectedness was rela-
tively effective. Leave-one-out accuracy is 75.38% and 70.99% for the two disconnectedness measures
used above, while the best moment invariant was the first Hu moment invariant applied to the Otsu thresh-
olded image (63.36%). The remaining Hu moments applied to the binary or grayscale image produced
classification accuracies of 60% or less.

Sixth experiment. This experiment uses the silhouettes from video sequences analysed by [48] et
al. to perform human action recognition. There are 90 video sequences of lengths between 28 and
146 frames, showing nine different people, each performing 10 actions such as run, walk, skip, etc.
Gorelick et al. achieved 100% classification accuracy by using the Poisson equation to extract space-time
features such as local space-time saliency, action dynamics, shape structure, and orientation. Here we
show a simpler approach, using standard global 2D shape features plus our disconnectedness measure,
to achieve 80% classification accuracy, in order to show that such simple features can still be reasonably
effective. Disconnectedness is computed over the set of silhouettes for each sequence (method 3 in
Section 4.2). Each sequence was processed to produce two composite images that capture some elements
of the dynamics of the sequence, see Fig. 9 for examples.

• At each pixel the mean intensity over the complete sequence of silhouettes was computed, and
the result was binarised by applying Otsu’s thresholding algorithm. Finally, the single largest
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Figure 9: Regions extracted and analysed from video sequences containing human action. Example regions for two sequences are
shown in (a) and (c)-(d). The contents of each sequence are summarised by single regions as shown in (b) and (e). (a) silhouettes
extracted from five sample frames of a sequence containing a running person; (b) i: sample frame from the middle of the running
video; ii: mean pixel intensities are computed over the sequence containing 56 images of running silhouettes; iii: image of mean
pixel intensities after thresholding; iv: black pixels indicate those pixels which appear as foreground pixels in any of the 56 frames
in the running sequence, (c) & (d) silhouettes extracted from eight sample frames of a sequence containing a bending person; (e) i:
sample frame from the middle of the bending video; ii: mean pixel intensities are computed over the sequence containing 85 images
of bending silhouettes; iii: image of mean pixel intensities after thresholding; iv: black pixels indicate those pixels which appear as
foreground pixels in any of the 85 frames in the bending sequence.

connected component was retained. The shape was described by ellipticity [33] and triangularity
(method TP in [31]).

• A mask image was created which identified which pixels contained a foreground value within the
complete sequence of silhouettes. All such masks were found to contain only a single connected
component. This shape was then described by the third and fifth Hu moment invariants and by the
second affine moment invariant.
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The accuracy of classifying the 10 actions was 80%. When the disconnectedness measure was removed
accuracy dropped to 61.11%.

Figure 10: Application of the disconnectedness measure for texture segmentation. Columns (left to right) for rows 1–2: source
image, segmentation result from [42], pre-processed source image, feature map of local disconnectedness values, segmentation
result using disconnectedness. Row 3: processing of the 2nd source image which has been filtered by anisotropic blurring. Note
that no result is shown for [42] for this filtered version of the image.

Seventh experiment. This experiment provides some preliminary results of local disconnectedness
values to perform unsupervised texture segmentation. Two images from figure 1 in [42] are shown in
figure 10. First we perform pre-processing: adaptive histogram equalization (using a window size of
8× 8) is applied to normalise local contrast; the effect of noise is reduced by applying a small amount
of Gaussian blurring (σ = 1); and finally the image is simplified by quantizing the number of intensities
using multi-class Otsu thresholding to produce four (potentially non-connected) components. The pre-
processed images and their disconnectedness feature maps (calculated using 40×40 windows) are shown
in columns 3 and 4 of figure 10. For simplicity we assume that the number of texture classes is known,
and apply binary Otsu thresholding to the feature maps to produce the image segmentation shown in the
final column of figure 10. Compared to [42] local disconnectedness has performed well on the first image.
This is despite the fact that our approach has no spatial model and uses a single feature, whereas [42] uses
a Potts model and feature vectors of more than 150 dimensions.

Since the disconnectedness measure does not incorporate any orientation specific information, its
use for segmentation of the second image is ineffective, as the two patterns are the same, modulo ori-
entation. However, an orientation aware version of the disconnectedness measure can be produced by
pre-processing the image to highlight structures at specific orientations. This is demonstrated in the bot-
tom row, which shows the image after anisotropic Gaussian blur; we use the fast method by [49], which is
steered in the orientation of one of the patterns (σ = {1,8},θ = 0◦). The resulting texture segmentation
now closely matches the results from [42].

4.3. Sensitivity of D(S) to Noise

When applying the D(S) measure to a set of regions extracted from image data (for example), the
results will naturally be dependent on the grouping of the pixels to form regions. In turn, this will depend
not only on the underlying scene captured in the image, but also on the segmentation algorithm, noise,
illumination, and so on. In this subsection we perform an experiment to illustrate the performance of
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the new multi-component shape measure when noise is added to the data already presented in the fourth
experiment on classifying SEM images of Toyoura sand.

Eighth experiment.
For each image, a 4× 4 block of salt and pepper noise was added at each location with a specified

probability, and then the noisy images were classified as previously described in the fourth experiment.
This process was repeated ten times, and the classification results are shown in Fig. 11. It can be seen that,
even for large amounts of noise, the D(S) measure enabled effective classification for this application.
Surprisingly, small amounts of noise improved the classification accuracy. This can be explained as a
consequence that the added noise causes some close regions to become connected. Therefore, if one of
the types of sand has regions that are closer together than the other type of sand, then this effect will affect
it more strongly compared to the other type of sand, leading to the disconnected measure becoming more
differentiated between the two types of sand, thereby improving classification. Of course, if the noise
level becomes too high, then not only do both types of sand become affected in a similar way, but the
signal becomes swamped by the noise, resulting in low classification accuracy.
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Figure 11: Classification accuracies (mean and one standard deviation error bars) of SEM images of Toyoura sand with varying
amounts of added salt and pepper noise. The dotted line shows the expected classification accuracy that would be achieved by
random guessing. Examples of an image with different noise levels are shown.

5. Concluding Remarks

A new measure for multi-component shapes has been introduced. The measure is named the discon-
nectedness measure, and is denoted as D(S). This is the second known measure designed to evaluate
numerically some intuitive shape properties related to the multi-component shapes. The first such mea-
sure was the anisotropy of multi-component shapes, introduced in [38]. The new measure D(S) aims to
evaluate how much a given multi-component shape S is disconnected, where the word “disconnected” is
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taken in an informal, but intuitively clear, sense. For a single-component shape, D(S) takes the value
zero, and this is the lowest possible value for D(S). There is no upper bound for D(S), i.e. D(S) can
be arbitrary large for a suitable choice of S. The measure D(S) is invariant with respect to translation,
rotation, and scaling transformations. D(S) depends on the number of components of S, on the overall
shape of S, and on the shapes of the components of S. It also depends on the mutual positions of the
components of S, as well as their relative sizes.

The measureD(S) is derived based on the new interpretation of the first Hu moment invariant, and can
be expressed in terms of the first Hu moment invariant of the shape S and the first Hu moment invariants
of the components of S. This implies that the computation of D(S) is fast and straightforward.

The new measure D(S) is a generic tool, not designed for a particular application. As such, it can be
used for a wide spectrum of image processing based tasks. Several of them are provided in this paper, and
aim to show the usability and effectiveness of D(S) in different situations. This is why we were focused
on a number of experiments (different by their nature and data sets used), rather than on a particular task.
First, we have used synthetic data (images) suitable for a better understanding of the behavior of the new
measure. Those also validate the theoretical observations and proven statements about the properties of
the new measure. After that we have employed the new measure in several well known tasks, based on
different data sets consisting of different kind of images (black and white images, color images, video
sequences, and texture images). A good performance in all of them has been obtained, even though we
have used simple procedures and techniques, usually based on a few shape measures. This points out the
importance and crucial role of the new measure in the tasks performed.

The future work on the multi-component shape based approach to object analysis tasks can be ex-
plored in several directions. Due to the novelty of the concept, the properties specifically related to
multi-component shapes have been little studied. More of such properties should be recognized, and
procedures for their numerical evaluation developed. So far, the anisotropy and disconnectedness mea-
sures are the only recognized and studied multi-component shape properties, but more are expected to be
discovered. Note that there also exist methods for a formal extension of the existing measures designed
for single-component shapes, that do not relate to specific shape properties. Several of them have already
been employed and evaluated on a leaf classification problem [41]. The same paper uses a simple method
to decompose a given shape onto an arbitrary number of components using different circles centred at
the shape centroid. In the current paper further methods are used to represent real objects (presented as
digital images) by their corresponding multi-component shapes. However, more methods that would suit
specific applications need to be investigated.

Another specific problem, appearing when dealing with multi-component shapes, relates to the influ-
ence of the shape components’ size on the numerical evaluation of shape properties. Such a problem does
not exist if dealing with single component shapes, since the overall shape does not change under scaling
transformations. The situation changes when working with multi-component shapes. For example, the
extracted shape components might be of a different size, but still corresponding to equal sized objects.
The difference could simply come from the fact that the observed objects are positioned differently with
respect to the camera. Thus, the issue of appropriately weighting the influence of component size arises
naturally in such situations. Such problems are just some of those that have already been seen as im-
portant ones. During the exploitation of the multi-component shape approach in different tasks, more
problems are expected to arise.
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[2] F. Cao, J.-L. Lisani, J.-M. Morel, P. Musé, F. Sur, A theory of shape identification, Springer, 2008.

[3] L. d. F. Costa, R. M. Cesar Jr, Shape classification and analysis: theory and practice, CRC Press,
2009.

[4] R. Davies, C. Taylor, et al., Statistical models of shape: Optimisation and evaluation, Springer
Science & Business Media, 2008.

[5] S. Dickinson, Z. Pizlo, Shape perception in human and computer vision, Springer, 2015.

[6] I. L. Dryden, K. V. Mardia, Statistical Shape Analysis: With Applications in R, John Wiley & Sons,
2016.

[7] S. Li, J. M. R. Tavares, Shape Analysis in Medical Image Analysis, Vol. 14, Springer Science &
Business Media, 2014.
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[26] J. Žunić, P. L. Rosin, A new convexity measurement for polygons, IEEE Transactions on Pattern
Analysis and Machine Intelligence 26 (7) (2004) 923–934.

[27] R. S. Montero, E. Bribiesca, State of the art of compactness and circularity measures, International
Mathematical Forum 4 (27) (2009) 1305–1335.
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