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Abstract

Deformation transfer is an important research problem in geometry processing and

computer animation. A fundamental problem for existing deformation transfer meth-

ods is to build reliable correspondences. This is challenging, especially when the

source and target shapes differ significantly and manual labeling is typically used. We

propose a novel deformation transfer method that aims at minimizing user effort. We

adapt a biharmonic weight deformation framework which is able to produce plausible

deformation even with only a few key points. We then develop an automatic algorithm

to identify a minimum set of key points on the source model that characterizes the

deformation well. While minimal user effort is still needed to specify corresponding

points on the target model for the selected key points, our approach avoids the difficult

problem of choosing key points. Experimental results demonstrate that our method,

despite requiring little user effort, produces better deformation results than alternative

solutions.
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1. Introduction

Shape deformation is a fundamental problem in computer animation and shape

modeling. With the aim of generating realistic shapes, various approaches have been

proposed, including skeleton rigging, shape deformation [1, 2] and deformation trans-

fer [3, 4]. Skeleton rigging is suitable for shapes such as human bodies with a well-5

defined skeletal structure. Shape deformation is more flexible, but often requires spec-

ifying and moving a group of handles to produce a deformed shape. To produce a

deformation sequence, it not only requires knowledge and expertise, but it is also te-

dious to produce each deformed shape.

When some deformed shapes are available, deformation transfer makes it possible10

to transfer the deformation of source shapes to target shapes, effectively reusing exist-

ing deformations. This makes it much more efficient to produce new deformed shapes,

while avoiding the requirement of having shape deformation expertise. Previous work

for deformation transfer mainly focuses on improving deformation transfer quality and

extending it to handle general shapes and large deformation. Another key step for de-15

formation transfer is finding reliable correspondences. However, this step is challeng-

ing, especially when the source and target shapes differ significantly (e.g. transferring

the deformation of a human to an armadillo). In such cases, correspondences are either

manually specified, or even if some semi-automatic algorithms are used, constraints of

key correspondences are still required to be specified by the user. However, specifying20

a set of sufficient and effective correspondences requires expertise, including under-

standing of the underlying deformation transfer technique. In practice, this is often

achieved using a trial-and-error approach where further correspondences are added if

the user is unsatisfactory with the deformation transfer results.

In this paper, we propose a novel approach to deformation transfer with automatic25

key point selection. Given a source shape and one or more deformed source shapes,

as well as a target shape, deformation transfer produces the same number of deformed

shapes with the same geometry as the target shape and the deformation of the de-

formed source mesh transferred. Our major observation is that while it is difficult for

an ordinary user with little experience to understand which correspondences are most30
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effective, it is intuitive for users to specify the semantically meaningful point on the

target shape that corresponds to a given point on the source shape. By producing a

small set of essential key points, users are only required to specify their correspond-

ing points on the target shape. Therefore, our technique can greatly reduce the time

and expertise needed for deformation transfer. To the best of our knowledge, this is35

the first work that addresses the problem of automatic key point selection for deforma-

tion transfer. To achieve this, we adapt biharmonic weight shape deformation [5, 6] to

solve the problem of deformation transfer, with improved clustering and an error cost

suitable for deformation transfer. Extensive experiments show that our method out-

performs state-of-the-art deformation transfer methods, and our automatically selected40

key points are more effective than those selected by ordinary users.

In the following sections, we first review the most related work to ours in Sec. 2.

Algorithm details are then presented in Sec. 3, followed by experimental results and

discussions in Sec. 4. Finally, we draw conclusions in Sec. 5.

2. Related Work45

Shape deformation has received significant attention and many techniques have

been developed to improve the representation capability to handle large-scale defor-

mation, and utilize examples to produce better deformation results [7]. Please refer

to [1, 2] for surveys of different deformation techniques. The recent work [8] develops

an automatic method to deform meshes of arbitrary shapes to obtain their polycube50

form. The work [9] proposes a smooth, interpolating representation for shapes with

spherical topology, and demonstrates its use for surface deformation. Many practical

problems involve shape deformation. The work [10] studies stain formation and evolu-

tion on deforming cloths, and [11] exploits shape deformation for surgical simulation.

In order to improve realism, physics-based methods [12, 13] are also developed for55

shape deformation. In this work, we focus on transferring deformation from one shape

to another, taking a simpler and more efficient data-driven geometry-based approach.

Global rigid transformation is not suitable when non-rigid deformation is involved.

Instead, deforming the shape locally rigidly helps keep details while producing rich
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deformation results. The As-Rigid-As-Possible (ARAP) deformation energy is based60

on this idea, and has been widely used in geometric processing, such as shape manip-

ulation [14, 15, 16, 17] and shape interpolation [18, 19]. Recent work [15] extends

As-Rigid-As-Possible (ARAP) to anisotropic ARAP which is direction dependent, and

can solve an important problem of flattening functional compression garments. Our

work is based on [6], which is efficient and allows plausible deformation results to be65

produced, even with sparse key points.

We now focus on reviewing existing deformation transfer techniques which are

most related to our work. In the pioneering work [3], the deformations of shapes are

encoded using deformation gradients in local regions. With reliable correspondences

between the source shape and the target shape, the deformation gradients are trans-70

ferred to the target shape, which are then used to reconstruct the deformed target shape

by solving Poisson equations. The method relies on accurate correspondences to work

effectively, and requires quite a large number of correspondences due to the local na-

ture of deformation gradients. In addition to transferring deformation, the deformation

transfer results obtained using the above method may also contain geometric details75

from the source shape, which is undesirable and may produce unreasonable shapes.

The work [20] improves over [3, 21] by adding an additional step of projecting the re-

sulting shape to the manifold of plausible target shapes. The method however requires

a set of target shapes that sufficiently covers the plausible deformation space, which is

not always available.80

The methods above can only handle triangle meshes. In order to deal with general

shapes, cages (i.e. a set of polyhedra to enclose the shapes) are employed to handle

different shape representations such as triangle soups and tetrahedron meshes [22, 23].

These two works need extra effort to generate suitable cages which is not only time-

consuming but also requires experience and expertise. Moreover, cages are sensitive to85

topological change and topological proximity of the models. For example, two points

with a large geodesic distance can be close in Euclidean space, and so may be enclosed

in the same cage and therefore deformed in the same way, which leads to unnatural

deformation results. To deal with shapes with multiple components where each com-

ponent is a manifold surface, an alternate solution is proposed using a graph structure90
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to represent the general shapes for transferring the deformation gradients on the graph

node [24]. This method requires the multi-component structure to be provided, and

thus is not suitable for shapes without multiple components.

Instead of specifying correspondences on shapes, Baran et al. [4] propose a seman-

tic deformation transfer method by exploiting the correlation between two shape sets95

(source and target). They assume that the source and target shape sets contain cor-

responding shapes with the same semantic meaning. Each deformed source shape is

projected onto the source shape set, and the obtained combination weights are used

along with the target shape set to produce the deformed target shape corresponding

to the given source shape. The method achieves impressive results. However, it re-100

quires source and target shape sets with corresponding semantics as input which are

only available in limited situations.

In this work, we address the problem of deformation transfer of meshes with the

aim of significantly reducing user effort. Our method only requires one target shape

as input, and does not require proxies such as cages. We generalize an efficient de-105

formation method based on biharmonic weights to deformation transfer as it produces

plausible results even with very few correspondences. We then develop an automatic

key point selection algorithm such that the user is only required to specify points on

the target shape corresponding to the key points that were produced automatically on

the source shape, which is intuitive for ordinary users. Experimental results show that110

our method not only reduces user effort but also produces much better deformation

transfer results than using correspondences specified by normal users, thanks to the

effective choice of key points.

3. Our Algorithm

3.1. Algorithm Overview115

The input to our algorithm is a source mesh A before deformation, a set of de-

formed source meshes A′, and a target mesh B, our deformation transfer algorithm

produces a set of deformed target meshes B′. For each mesh A′ ∈ A′, a deformed

target mesh B′ is obtained by applying the deformation from A to A′ to the target
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Figure 1: The pipeline of our algorithm.

shape B. Denote by m = |A′| the number of deformed source meshes. Note that in120

the simplest case, A′ may only contain one deformed shape (i.e. m = 1). Note that

A and meshes in A′ share the same mesh connectivity, but the mesh topology of the

source and target shapes can be different.

The pipeline of our algorithm is illustrated in Fig. 1. We first obtain a set of vertices

on the source mesh as candidates for key points (denoted as C), by performing farthest125

point sampling [25, 26] to ensure candidate points provide sufficient coverage of the

shape. Denote by nc = |C| the number of candidate points. Although depending on

the random choice of the first candidate key point, farthest point sampling may generate

different sets of candidate key points, our method produces very similar deformation

transfer results even with substantially different candidate key points, as shown by the130

example in Fig. 2.

The key points S are then selected from the candidate set C. Denote by nk the

number of selected key points. Since the correspondences between the source and tar-

get meshes are not yet available and it is difficult to automatically judge the quality of

deformed meshes, we take a practical approach aiming to find a key point set S that135

minimizes total deformation error from A to each mesh A′ ∈ A′. A trivial solution

would consider all the subsets of C as S and choose the best solution. This however

involves 2nc − 1 combinations and is prohibitively expensive. We propose to use a

greedy approach, such that at each step, only one key point is optimized. Since ini-

tially only one or a few key points are selected and treated as handles to deform A140

towards models A′ ∈ A′, deformation methods based on local deformation gradients
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Figure 2: Comparison of deformation transfer results using different randomly initialized candidate key

points. Left: the source mesh and the target mesh, right: deformation results. Every column shows a different

set of randomly initialized candidate key points, our selected key points and corresponding deformation

results. Similar deformation results are obtained even if the candidate key points are significantly different.

(e.g. [27, 3, 21]) do not work well. We thus adapt the deformation method [6] with

bounded biharmonic weights [5], by utilizing the deformed source shapes A′ as con-

straints such that the deformed shapes are close to the desired shapes. Several energy

functions used in shape deformation typically measure some forms of elastic shape145

distortion. As pointed out in the survey [28], using quadratic energies leads to linear

optimization problems, which are robust and efficient to optimize, but result in lin-

earization artifacts in the deformation results. So nonlinear energies [29, 30, 27, 31]

are proposed to provide higher-quality deformation results, but they are generally slow

to optimize. We use as-rigid-as-possible [14, 27, 32, 31] deformation along with clus-150

tering of the biharmonic weights to achieve high quality deformation while ensuring

efficiency. Moreover, the deformations of neighboring vertices are highly correlated,

so it is unnecessary to compute local rotation for each edge independently. Instead, by
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(a) (b) (c) (d)

Figure 3: An example demonstrating candidate points and selected key points for deforming from (a)(b)

to (c)(d). (a) and (b) are the candidates obtained using farthest point sampling (front and back views, with

nc = 100 candidate points), (c) and (d) are the key points automatically selected by our algorithm (front

and back views, nk = 12 key points).

clustering local vertices into some clusters based on biharmonic weights, local regions

are deformed consistently, which helps with both efficiency and deformation quality.155

We incrementally add or update key points until convergence. The user is then asked

to specify points on B that correspond to the automatic selected key points S on A.

Finally, the resulting mesh B′ with the deformation transferred is obtained using bihar-

monic weight-based mesh deformation using affine transformation of corresponding

key points from the source mesh.160

An example is shown in Fig. 3. We first apply farthest point sampling on the source

mesh A and the candidates nc = 100 are shown in Figs. 3 (a) and (b). They are

well distributed, providing a sufficient set to choose key points from. The selected

key points using our automatic algorithm are shown in Figs. 3 (c) and (d), and are

effective in achieving the deformation from the original shape (a)(b) to the deformed165

shape (c)(d).

3.2. Shape Deformation using Biharmonic Weights

As a building block in our algorithm, we now introduce a shape deformation method

using biharmonic weights. Since it is used for deforming both source shapes (for op-

timization of key points) and target shapes (for deformation transfer), we describe the170
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algorithm using a generic set of symbols. Given an input mesh before deformation P ,

let Q be the deformed mesh. pi ∈ P and qi ∈ Q are the positions of the ith vertex

of the mesh P and Q respectively. Both meshes have the same connectivity. Denote

by np = |P| the number of vertices of both meshes. For the purpose of deformation,

assuming H is the set of handle vertices, and nh = |H| is the number of handles. For175

each handle hk ∈ H, it is associated with an affine transformation Tk ∈ R
3×4. For

simplicity, these affine transformations are packed into a matrix T of size 12nh × 1

(column vector) by stacking each affine transformation as a 12-dimensional column

vector. When applying the deformation method to source meshes, the deformed mesh

is known, and denoted as Q′ with q′
i representing the ith vertex of the known deformed180

mesh.

Similar to [6], the position of vertices on the deformed mesh Q can be computed

by applying affine transformations T with linear blend skinning. Denote by W ∈
R

np×nh the skinning weights, where Wph is the influence that the hth handle has on

the pth vertex. The skinning weights can be defined in many ways, including manually185

specified by artists. In our implementation, we use the bounded-biharmonic weight

[5], which is known to be suitable for deformation. Following [5], we compute the

bounded-biharmonic weights with the optimization below:

argmin
wk

nh∑

k=1

1

2

∫

p∈P
‖∆wk‖2dp

subject to :wk(pj) = δjk

nh∑

k=1

wk(p) = 1 ∀p ∈ P

0 ≤ wk(p) ≤ 1, k = 1, . . . , nh ∀p ∈ P

(1)

where Wjk = wk(pj) is the skinning weight of the jth vertex of the mesh w.r.t. the

kth handle vertex of the mesh, wk is a function over the space in which the mesh is190

embedded, and δjk is Kronecker’s delta (δjk = 1 if j = k and 0 otherwise). This is

consistent with [5]; please refer to the paper for more details.

Using linear blend skinning, the ith vertex position qi of the deformed mesh Q is
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given as follows:

qi =

nh∑

k=1

WikTk


pi

1


 (2)

To measure the quality of deformation, following [6], we use an as-rigid-as-possible

(ARAP) energy [27] Earap with deformed positions obtained using Eqn. 2. To better

preserve (near) piecewise rigidity and avoid over-fitting, the shape is partitioned into a

set of regions G = {Gg}, g = 1, 2, . . . , |G| and |G| is the number of regions (treated as

edge groups). The details of the partitioning algorithm will be introduced in Sec. 3.3.

A local rotation matrix Rg is assigned for each region Gg . The energy can be written

as:

Earap =
∑

g

∑

(i,j)∈Gg

w̃ij ‖(qi − qj)−Rg(pi − pj))‖22 (3)

where w̃ij is a cotangent weight [33] which is useful for meshes with irregular triangu-

lation, and Rg ∈ SO(3) is the rotation of the edge group g.

For source meshes, since the deformed mesh Q′ is known, we further introduce195

another energy term that measures the difference of the mesh obtained by the deforma-

tion and the known deformed mesh. This penalizes meshes that deviate too much from

the known results.

Ediff =

np∑

i=1

∥∥∥qi − q
′

i

∥∥∥
2

2
(4)

The overall energy is obtained by a linear combination of both energy terms:

E = λEarap + Ediff , (5)

where λ is a weight to balance the two terms. We set λ = 0.5 in our experiments.

The energy aims to make the resulting mesh as close as possible to the known de-200

formed mesh, while keeping the local shapes by reducing the ARAP energy. As we

will show later, this helps to identify better transformations to better reproduce the de-

formed mesh, and thus helps improve deformation transfer results. The unknowns in

this function include affine transformation Tk of each handle hk, and rotation matrix

Rg for each edge group g of the mesh. Note that the deformed mesh Q is determined205

once the affine transformations T are given. We alternately optimize T and R; see

Sec. 3.4 for details of the optimization.
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(a) (b) (c) (d) (e)

Figure 4: K-means clustering on the biharmonic weight matrix W and rotation-augmented weight matrix

W′. The number of clusters nc is set to 13. (a) shows the handle points selected by the user. (b) is the

result of k-means clustering on W, (c) is the result of k-means clustering only based on logr and s without

W using the 55
th model in the SCAPE dataset as the deformed source shape, (d) is the result of k-means

clustering on W′ including W, logr and s using the 55
th model in the SCAPE dataset, (e) is the result of

k-means clustering on W′ of all the 71 models in the SCAPE dataset [34].

3.3. Clustering with Skinning Weights and Rotation

As suggested by [6], we can obtain a segmentation of the mesh by using k-means

clustering on the skinning weight matrix W, as it shows how different handles con-210

tribute to the deformation of each vertex. The clustering of shapes is derived from the

result of key point selection. The number of clusters is the same as the number of key

points, i.e. we set the number of clusters to nh. The clustering helps identify regions

of the mesh with consistent deformation transformation. For deformation transfer, we

also have a set of deformed source meshes A′. It is therefore possible to exploit the215

local rotations of these meshes, to help identify regions with consistent deformation.

This provides useful additional information not available from W.

To achieve this, for each mesh A′ ∈ A′, we first compute the local deformation

gradient Di for the ith vertex of A′, which is calculated by minimizing the following

energy:

E(Di) =
∑

j∈Ni

w̃ij

∥∥eqij −Die
p
ij

∥∥2
(6)

where Ni is the 1-ring neighbors of the vertex i, e
q
ij := qi − qj and e

p
ij := pi − pj .

The deformation gradient Di can be decomposed into the product of a rotation matrix
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and a scale/shear matrix by polar decomposition [35]:220

Di = UiNi (7)

where Ui is a 3× 3 rotation matrix and Ni is a 3× 3 symmetric matrix that represents

the scaling/shear on the three orthogonal axes. Then the rotation matrix can be mapped

to space so(3) by the matrix logarithm operation: Ūi = logU, which is known to

make the space more linear. Because the matrix Ū is a skew-symmetric matrix, we can

rewrite the Ū in the space so(3) that consists of three orthogonal basis vectors [36]:

Ū = u
(1)
i e1 + u

(2)
i e2 + u

(3)
i e3 (8)

where

e1 =




0 1 0

−1 0 0

0 0 0


 e2 =




0 0 1

0 0 0

−1 0 0


 e3 =




0 0 0

0 0 1

0 −1 0


 (9)

and u
(1)
i , u

(2)
i , and u

(3)
i ∈ R. We then obtain a vector ui for each vertex:

ui =
(
u
(1)
i , u

(2)
i , u

(3)
i

)
(10)

Similarly, the scaling/shear matrix can be rewritten as a long vector

si =
(
n
(1)
i , n

(2)
i , . . . , n

(9)
i

)
(11)

The rotation logarithm matrix logr for a deformed mesh is defined as:

logr =
[
u1 u2 . . . unp

]T
(12)

and the scaling/shear matrix s for a deformed mesh is defined as:

s =
[
s1 s2 . . . snp

]T
(13)

where np is the number of vertex. We collect all these matrices corresponding to

meshes in A′ as

l̃ogr = [logr1, logr2, . . . , logrm], s̃ = [s1, s2, . . . , sm] (14)
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where logrj and sj are the logr and s matrices for the jth model of A′. Finally, we

augment W as follows:

W′ =
[
W

γlogr√
m

l̃ogr γs√
m
s̃

]
, (15)

√
m is used for normalization since the k-means clustering uses squared Euclidean

distance.

Fig. 4 shows a comparison of clustering results using W and W′ on the SCAPE

dataset [34]. It can be seen that the segmentation obtained using W (Fig. 4b) does not225

always represent the correct rigid components and the boundaries of segments can also

be inaccurate. When using the rotation/scaling alone without W, the segmentation is

quite noisy (Fig. 4c). By using our augmented matrix W′ combining both biharmonic

weights W and rotation/scaling (logr and s), the result is significantly better even

with only one deformed example (Fig. 4d), and further improved with the whole dataset230

(Fig. 4e). γlogr and γs are the adjustable parameters, and by default we choose γlogr =

1, γs = 0.1.

3.4. Algorithmic Solution of Our Deformation Method

Similar to [6, 27], the optimization of our deformation method can also be solved

by alternating two steps, namely the Global Step and the Local Step.235

In the Global Step, we fix Rg for each edge group, and optimize the energy E

to obtain deformed positions qi. For the as-rigid-as-possible (ARAP) energy, we set

∂Earap

∂qi
= 0, and Eqn. 3 can be rewritten as a system of linear equations

∑

g

∑

(i,j)∈Gg

w̃ij(qi − qj)

=
∑

g

∑

(i,j)∈Gg

w̃ijRg(pi − pj)
(16)

Eqn. 16 can be written in a matrix form as:

Lq = b (17)

where L is the Laplace matrix, q = [q1, . . . ,qnp
]T is the deformed positions to be

determined, and b is the right hand side coefficients.
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To minimize E, we add the terms related to Ediff to Eqn. 17 and obtain the fol-

lowing linear system:

λL

I


q =


λb
q

′


 (18)

where I is the n-dimensional identity matrix, and q
′

is the vertex position of the

known deformed source model.240

Next, we put Eqn. 2 into Eqn. 18, and obtain the following equations:


λL

I







∑
k W1kTk


p1

1




∑
k W2kTk


p2

1




...

∑
k WnpkTk


pnp

1







=


λb
q

′


 (19)

Eqn. 19 can be further represented as:

SMT = b′ (20)

where S =


λL

I


, M is a (3np) × (12nh) sparse matrix, b′ is the right hand side

of Eqn. 18, and T ∈ R
12nh×1 (a column vector) contains all the affine transforma-

tions. We can pre-compute SM and obtain its LU decomposition to accelerate solving

Eqn. 20, and obtain T needed for deformation transfer.

The second step is the Local step. Given T, we can obtain the vertex position of245

the deformed mesh q using Eqn. 2. We then find the optimal Rg for each edge group

g. Let us denote the edge vector e
q
ij := qi − qj and e

p
ij := pi − pj . Minimizing

Eqn. 5 can be solved independently. For edge group g, this is achieved by maximizing

the following:

argmax
Rg

Tr


Rg

∑

(i,j)∈Gg

w̃ije
p
ije

qT

ij


 (21)
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Figure 5: Results of transferring the deformation on the source mesh (a human from the SCAPE dataset)

onto a different target mesh (the Armadillo model) using our method with automatic key point selection.

Correspondences are highlighted using colored balls where the same color indicates corresponding points.

The first column contains the source and target meshes without deformation. The first row shows the source

meshes and the second row gives the output meshes. The deformations of input meshes are reproduced

successfully on the target mesh, even with substantial geometric difference and large deformations.

where Tr(·) is the matrix trace. According to [27], the above optimization has250

a closed form solution and the optimal Rg can be obtained using singular value de-

composition (SVD). Let us denote Ŝg =
∑

(i,j)∈Gg
w̃ije

p
ije

qT

ij . Then, using SVD,

Ŝg = ÛgΣ̂gV̂g . Rg can be obtained as V̂gÛ
T
g . If the resulting Rg does not satisfy

detRg > 0, we negate it to ensure the obtained matrix is a rotation matrix (rather than

a mirrored matrix). We alternate the Global Step and the Local Step until convergence255

(i.e. the energy stays stable).

3.5. Automatic Key Point Selection

Automatic key point selection aims to find a subset S ⊂ C from the candidate set

C. To make the problem tractable, we use a greedy approach. The algorithm works in

two stages. In the first stage, we incrementally add new candidate key point to S, and260

in the second stage, we try to improve existing key points in S.

In the first stage, we start by setting S = {c1}. Since we will later update key

points in the set, the choice of the first key point does not usually affect the results. We

then iteratively add a new key point ct to S, which is the one that leads to the minimum
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Figure 6: The Euclidean distance between A′ and the deformed A using the example in Fig. 5. The Eu-

clidean distance decreases quickly and converges with a small number of key points.

energy:

Ê =
1

mnp

min
ct∈C−S

∑

A′∈A′

‖DS∪{ct}(A)−A′‖F , (22)

where DS(·) is an operator that produces the deformed mesh with S as key points, np

is the number of vertices, and m is the number of models. The process repeats until the

resulting energy Ê is sufficiently small (under a threshold ε = 0.03, where the models

are scaled consistently to fit into a unit sphere). The normalization makes the same265

error threshold applicable to a wide range of datasets.

In the second stage, we try to replace each selected key point in turn. For key point

ct ∈ S, we aim to find the best replacement while keeping other key points unchanged:

c∗t = argmin
cj∈C−S∪{ct}

∑

A′∈A′

‖DS−{ct}∪{cj}(A)−A′‖F . (23)

We then replace ct with c∗t . This process guarantees the error is non-increasing, as

if no better alternative exists, ct will remain unchanged. This repeats until no further

improvement can be found.

The pseudocode of the algorithm is summarized in Algorithm 1.270
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Algorithm 1 Algorithm for Automatic Key Point Selection

Input: Source mesh A, source deformed mesh set A′, the set of candidate points

from farthest point sampling C = {c1, c2, . . . , cnc
}, where nc is the number of

candidate points. nc = 100 is used in our experiments. nk ≤ nc is the number of

selected key points. ε is the threshold for termination of adding key points.

Output: The set of selected key points S, the affine matrix T.

1: Initialize S = ∅

2: Initialize error = ∞
3: Add c1 into S, C = C − {c1}
4: while error > ε do ⊲ first optimization

5: for ci ∈ C do

6: sumi = 0

7: for A
′

j ∈ A′ do

8: Let the desired deformed mesh Q′
j = A

′

j and use S ∪ {ci} as handles

9: Solve Eqn. 5 to obtain deformed vertex positions Qj

10: errj =
1

mnp

∥∥∥Qj −Q′

j

∥∥∥
F

11: sumi = sumi + errj

12: end for

13: end for

14: Let t = argmini sumi be the index with the minimum error. Add ct to S, and

remove ct from C.

15: Set error = sumt.

16: end while

17: Get the key point set S, and S ∪ C = {c1, c2, . . . , cnc
}

18: repeat ⊲ second optimization

19: ∀ci ∈ S, move ci from S into C

20: Find the optimal key point ct in C, move ct from C into S

21: until the set S is not changed

22: Return S and the corresponding T.
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Figure 7: Comparison of deformation results (top row) and deformation transfer results (bottom row) without

(a) and with (b) the Ediff term.

3.6. Deformation Transfer

After automatic key point selection, we use the method [6] to obtain the transfor-

mation T associated with each key point to deform the source mesh A to its deformed

shape A
′

. Then we ask users to select key points on the target reference mesh B corre-

sponding to the automatically selected key points on A. Once this is done, we directly275

apply the transformation matrix T of each key point from the source reference mesh

A to the corresponding point of the target reference mesh B, and use the method [6]

again to obtain the deformed mesh B′ by Eq. 2.

4. Results and Evaluation

Our experiments were carried out on a computer with an Intel i7-6850K CPU and280

16GB RAM. The algorithm complexity w.r.t. the number of candidate sample points

nc is O(n2
c). Since the calculation of errors with a different added key point can be

performed independently, we parallelize the algorithm using OpenMP. The running

times for key point selection, biharmonic weight calculation and deformation transfer

for different examples in the paper are reported in Table 1. The key point selection285
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Figure
Source

(#V/#F)

Target

(#V/#F)

Key Point

Selection (hours)

SWT/h

(s)

LBS Time

(ms)

Fig. 5 2161/4318 4502/9000 0.2831 1.342 0.58

Fig. 9 2752/5500 6890/13776 0.1452 4.164 1.3

Fig. 13 2161/4318 4526/9028 0.2085 1.664 0.47

Fig. 10 2502/5000 5012/10000 0.6938 1.888 0.78

Fig. 15 1127/2129 5050/9999 0.084 1.856 0.31

Fig. 11 2502/5000 5002/10000 0.2957 2.138 1.1

Fig. 12 1856/3708 2161/4318 0.0534 0.448 0.098

Table 1: Statistics of running times of automatic key point selection and deformation transfer. SWT/h is the

time of calculating skinning weights per handle. In the last column of the table, the LBS Time is the time for

linear blend skinning, i.e. calculating Eqn. 2.

process takes between a few minutes to about half an hour, whereas the deformation

transfer is under a minute. Note that key point selection can be considered as an offline

preprocessing step so the running time is acceptable.

We used various datasets to compare with the existing research [22, 3]. These var-

ious datasets come from [3] (Horse, Flamingo), SCAPE [34], TOSCA [25] (Dog,290

Gorilla, Micheal), MPI DYNA [37] (Fig. 14), MPI FAUST [38] (Fig. 9), FaceWare-

House [39] (Fig. 15), Cactus and Armadillo. When compared with [22], we used

the released code. In this section, we will show various examples to demonstrate the

performance of our method and compare it with the existing state-of-the-art methods.

Fig. 5 shows the results of transferring human deformation from the SCAPE dataset295

to the Armadillo model. It can be seen that the human and armadillo models differ sig-

nificantly in geometry, and our method with automatic key point selection effectively

produces high-quality deformation transfer results with a very sparse set of correspon-

dences (highlighted as colored balls). We further show the Euclidean error with an

increasing number of key points selected in Fig. 6. It shows that the energy decreases300

quickly and converges with a small number of key points. To show the effect of in-

corporating Ediff for deformation transfer, we compare the results (a) without and (b)
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Figure 8: Comparison deformation transfer results obtained with automatic key point selection and user

manual selection.

Figure 9: Deformation transfer results on sequences of the MPI DYNA dataset. From left to right, we

incrementally add new shapes to A′. The bottom row shows the key points that are selected by our algorithm

with increasingly large A′.
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Figure 10: Results of transferring the deformation of a horse to a dog. The first column shows the source and

target meshes with correspondences highlighted. Top row: source meshes, second row: the results of [3],

bottom row: our results.

with this term in Fig. 7. The top row shows the deformation of the source model. The

Ediff term helps to make the deformation result much closer to the given deformed

source shape A′. As a result, this also helps improve the deformation transfer result305

(bottom row).

To evaluate the effectiveness of key point selection, we performed a user study. 10

participants were involved in the user study where they were asked to choose nk corre-

spondences manually. Results for the human to armadillo transfer example are shown

in Fig. 8. The deformation transfer result using our deformation transfer framework310

but with manual correspondences performs significantly worse than the result with our

automatically selected key points, with obvious artifacts, including distortions and dis-

similarity of poses. Our automatic key point selection not only reduces user effort but

produces much more realistic deformation transfer results.
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Figure 11: Results of transferring the deformation of a person to a gorilla. The first column shows the source

and target meshes with correspondences highlighted. Top row: source meshes, second row: the results of [3],

bottom row: our results.

We further evaluate how our key point selection copes with a larger set of deformed315

source shapes A′. Fig. 9 shows an example based on the MPI DYNA dataset. The

results from left to right show key points selected with more shapes added to A′. It

can be seen that the selected key points are updated to reflect the needs of newly added

shapes.

We also compare our deformation transfer method with state-of-the-art deformation320

transfer methods [22, 3] using a variety of examples (Figs. 10-13). These examples are

challenging as the source and target shapes differ significantly (e.g. a cactus vs. a per-

son in Fig. 12, and a person vs. a flamingo in Fig. 13) and contain large deformations.

Our method produces plausible deformation transfer results which are artifact-free and

semantically correct. Alternative methods [22, 3] can create distorted output due to325

too few correspondences, such as dissimilar deformations from the source deformation

and implausible shapes (e.g. wrongly bent legs of the flamingo). Since the method [22]

uses cages, additional effort is needed to create such cages. For some examples, cages

22



Figure 12: Results of transferring the deformation of a cactus to a person. The first column shows the source

and target meshes. Top row: source meshes, second row: the results of [3], third row: the results of [22],

bottom row: our results.

may include additional parts of the mesh, causing poor deformation results. Artifacts

of these methods are highlighted using red rectangles.330

It is generally difficult to provide a quantitative evaluation for deformation transfer

methods. We use the MPI FAUST dataset which contains human bodies of different

shapes with the same set of poses (see Fig. 14). We can therefore use it for comput-

ing a numerical measure taking the target shape with desired pose as the ground truth.

We use both our automatically selected key points and the manually specified ones (the335

best result out of the 10 participants) and compare deformation transfer results with our

method and alternative methods [22, 3]. We measure the average Euclidean distance

between corresponding vertices of the deformation transfer results and the ground truth.
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Figure 13: Results of transferring the deformation of a person from the SCAPE dataset to a flamingo. The

first column shows the source and target meshes. Top row: source meshes, second row: the results of [3],

third row: the results of [22], bottom row: our results.

We show the proportion of correspondences (y-axis) within an error bound (x-axis) of

different results. Our method is consistently better than the alternative methods. More-340

over, for our method, our automatically selected key points outperform user specified

key points.

We also show a challenging example of transferring human facial expressions to a

dog (see Fig. 15). Our method is able to produce natural deformation results even with

a large difference of shapes.345
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Figure 14: Comparison with methods [22, 3] on the MPI FAUST dataset. We show the proportion of corre-

spondences (y-axis) within an error bound (x-axis) with results generated by different deformation transfer

methods, as well as automatic and manually selected key points.

5. Conclusions

In this paper, we adapt skinning with biharmonic weights to deformation trans-

fer, and provide an automatic method to select effective key points. According to the

amount of deformation and the level of deformation details, our method adaptively se-

lects a suitable number of key points, as well as their positions, such that good transfer350

results are obtained. Therefore, if the source deformed mesh A
′

has more deforma-

tion details, more key points will be selected. Nevertheless, the number of key points

required is still less than traditional methods [3]. The aim of our method is to obtain

effective deformation transfer with as few key points as possible. We exploit deformed

source meshes to provide better segmentation and add an additional constraint to en-355

sure the deformed shape is close to the given deformed source meshes. Our deforma-

tion transfer method outperforms state-of-the-art methods. We also provide an effective

approach to automatically selecting key points. Extensive experiments show that this

greatly reduces user effort and produces better deformation transfer results than those

manually specified by normal users. Currently, our key point selection algorithm is360
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Figure 15: Deformation transfer results produced using our method showing the expressions on the face

transferred to a dog. The face shapes are from the FaceWareHouse dataset.

treated as offline preprocessing. In the future we would like to consider more effective

optimization approaches to speed up this stage.
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