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Abstract. This paper describes a general approach to compute a family
of convexity measures. Inspired by the use of geometric primitives (such
as circles) which are often fitted to shapes to approximate them, we
use convex polygons for this task. Convex polygons can be generated
in many ways, and several are demonstrated here. These polygons are
scaled and translated to ensure that they fit the input shape and produce
a meaningful convexity measure. Subsequently, a convexity measure can
be computed based on the degree of overlap between the two shapes.
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1 Introduction

Shape is a characteristic of objects that is useful in both biological perception
and computer vision, and many different shape characteristics exist, e.g. linearity
circularity convexity, ellipticity, elongation, compactness, linearity, sigmoidality,
tortuosity, etc. While there also exist many approaches to measure these var-
ious characteristics, several approaches are commonly used across a range of
shape characteristics. For instance, shapes which can be described by paramet-
ric models can be fitted to the object, and the fitting error used to quantify the
membership of the object to that class of shape. An example is shown in Fig. 1b
in which a circle has been fitted to minimise the squared Euclidean errors of the
data points. Such an approach is attractive, since the fitted model presents the
ideal instance of the model most similar to the data, and therefore the errors
fairly represent deviations from the shape characteristic [1]. Another popular
approach for simple geometric models is to quantify the error with respect to
the circumscribed or inscribed model, see Fig. 1c and d.

Convexity is a commonly used shape characteristic, and many convexity mea-
sures have been developed (e.g. [2–10]). Since it is not straightforward to deter-
mine what general convex geometric model is appropriate to fit in the least
squared sense to the data, the dominant approach is to use instead the con-
vex hull, as shown in Fig. 2a and c. This could be considered the analogue of
the circumscribed circle presented in Fig. 1b. The convex skull (i.e. the largest
convex polygon contained with the object) can also be used to measure convex-
ity [8] – see Fig. 2b and d, but is rarely used due to the high cost of computing it
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(a) (b) (c) (d)

Fig. 1. Various approaches to fitting circles to data. (a) input shape (b) least squares
fit of circle to data points (c) circumscribed circle (d) inscribed circle.

(i.e. O(n7), see [11]), which is in contrast to the convex hull, for which efficient
algorithms exist. However, a disadvantage is that for shapes not close to an
instance of the perfect model, the circumscribed/inscribed model of the convex
hull does not provide a representative instance of the model, and therefore errors
with respect to this model will not accurately reflect the shape characteristic.

As an alternative to the convex hull, Rosin and Mumford [8] described two
symmetric convexity measures that were based on a “robustified” version of
the convex hull, which was defined as the convex polygon that maximised its
overlap with the input polygon. It can be seen in Fig. 3a that this polygon neither
circumscribes or inscribes the input shape, and for the circle example it is rather

(a) (b) (c) (d)

Fig. 2. Two approaches to fitting convex polygons to data. (a) & (c) convex hull (b)
& (d) convex skull.
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similar to the fitted circle in Fig. 1b. In this paper we present several alternative
approaches which also produce convex polygons that partially overlap the input
polygon (see Fig. 3b–f). Again, for the circle example they are similar to the
fitted circle in Fig. 1b.

2 New Convexity Measures

The basic approach taken in this paper to compute a convexity measure is:

1. generate a convex polygon based on the input shape; several options are
presented in this paper;

2. transform the convex polygon so that it corresponds as best as possible to
the input shape; in this paper we have applied a scaling such that the areas
of the input and convex polygons are the same, and have also translated the
polygons to maximise their area of overlap;

3. compute a convexity measure; in this paper we have used the ratio of the area
of overlap to the area of the input polygon.

We now describe the alternative approaches we have taken to step 1:

Convex Hull – CS
A: A natural and efficient way to compute a convex polygon

is to use the convex hull, see Fig. 2a and c.

Smoothing – CB: It is known that if a curve is smoothed using the geomet-
ric heat flow equation it becomes more and more circular, eventually shrinking
to a circular point in finite time [12]. We iteratively apply smoothing to the
input shape until the result becomes convex, see Fig. 3c. Since the data has been
heavily smoothed it is sufficient to test for convexity in a simple manner by
checking, for a counterclockwise ordered curve, that at each vertex the sign of
its subtended angle is positive. Alternatively more sophisticated methods (e.g.
estimating curvature by fitting splines [13]) could be employed.

Polygonal Simplification – CY : There are many algorithms available. We use
an optimal dynamic programming approach [14] applied to a subsampled version
of the contour, which is reasonably efficient and robust. This provides a polyline
containing n line segments, and a binary search is applied to find the convex
polygon with the maximum value of n, see Fig. 3d.

Convexification – CF : The polygonal convexification process was described by
Paul Erdös [15,16], and involves reflecting a polygon’s concavities about their
corresponding edges in the convex hull. Iterating this process results in a convex
polygon, which has previously been used to measure convexity [17]. Two such
convexified polygons are shown in Fig. 3e.

Convexification with Flipturn– CFT : A modification of the above scheme,
in which the concavities are reflected about the complete edge of the convex
hull on which the concavity is located, and also have the order of their vertices
reversed (an “extended flipturn”) was also considered, see Fig. 3f.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Some alternative approaches to fitting convex polygons to data. (a) Rosin and
Mumford (b) rescaled convex hull (c) smoothed input polygon (d) polygonal simpli-
fication of the input polygon (e) convexification (f) convexification using extended
flipturns.

For those methods that generate a convex polygon by enlarging the input
shape (such as the convex hull or convexification) the rescaling applied in step 2
provides a balance between protrusion and intrusion irregularities. This is not
otherwise present in the most common convexity measures area(S)/area(CH(S))
and perimeter(CH(S))/perimeter(S), which are therefore much more sensitive to
protrusions than to intrusions.
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For highly concave shapes there may be a large difference in areas between
the original shape and its convex hull. Consequently, when the convex hull is
shrunk to match the original shape’s area there is the possibility that it will
not intersect the original shape, leading to a measured convexity value of zero.
Since it is undesirable for the convexity measure to produce zero (as shapes
are assumed to have non-zero area) the shrunk convex hull is translated to
ensure an overlap with the original shape. Although it would be possible to
use more general transformations (e.g. rotation, affine with area preservation,
etc.), if the convex hull example is considered then translation is the minimal
transformation that produces a sensible convexity measure. That is, no non-zero
area shape should produce a measured convexity equal to 0. It is generally most
appropriate to use the simplest solution that is effective.

The translation parameters are determined using Powell’s method [18]. To
ensure that the estimation process converges even in situations where there is
no intersection between the shrunk convex hull and the original shape, the con-
vex hull is shrunk gradually (10 steps have been found to be sufficient for all
our data). Optimisation of the translation parameters is then interleaved with
iterations of shrinking. The effectiveness of the optimisation is demonstrated in
Fig. 4.

convex hull single scaling of CH 10 step scaling of CH

1.00 0.53 0.26 0.15 1.00 0.71 0.00 0.00 1.00 0.71 0.47 0.26

Fig. 4. Convex hull based convexity measure. Four shapes with increased bending are
shown, as well as their convex hulls or rescaled convex hulls. Underneath each shape is
shown its measured convexity value.

3 Experimental Results

In this section we provide several experiments in order to illustrate the behaviour
and effectiveness of the new convexity measures proposed in this paper.

3.1 Lesions

The first experiment is to classify 40 lesions as either benign or malignant
melanomas. The lesions have been rated by 14 dermatologists from a four point
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scale according to their probability of being a melanoma. Lee et al. [19] presented
this data, and introduced an “overall irregularity index” which they showed pro-
vided a Spearman rank correlation of 0.88 against the mean expert rating. Pre-
viously we found that convexity measures also performed well on this task. The
standard area based convex hull convexity measure CA had a similar correlation
value of 0.888, while both Rosin and Mumford’s [8] convex hull based measures
CP and CQ achieved the high correlation value of 0.958.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Lesions rated by experts as having a low (top row) and high (bottom row)
probability of being a melanoma. The convex polygons corresponding to CY , CB , CS

A,
CF and CFT are overlaid.

Table 1. Spearman rank correlation of the proposed convexity measures against the
mean expert rating of the probability of a lesion being a melanoma.

CY CB CS
A CF CFT

0.938 0.933 0.933 0.446 0.299

Figure 5 shows two lesions overlaid with the convex polygons. As Table 1
shows, most of the new convexity measures proposed in this paper also outper-
form the overall irregularity index, and come close to the high correlation value
achieved by Rosin and Mumford’s CP and CQ measures.

3.2 Greebles

Next, we replicate an experiment from Rosin and Mumford [8] in which they
computed convexity for a set of 1137 polygons containing a variety of shapes
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Two examples of greebles; top row: female, bottom row: male. The convex
polygons corresponding to CY , CB , CS

A, CF and CFT are overlaid.

Table 2. Convexity measures applied to 1137 polygons and ranked left to right by the
standard deviation of the greeble ranks.

CQ CP CB CY CS CA CS
A CJ CF CFT CL

68.9 69.0 69.6 73.3 78.7 89.3 92.20 96.5 101.28 103.70 113.6

as well as 53 “greebles”. The latter are synthetic test objects used as stimuli in
psychological tests, and are shapes that have a qualitatively similar appearance
with some minor variations in their four protrusions; two examples are shown
in Fig. 6. The convexity measures are compared by ordering the full set of 1137
polygons according to each of the convexity measures. The standard deviation
of the greeble ranks is computed, and low values indicate the effectiveness of a
measure since it implies that the measure is stable and consistent across minor
variations in shape. Results are shown in Table 2, and it can be seen that several
of the new convexity measures (in particular CB) are essentially as effective as
the convexity measures based on the robust convex hull and the convex skull
(i.e. CP and CQ) [8].

3.3 Diatoms

This experiment uses the data from the ADIAC project. 808 contours were taken
from images of diatoms (unicellular algae) which come from 38 taxa (classes)
that were manually determined by an expert. Not only the boundary contours,
but also each diatom’s ornamentation, which consists of zero or more (mainly
open) curve sections in the interior, are available – see Fig. 7. Previously we have
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classified this data using several convexity measures both alone and in com-
bination with the following set of descriptors [10]: circularity, ellipticity, rec-
tangularity, triangularity [20] aspect ratio, compactness, convexity, eccentric-
ity, the first four rotation, translation, and scale moment invariants, four rota-
tion, translation, and scale moment invariants [21], the first three affine moment
invariants [22]. This experiment has been rerun using a nearest neighbour clas-
sifier with Mahalanobis distances and leave-one-out cross validation rather than
oblique decision trees (as in [10]), and the new (improved) classification accu-
racies are shown in the top half of Table 3. The lower half of Table 3 shows the
results of classification using the convexity measures proposed in this paper.
It can be seen that the performance of the two sets of convexity measures is
similar: while any individual convexity measure has a low classification rate,
it is significantly boosted when combined with the (single) interior convexity
measure, and is even more substantially increased when the 14 general shape
descriptors are added. A further improvement is achieved by combining the gen-
eral shape descriptors with the interior based convexity measure CJ(I) and the
new boundary based convexity measure CFT to obtain 91.58 %.

It is interesting to note that although the various convexity measures are
nominally measuring the same shape characteristic, in fact they are captur-
ing different aspects of convexity. Therefore when used together the different

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 7. Outer boundary and interior contours of examples of diatoms from different
taxa.

Table 3. Classification percentage accuracies for 808 diatoms with 38 classes using
convexity plus additional general shape measures.

CA CL CJ(B) CJ(I) CJ(B) & CJ(I)

Convexity 16.83 11.26 16.83 21.41 45.17

Convexity and other features 87.75 86.88 87.75 90.59 90.47

CY CB CS
A CF CFT

Convexity 20.79 17.95 21.04 17.33 13.00

Convexity and CJ(I) 47.52 47.40 45.54 45.67 40.22

Convexity and other features 88.61 87.75 87.75 85.77 87.25
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convexity measures provide independent information that enables their combi-
nation to outperform any individual convexity measure. The convexity measures
previously tested in Žunić and Rosin [10], namely CA, CL, CJ(B) and CJ(I),
when combined provide 62.13 % accuracy, a three-fold increase on the individual
convexity measures. If both the old and new convexity measures are combined,1

namely CL, CJ(B), CJ(I), CY , CB , CS
A, CF and CFT then the classification rate

increases to 77.48 %.

4 Conclusions

In this paper we have described a new approach to compute a family of convexity
measures. The procedure involves (1) generating a convex polygon, (2) fitting
the convex polygon to the input shape by applying a scaling and translation, and
(3) computing the convexity measure based on the input shape and the convex
polygon.

Several specific instances of this approach were demonstrated using the con-
vex hull, smoothing, convexification, etc., to generate the convex polygon, while
for the convexity measure we used the ratio of the area of overlap of the two
shapes to the area of the input polygon. Moreover, many additional possibilities
exist for each of these two steps, which further expands the number of convexity
measures that can be generated.

The resulting convexity measures have the desirable properties that only
convex shapes have measured convexities equal to 1, and that no non-zero area
shape should produce a measured convexity equal to 0.

Experiments showed that the proposed convexity measures are effective for
classification, and that multiple convexity measures can be combined with each
other and with non-convexity measures to improve classification rates.
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