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ABSTRACT
Semi-supervised learning has been well developed to help
reduce the cost of manual labelling by exploiting a large
quantity of unlabelled data. Especially in the application
of land cover classification, pixel-level manual labelling in
large-scale imagery is labour-intensive, time consuming and
expensive. However, existing semi-supervised learning meth-
ods pay limited attention to the quality of pseudo-labels
during training. However, the quality of training data is
one of the critical factors determining network performance.
In order to fill this gap, we develop a confidence-guided
semi-supervised learning (CGSSL) approach to make use of
high-confidence pseudo labels and reduce the negative effect
of low-confidence ones on training the land cover classifi-
cation network. Meanwhile, the proposed semi-supervised
learning approach uses multiple network architectures to in-
crease pseudo-label diversity. The proposed semi-supervised
learning approach significantly improves the performance
of land cover classification compared to the classical semi-
supervised learning methods, and even outperforms fully
supervised learning with a complete set of labelled imagery
of the benchmark Potsdam land cover dataset.

Index Terms— Semi-supervised Learning, Land Cover
Classification, Multi-modality, Confidence Guided Loss

1. INTRODUCTION

In recent years, with the great success of deep learning in
computer vision, automated land cover classification ap-
proaches have been significantly improved by using deep
learning. Nowadays, the majority of deep-learning land
cover classification methods are based on supervised learning
[1], which generally requires enormous annotated datasets.
Although there are many well-annotated datasets in the com-
puter vision area, it is difficult to generalize deep learning
models trained by those datasets to the remote sensing do-
main. Meanwhile, manual annotation by experts of large-
scale remote sensing data, such as satellite products and
images captured by drones in complex terrain, is labour-
intensive and expensive. Fortunately, a large amount of
unlabelled remote sensing data is freely available. Thus,

exploring semi-supervised learning approaches for remote
sensing applications has become a feasible way to solve the
problem of the lack of labelled data [2].

In computer vision, semi-supervised learning has achieved
competitive performance in applications such as image clas-
sification [3] and semantic segmentation [4]. It has become
evident that just using a portion of a labelled dataset and
the rest as unlabeled data achieves competitive performance
compared to fully supervised learning with a complete set
of labelled data. Specifically, mainstream semi-supervised
learning methods generate “pseudo” labels by using the cur-
rent prediction of the model during training to supervise the
deep learning model. To improve the performance of semi-
supervised learning approaches, accuracy labels is regarded
as two key points [5]. In semi-supervised land cover classifi-
cation, similar emphasis is placed on enhancing the accuracy
and diversity of pseudo labels. This work utilizes the con-
fidence of pseudo labels to reweight the loss, effectively
leveraging high-accuracy pseudo labels while mitigating the
impact of low-accuracy ones. On the other hand, to enhance
the diversity of pseudo labels, a parallel utilization of three
distinct neural network models is employed.

Specifically, the contributions of this work are as follows:
(1) We propose a confidence guided cross entropy loss for
semi-supervised land cover classification. This is flexible and
can be easily transferred to other computer vision tasks such
as semantic segmentation. (2) An adaptive mechanism is de-
signed to adjust the threshold automatically (no-interaction
setting) for judging the quality of the pseudo labels based on
their confidence. (3) We promote the investigation of multi-
ple network outputs in terms of an information theory aspect
– entropy – to weight confidence levels of pseudo labels from
each network. Then, we use this information to optimise the
unsupervised training process in semi-supervised land cover
classification.

2. BACKGROUND & RELATED WORK

In general terms, semi-supervised learning is defined as an ap-
proach that lies between supervised and unsupervised learn-
ing. During the supervised learning step, various widely
applied semantic segmentation methods can be used such
as PSPNet [6], UNet [7], SegNet [8], DeepLabV3+[9]. In



Fig. 1. Overall framework of the confidence guided semi-supervised learning (CGSSL) approach

current semi-supervised learning research [4, 10, 11] within
the field of computer vision, the commonly used network is
DeepLabV3+ with a pre-trained backbone e.g. ResNet 50.
However, in remote sensing, network performance rankings
differ and no specific architecture dominates. Especially
when the number of labelled data is small, due to the ex-
ploitation of low- and high-level features via efficient skip-
connections, a simpler method like U-net shows competitive
(even better) results compared to DeepLabV3+ with a pre-
trained backbone.

Consistency regularization [12] describes a class of un-
supervised learning algorithms as a part of semi-supervised
learning, that are easy to implement and widely compatible
with supervised learning segmentation networks. The key
idea of consistency regularization is to force perturbed mod-
els (or perturbed inputs) to have consistent outputs for unla-
belled inputs. Based on this concept, cross pseudo supervi-
sion (CPS) [13] and CPS-to-n-networks (n-CPS) [14] show
considerable success, which yields state-of-the-art in seman-
tic segmentation benchmark datasets, e.g. Cityscapes. In a
previous land cover mapping work [15], we have shown that
consistency regularization is helpful for leveraging minimal
supervision. However, CPS and n-CPS use pseudo labels to
supervise the network regardless of their quality. In addition,
perturbed models in those methods have the same structure
which causes these networks to tend to output similar predic-
tions after certain iterations. In order to increase the diversity
of pseudo-labels in parallel using different segmentation net-
works stands out to be an efficient and accurate alternative
[16].

3. METHOD

The proposed semi-supervised learning approach is divided
into supervised learning and unsupervised learning parts as
shown in Figure 1. In each training iteration, both labelled
and unlabelled data are given as input into the three different
networks (PSPNet [6], UNet [7], SegNet [8]). The labelled

data is used in a regular supervised learning pattern to train
these models by using the cross-entropy loss function. On
the other hand, unlabeled data is utilized to generate pseudo
labels, which are exploited to inform each network. The pre-
diction of each network is the class probabilities for all pixels
of the corresponding input image, and then the predictions
from three networks are added linearly after a softmax layer
to generate a comprehensive prediction. In this case, if the
confidence distributions among the three networks are iden-
tical, the operation of linear addition will promote the distri-
bution to be sharper than one of the predictions (low uncer-
tainty). Otherwise, the combined prediction will not have a
distinct strong peak (high uncertainty). Considering the fact
that the information entropy is a measure of uncertainty, we
calculated the entropy of the classification distribution based
on the combined prediction to confirm confidence in the pre-
dictions. Furthermore, the proposed confidence-guided cross-
loss function is designed to limit the negative contribution of
the pseudo labels with low entropy (high uncertainty) to the
network parameter optimisation. Finally, the total loss is set
to a linear combination of supervised loss Ls and Lu unsu-
pervised loss as

L = Ls + λLu, (1)

where λ is the trade-off weight between supervised and un-
supervised losses. It is worth noting that the unsupervised
loss Lu is the linear addition of 6 losses which results from
3-model cross supervision.

As shown in Figure 2, the proposed confidence-guided
cross-entropy loss module is used to calculate the unsuper-
vised loss. The aim of the loss is to make use of the con-
fidence of predictions to re-weight the cross entropy loss at
the pixel level among the high-quality predictions based on
their entropy at the class level. The mean value of entropy is
regarded as a threshold to decide on the reliability of the es-
timated confidence. The unreliable confidence values are as-
sumed to provide limited useful information for re-weighting
the loss. Thus, the loss of these pixels is not reweighted
and just uses the standard cross entropy loss function. How-



Fig. 2. Illustration of Confidence Guided Cross Supervision.

Table 1. Performance comparison of different methods for Potsdam dataset.
Model Type Accuracy Precision Recall mIoU F1-score

U-Net1† [7] Supervised 85.36% 76.75% 81.23% 67.59% 78.92%
U-Net2∗ [7] Supervised 84.26% 76.45% 79.32% 66.49% 77.86%
Mean Teacher [17] Semi-Supervised 84.58% 78.52% 80.88% 68.24% 79.68%
CPS [13] Semi-Supervised 85.30% 77.94% 80.75% 68.38% 79.32%
CGSSL (ours) Semi-Supervised 86.59% 79.06% 83.54% 70.17% 81.24%

†U-Net1 was trained with the whole 3456 labelled samples. ∗U-Net2 was trained with 1728 labelled samples.

ever, the confidence of predictions above the mean value is
regarded as reliable, which is used for entropy calculation
to re-weight the loss. The weight w is defined as follows
w = max(I)−I

max(I)−min(I) +1, where I refers to the entropy of a se-
ries of class predictions for each pixel. Thus, since w ≥ 1 the
effect of these pixels is increased during training compared
to the pixels with unreliable confidence values. Instead of di-
rectly using the probability of predictions to weight the loss
(focal loss [18]), entropy is used as a measurement to rep-
resent the confidence of comprehensive pseudo labels from
multiple distinct networks. The weight, w, is added as a fac-
tor to standard cross entropy loss ℓ(x, y) to favour the high-
quality pseudo labels.

ℓ(x, y) =

∑N
n=1 −w log

exp(xn,yn )∑C
c=1 exp(xn,c)

N
, (2)

where x represents the input, y denotes the target class, w
signifies the weight, C indicates the number of classes, and
N is the batch size. Finally, inspired by [13] and [16], the
unsupervised loss is acquired by cross-supervision between
predictions from different networks.

4. EXPERIMENTS AND RESULTS

We evaluated our method using the ISPRS Potsdam dataset
[19], which consists of 38 multi-source 6000× 6000 patches,
including infrared, red, green, and blue orthorectified opti-
cal images, and corresponding digital surface models (DSM).
We divided these data tiles into 512 × 512 patches, resulting

in 3456 training samples and 2016 test samples. Both true or-
thophoto and DSM modalities have a 5 cm ground sampling
distance. The dataset contains six manually classified land
cover classes: impervious surfaces, buildings, low vegetation,
trees, cars, and clutter/background.

In order to compare the proposed method – CGSSL – we
utilised two classic semi-supervised models of Mean Teacher
[17] and CPS [13]. The number of labelled data used in the
aforementioned semi-supervised learning approaches is only
half (1728 samples) of the whole training split of the Potsdam
dataset. We remove the labels of the remaining half and just
used the images in the unsupervised part. We also provide the
performance of UNet [7] only in supervised learning patterns
for the whole and half-labelled data which are named U-Net1
and U-Net2 in the sequel, respectively. The same test set is
used to evaluate all models. Thus, if applying the proposed
method in real-world scenarios, annotate only a subset of im-
ages and leave the remaining unlabelled to minimize manual
labour.

Our experiments are implemented by Pytorch. we use a
mini-batch SGD optimizer adopted a poly learning rate pol-
icy. All the experiments were performed on NVIDIA A100-
sxm in the GW4 Isambard. We thoroughly evaluated all mod-
els using class-related performance metrics, including accu-
racy, precision, recall, mean intersection over union (mIoU),
and F1-score. As shown in Table 1, CGSSL shows the best
performance in terms of all performance metrics. Especially,
CGSSL improves recall significantly due to the great reduc-
tion of false negatives in prediction. Even though CGSSL



Fig. 3. Visual Results of each method on Potsdam Dataset. Values between parentheses refer to accuracy in percentages. #U-
Net1 was trained with the whole 3456 labelled samples. ∗U-Net2 was trained with 1728 labelled samples.

only uses half of the labelled data, its performance is even bet-
ter than UNet1 which is trained with the whole dataset. Figure
3 shows a case of predictions for all methods where CGSSL
is mostly close to the ground truth and no other classes are
predicted.

5. CONCLUSION

In this paper, we introduced an innovative semi-supervised
learning approach for land cover classification that utilizes a
confidence-guided cross-entropy loss. Especially, an adap-
tive loss was provided for the semi-supervised learning to ex-
ploit pseudo labels with an information theory perspective.
This is also flexible to be transferred to various other semi-
supervised learning tasks. The proposed method shows con-
siderable performance and benefits from unlabeled data for
land cover classification. Meanwhile, since three networks
are required to increase the diversity of pseudo labels in train-
ing processing, one of the drawbacks of this method is the ex-
tensive computational requirement and might not be efficient
to implement in edge computing devices for practical appli-
cations. This is already listed as our future work to further de-
velop lighter segmentation architectures for semi-supervised
learning.
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