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Automatic Example-based Image Colourisation

using Location-Aware Cross-Scale Matching
Bo Li, Yu-Kun Lai, Matthew John, Paul L. Rosin

Abstract—Given a reference colour image and a destination
grayscale image, this paper presents a novel automatic colouri-
sation algorithm that transfers colour information from the
reference image to the destination image. Since the reference
and destination images may contain content at different or even
varying scales (due to changes of distance between objects and
the camera), existing texture matching based methods can often
perform poorly. We propose a novel cross-scale texture matching
method to improve the robustness and quality of the colourisation
results. Suitable matching scales are considered locally, which
are then fused using global optimisation that minimises both the
matching errors and spatial change of scales. The minimisation
is efficiently solved using a multi-label graph-cut algorithm.
Since only low-level texture features are used, texture matching
based colourisation can still produce semantically incorrect
results, such as meadow appearing above the sky. We consider
a class of semantic violation where the statistics of up-down
relationships learnt from the reference image are violated and
propose an effective method to identify and correct unreasonable
colourisation. Finally, a novel nonlocal ℓ1 optimisation framework
is developed to propagate high confidence micro-scribbles to
regions of lower confidence to produce a fully colourised image.
Qualitative and quantitative evaluations show that our method
outperforms several state-of-the-art methods.

Index Terms—Image colourisation, cross-scale texture match-
ing, location statistics, graph cut, sparse, edge preserving

I. INTRODUCTION

Image colourisation is the process of adding colour to

grayscale images. The uses for colourisation of grayscale

images are numerous ranging from converting black and

white movies to colour, to colourising historic photographs

to improve the aesthetics of the image. The alternative prob-

lem, conversion of colour images to grayscale, is generally

straightforward although some methods [1], [2] better differ-

entiate the chromatic difference of pixels. A popular process

of image colourisation is one whereby the user scribbles a

few strokes of colour on the image, and the colours of the

remaining pixels are then determined automatically [3]. The

results of the colourisation can differ greatly depending upon

how the colour scribbles are chosen, hence results depend

upon user skill and experience. This is exemplified when a

novice user applies the colour scribbles forgetting to mark the

region boundaries where intensities are similar, causing the

colourisation algorithm to spread the colour to regions of the

image that should not contain the particular colour, producing

unrealistic results.
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Automatic colourisation methods such as that by Welsh

et al. [4] have removed the burden of annotating the image

with colour scribbles by using a colour reference image to

transfer colour. They are able to produce realistic results if a

suitable reference colour image is provided by the user. Such

work focuses on performing colour transfer automatically from

reference images and propagating the colour from a small

number of transferred colour scribbles. In contrast with the

task of traditional colour transfer, the destination image does

not have colour information, so colourisation mainly relies

on matching of luminance and texture information. In many

cases, the objects have different scales in the reference and

destination images. Therefore, feature matching in different

scales is essential. Although some advanced feature detectors,

such as SIFT [5] and SURF [6], can provide scale-invariant

features, they are sparse and not suitable for dense matching

required for colourisation. In this paper, we propose a cross-

scale matching method that considers different potential scales

locally when matching the reference and destination images,

which are then fused globally with graph-cut to find spatially

coherent scales with good matching quality. Colour transfer

via texture matching may result in some semantic errors, e.g.

when similar textures cause confusion, some of the sky may be

colourised in the colour of grass. Such unreasonable colouri-

sation results cannot be detected by low-level texture features,

although appear obviously wrong to a human observer. Instead

of using machine learning which requires a large number of

training images and loses the flexibility of easily specifying

the desired colour style, we focus on a class of simple

semantic violations where the up-down spatial relationship

is violated. This is a reasonable assumption as images are

normally taken with an (near) upright camera. We perform

statistics of up-down relationships of colour distribution in the

reference image, which is then used to help detect and correct

unreasonable matching results in the destination image, as we

assume the content of the reference and destination images

are semantically related. Finally, a colour propagation step is

performed to diffuse colour from a small number of scribbles

to the whole image. Improper propagation may cause over-

smoothing effect at edges or step effect in flat regions. In

this paper, we propose a nonlocal ℓ1 optimisation framework

along with confidence weighting to suppress artefacts caused

by wrong matchings while avoiding over-smoothing edges.

Examples of our colourisation method are shown in Fig. 1

where the same destination image is colourised with different

reference images to obtain different but all plausible results.

Such flexibility is often necessary to avoid essential semantic

and artistic ambiguities. Popular deep-learning methods can

learn automatic colour mapping through training on a large
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Fig. 1. Colourisation results with different reference images. The first row
is the destination grayscale image and different reference images, the second
row and the third row are the corresponding colourisation results of method
[7] and the proposed method respectively.

set of images, and have shown the powerful ability for the

task of image colourisation. However, most of the existing

deep-learning colourisation methods cannot produce example-

based colourisation results. Although the most recent state-

of-the-art deep learning based method [7] can also cooperate

with a reference image, its mechanism is a global colour

distribution mapping, which can result in error colours for

challenging cases, as shown in the second row. More examples

of method [7] will be shown in Sec. IV.

The major contributions of this paper are:

1) To address scale variation within and between reference

and destination images, we propose a cross-scale match-

ing method, where locally good matching scales are

identified, which are then fused using a global graph-cut

based optimisation. This approach improves robustness

and quality of colourisation.

2) We consider a class of semantic violation typically

appearing in automatic colourisation and develop an

effective solution to automatically detect and correct

unreasonable matching results, using statistics of up-

down colour distribution in the reference images. Our

method significantly improves colourisation results for

challenging cases where existing texture matching based

methods fail.

3) Instead of using a small set of user scribbles, we

propose a novel confidence weighted nonlocal ℓ1 colour

propagation method in which a dense micro-scribble

image composed of matched colours is generated along

with a confidence map used as a soft constraint in

the optimisation framework. The proposed nonlocal ℓ1
propagation framework maintains the tone of micro-

scribble image while effectively suppresses the over-

smoothing effect at edges.

In the following sections, we first review related work in

Sec. II. We describe our method in detail in Sec. III, followed

by experimental results both qualitatively and quantitatively in

Sec. IV. Finally conclusions are drawn in Sec. V.

II. RELATED WORK

Some work considers interactive colourisation guided by

user scribbles. Levin et al. [3] presented a colourisation

method based upon an optimisation problem. The user has to

apply several colour scribbles to an image and the colours

are then propagated through the image by means of min-

imising a quadratic cost function. The optimisation problem

is formulated as a linear system which can be solved effi-

ciently, resulting in a colourised image in a relatively moderate

timescale. Yatziv and Sapiro [8] proposed another scribble

based colourisation algorithm. It is based on luminance-

weighted chrominance blending and efficient intrinsic distance

computation, and leads to a more efficient algorithm for both

image and video colourisation. Nie et al. [9] proposed another

improvement over [3] with comparable quality and improved

efficiency by using quadtree decomposition based non-uniform

sampling. Although scribble based methods can colourise

images to a high standard, it requires a significant amount

of user effort to apply the colour scribbles to the grayscale

image. Examples given by the authors show a varying number

of scribbles required dependent on the complexity of the

image. Balinsky and Mohammad [10] put forward a Bayesian

analysis of the colourisation problem that is convexified by

using ℓ1 optimisation. Similar to [3] the image is annotated

with colour scribbles. The authors show that their proposed

approach outperforms that of [3] although their method takes

longer to solve an equivalent sized image. For all these scribble

based methods, the colourisation results are highly influenced

by the placement of colour scribbles, thus to achieve realistic

results the user has to have a degree of knowledge regarding

the effect of scribble placement, and it can be time-consuming.

Welsh et al. [4] proposed the first automatic colourisation

method using a colour transfer approach from a reference

colour image to a destination grayscale image. The method

transfers the chromatic information from the reference image

to the destination image based upon local matches of the

weighted average of a pixel’s luminance and neighbourhood

statistics keeping the luminance of the destination image

unchanged. Such colour transfer works well when there is

a strong correlation between the luminance values of colour

regions in the reference and destination images. For more

challenging images, the idea of swatches was introduced

whereby user interaction was incorporated to indicate re-

gions in the reference image that should be transferred to

the destination image. This work was extended by Ying et

al. [11] by using a more extensive neighbourhood description

computed using co-occurrence matrix based texture features.

To reduce the artefacts caused by outliers, the edit-nearest-

neighbour method [12] is used to try to remove the outliers.

While producing improved results, the co-occurrence matrix

is expensive to compute. Chen et al. [13] combined [4]

with foreground/background image matting to improve the
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colourisation results but user interaction is needed to guide

the grayscale image matting. A global histogram regression

based method is proposed in [14]. The method is based on

the assumption that the colourised image should have similar

colour distribution as the reference. The method however may

not produce ideal results for complicated images where global

histogram mapping is not sufficient.

A couple of variational models were proposed for image

colourisation in [15], which appropriately added edge infor-

mation from the brightness data, while reconstructing smooth

colour values for each homogeneous region. To improve

spatial consistency and suppress colour bleeding, Bugeau et

al. [16] proposed an image colourisation method based on

an edge-preserving total variation formulation, which only

involves chrominance channels. As a result, the method

may produce halo effects near strong edges. To circumvent

this, Pierre et al. [17] proposed an improved method with

a regularisation involving both luminance and chrominance

information, which helps to better preserve edge structures in

the colourised images. To improve texture matching, especially

near edges, Arbelot et al. [18] developed a colour transfer

and colourisation method that utilises spatial coherence around

image structure by adopting an edge-aware texture descriptor

based on region covariance, although local matching is still

performed independently. A locality consistent sparse repre-

sentation learning method is proposed by [19]. By incorpo-

rating locality consistency in the matching stage rather than

in post-processing as existing methods do, it substantially

improves colour consistency and reduces artefacts.

Irony et al. [20] developed a colourisation method that takes

account of the context of pixels rather than attempting to

colourise a pixel based upon its neighbourhood statistics alone.

The approach first segments the reference colour image by

using a supervised classification scheme, then a mapping is

made between small neighbourhood areas and points in feature

space. The mapping discriminates between pixels which come

from different image regions based upon the segmentation

conducted in the first stage. The work exploits the importance

of spatial consistency amongst pixels, although their method

is highly reliant upon the image segmentation stage. Jin et

al. [21] focus on the colourisation of images containing natural

objects using a reference colour image from which colour

information is transferred. The authors require that the images

are segmented and each segment consists of a single region

that shares similar colour and texture statistics in nature.

Colour is then transferred to pixels minimising a cost function

measuring the consistency of colour in a neighbourhood and

an intensity-to-colour correlation that is contained in a joint

histogram. Xia [22] proposed a saliency guided approach in

an attempt to align the colourisation to human perception. The

approach first generates a saliency map of the reference and

target images to predict the visual attention of human viewers,

softly segmenting the images into foreground and background.

Colour transfers are then made first to the foreground and then

the background using a weighted colour transfer algorithm.

Wu et al. [23] emphasise the use of high-level scene analysis

to transfer colour between a colour image and grayscale target.

The approach is heavily dependent upon the extraction of

the foreground areas and the background from the images.

Semantic correspondences between the regions in the reference

and target images are then established with colour transferred

between the corresponding regions. Gupta et al. [24] proposed

a cascaded feature matching scheme to automatically find cor-

respondences between superpixels of the reference and target

images. Charpiat et al. [25] proposed an image colourisation

method via multimodal predictions rather than choosing the

most probable colour at the local level. Kuzovkin et al. [26]

proposed a descriptor based image colourisation method and

designed a novel regularisation scheme to smooth artefacts.

The proliferation of Internet images can be utilised for

image colourisation. Liu et al. [27] recognised one of the

causes of poor colourisation to be differences between a

reference and destination image’s illumination. Their method

attempts to reduce these differences before the colour transfer

process, reintroducing the destination illumination once the

colour transfer process is complete. However, a major limi-

tation is their need for multiple reference images in order to

produce more reliable results, due to the problem of having

both reflectance and illumination to solve. This is highlighted

by the authors’ illustrative examples, which are restricted to

well known monuments and buildings for which multiple

reference images are easily available. Chia et al. [28] propose

an approach for semantic colourisation using Internet images.

The user first provides segmentation clues for the major

foreground objects in the image. The Internet is then searched

for reference images based upon a semantic label given by the

user and from the vast number of returned images a subset is

chosen by means of a combined similarity metric. The method

can produce multiple plausible colourised results for users to

choose, although user effort is needed to assist in segmentation

and label specification.

Deep learning has recently been applied to image colouri-

sation [29]–[36]. Such methods are fully automatic, capable

of colourising an input grayscale image without reference,

although they need a very large training dataset and may fail

to produce desired results when semantic ambiguities exist.

Although recent work [7] can control the colourisation result

by giving a reference colour image through minimising the

errors between the colour distribution of the output image

and that of the reference image, it is a global colour mapping

method, and so may produce obvious artefacts since only the

global colour distribution is used for guidance while the local

texture features are ignored (see e.g. the second row of Fig. 1).

Some previous research considers colourisation of specific

images, such as cartoons [37] and manga [38] which utilise the

specific nature of these artistic forms. Some techniques exist

that have different aims from colourising grayscale images

but also bear some similarities, including colour transfer that

transfers the colour styles from a reference colour image to

a destination colour image (e.g. [39]), colour harmonisation

that replaces colours in an image with a more aesthetically

pleasing set of colours [40], and spot colour [41] where pro-

duced images are dominantly grayscale with typically compact

regions containing colour. More knowledge about colourful

image processing is reviewed in [42].

Our example-based automatic colourisation method is also
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Fig. 2. The pipeline of the proposed method.

based on local texture matching. We introduce novel ideas of

cross-scale matching and up-down colour location distribution

to make colour matching more robust. We also develop a

new confidence-weighted edge-preserving colour propagation

method to produce robust colourisation with edges well pre-

served. As we will demonstrate later, our method produces

plausible colourisation results even for challenging cases.

III. PROPOSED ALGORITHM

Our colourisation algorithm takes two images as input, a

reference colour image, from which the colour information

is transferred, and a destination grayscale image to which

the colour information is transferred. The two images are

expected to have a reasonably strong correlation in terms

of texture content to obtain good colourisation. For each

pixel in the destination image, we find a corresponding pixel

in the reference image using cross-scale texture matching

(Section A). The chrominance components of the matched

pixels are transferred to the destination image to form a micro-

scribble image. As only low-level texture information is used,

the micro-scribble image may have significant mismatches

semantically. In order to improve the matching result, up-down

location statistics learnt from the reference image are used to

detect and correct unreasonable matches. This simple strategy

addresses a common class of semantic violation (Section B). In

addition to the micro-scribble image, a normalised confidence

map is also produced based on the texture matching results.

Unlike previous work [3], [20] where the confidence map is

thresholded to produce a sparse set of micro-scribbles, we

propose to use confidence weighted optimisation that takes

into account all the micro-scribbles with different weights

(Section C). This not only uses more information from the

matching but also avoids the task of choosing the threshold,

for which an inappropriate value can substantially degrade the

results. In addition, a nonlocal ℓ1 propagation framework is

proposed to achieve effective propagation while avoiding over-

smoothing effect at edges. The framework of the proposed

method is shown in Fig. 2.

A. Micro-scribbles using Cross-scale Texture Matching

Compared with the RGB colour space, the Lab colour

model is designed to better approximate human vision, and

is more convenient for colour editing [43], [44]. Therefore the

(c) Gabor (i) proposed method

(one scale matching)

(j) proposed method

(across-scale matching)

(h) generalized patch match

(a) Target image 

(f) SLS 

(b) Reference image 

(d) Dense SIFT (e) SID 

(g) DAISY filter flow 

Fig. 3. Micro-scribble images by texture matching with different descriptors.
After showing the grayscale destination image and the colour reference image,
results with different feature matching methods are shown: (a) target image,
(b) reference image, (c) Gabor feature, (d) Dense SIFT, (e) SID, (f) SiftFlow,
(g) DaisyFlow, (h) generalized PatchMatch, (i) single scale Law’s, (j) Law’s
with our cross-scale matching.

colourisation algorithm proposed in this paper is conducted in

the Lab space. The reference colour image is first converted

to Lab colour space where L is the luminance component and

a and b are the two chrominance components. Then, we apply

luminance normalisation for the reference image to decrease

the global difference between the luminance values of the

reference and destination images, as in [4]. The luminance

of the destination grayscale image is maintained, and the

chrominance components are transferred from the reference

colour image independently.

Since the destination image only contains grayscale infor-

mation, correspondence between the reference and destination

images is established using the local texture information. How-

ever, the reference and destination images may have different

scales (e.g. wide-field vs. close-up views) and different scales

may also appear within the images (e.g. due to distance

variation in a perspective view). In this paper, we propose to

further use a cross-scale texture matching strategy to improve

the correspondence for colourisation.

We first describe the texture descriptors for single level cor-

respondence followed by generalisation to allow local textures

to be matched across scales.



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING 5

1) Local Texture Descriptors: The local texture descriptors

need to be calculated on a large number of pixels. They should

be distinctive but also efficient and stable. Welsh et al. [4]

used luminance statistics with limited distinctiveness. Ying et

al. [11] used co-occurrence matrix texture measures which

while distinctive are expensive to compute. We instead use

Law’s texture measures which can be efficiently calculated

via convolution in addition to some luminance statistics.

The Law’s texture measures are based upon five convolution

kernels each of length five although they are also available

in lengths of three and seven [45]. The choice to use the

kernels of length five was to provide an area around a pixel

that was capable of providing enough detail to produce an

accurate texture measure. The kernels used, shown below,

are convolved together in pairs to produce twenty-five two

dimensional convolution kernels.

L5 = [1 4 6 4 1]

E5 = [−1 − 2 0 2 1]

S5 = [−1 0 2 0 − 1]

W5 = [−1 2 0 − 1 1]

R5 = [1 − 4 6 − 4 1]

The L5L5 convolution kernel is used for normalisation and

hence is not calculated for this particular application. The

result of applying the remaining convolution kernels is a set of

twenty-four kernels which then undergo a further convolution

to replace each element with the average of the surrounding 15

× 15 neighbourhood. In addition to Law’s texture measures,

the luminance value as well as the average and standard

deviation of the luminance value in the 7 × 7 neighbourhood

are also included. This gives a 27 dimensional local texture

descriptor for each sampled pixel.

Although there are many existing scale invariant or mul-

tiscale feature descriptors, such as SIFT [5], Gabor [46],

SID [47], SLS [48], etc., most of them are not suitable for

the task of image colourisation. Multiscale feature descriptors,

such as Gabor, can produce features with different scales and

directions simultaneously. However, they treat the features

from different scales equally and do not match features of one

scale in the reference image with the features of a different

scale in the destination image, as shown in Fig. 3(c). SIFT

feature is sparse and cannot be used to produce detailed

matching for transferring colours. The dense descriptors such

as dense SIFT (DSIFT), can produce a feature vector for

each pixel, however, DSIFT is not scale invariant, which may

fail to find good matching (see Figs. 3(d)). Compared with

DSIFT, SID is scale invariant and produces better results

(see Fig. 3(e)), however, numerous matching errors have also

occurred, such as the colour of hair has been mismatched to

the green colour of the grass. In addition, the computation

complexity of dense matching using SID feature is high. For

the image with size 480 × 640, the matching process costs

933.91s1, and the matching performance is poor compared

1According to the default setting of code provided by the authors of [47],
a 1008 dimensional feature will be extracted for each pixel. For computation
efficiency, we collect all of the features of both target image and reference
image, and then reduce the dimension to 30 by using PCA.

with the proposed method (as shown in Fig. 3(j)) which only

costs 117.35s.

There are also some existing cross-scale matching methods,

such as SIFT flow [49] used in [48], DAISY filter flow [50]

and the generalised PatchMatch [51]. However, as shown

in Figs. 3(f-h), most of the existing cross-scale matching

methods fail to align objects under large displacements. As

shown in Fig. 3(i), a single-scale Law’s feature produces

similar matching results as SID features, although being more

efficient. It is thus more suitable in our cross-scale texture

matching framework (see details below) which produces much

improved matching results (Fig. 3(j)).

2) Cross-scale Texture Matching and Global Fusion: Since

the reference and destination images may contain content at

different or even varying scales (due to changes of distance

between objects and the camera, for example), in order to

make use of the spatial coherence, a novel cross-scale texture

matching method is proposed in this section to improve the

robustness and quality of the colourisation results. Firstly,

both the reference and destination images are repeatedly

downscaled by a factor of
√
2 in each dimension (i.e. with

half the pixels) to form image pyramids. This repeats until the

number of pixels in either dimension drops below a threshold

that is defined as 75 in this paper. The local texture descriptors

extracted from pixels of each scale of the reference image

compose the search trees, which can be searched efficiently

using the approximate nearest neighbour (ANN) tree searching

algorithm [52].

Each of the scaled reference images is searched for the

best match sample for each of the scaled destination images.

The matching distance dp for pixel p using single scale

texture matching is defined as the Euclidean distance in the

27 dimensional local texture descriptor. For each pixel in the

destination image, there will be m × n matching results (as

illustrated in Fig. 2), where m and n are the numbers of scales

for the destination and reference images, respectively.

The suitable scale to match the reference image with the

destination image is spatially varying so a naive solution would

simply choose the scale that gives the minimum matching cost

for each pixel out of m×n scale combinations. This approach

however is not robust because these matching costs can be

fairly close and making individual decisions can be severely

affected by slight numerical differences. We observe that the

spatially varying scales should also be spatially coherent in

the majority of cases, and scale changes are relative rare, e.g.

at the boundary of different objects. We thus formulate cross-

scale matching as a labelling problem. For each pixel p of

the destination image T , the goal of the cross-scale matching

is to find a best labelling function f : f(p) → L, where

L = {1, 2, · · · ,mn} is the label set. Ideally labelling should

satisfy the following two criteria. Firstly, the best matching

scale should have as small as possible matching error in

the feature space. Secondly, the neighbourhood pixels should

have matching results in the same scale as much as possible.

A solution should try to achieve a good balance of these

two criteria, which will enhance the scale consistency while

combining good matches in the feature space.

The cross-scale matching problem can be solved by min-
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imising the following energy function E(f):

min
f

E(f) =
∑

p∈P

Dp(fp) +
∑

(p,q)∈N

Vp,q(fp, fq), (1)

where P represents the set of pixels in the destination image,

N is the neighbourhood system on pixels, where 4-connected

neighbourhood is used in this paper.

The first term
∑

p∈P Dp(fp) is the data cost energy, which

measures the penalty of assigning label fp to pixel p. In this

paper, Dp(fp) is defined as the matching distance dp for the

scale fp. The second term
∑

(p,q)∈N Vp,q(fp, fq) is called the

smoothness energy, which enhances spatial smoothness, or in

this case scale consistency. It measures the cost of assigning

the labels fp and fq to adjacent pixels p, q. In this paper, we

assume that the neighbourhood pixels should have matching

results in the same scale as much as possible. Based on the

assumption, the smoothness energy is defined as follows

Vp,q(fp, fq) = ((sp − tp)− (sq − tq))
2
,

where sp = ⌊fp/n⌋ means the scale of destination image and

tp = fp mod n corresponds to the scale of reference image.

n is number of scales for the destination image. sq and tq are

defined similarly for pixel q. sp − tp and sq − tq are scale

differences between the reference and destination for pixels p
and q. Vp,q = 0 if such scale differences are the same for p and

q, which includes the case fp = fq . The optimisation problem

(1) can be efficiently solved by the global multi-label graph cut

algorithm [53]. An example is shown in Fig. 3 to demonstrate

the effectiveness of cross-scale matching. (i) and (j) are the

results obtained using single scale and cross scale matching

respectively. We can see that, e.g. the hair of the gorilla

is mistakenly matched to the green grass because the local

textures of the hair and the grass look somewhat similar at the

initial scale. By using cross-scale matching, most wrong initial

matches are corrected. Note that cross-scale matching is much

more powerful than multiscale matching, e.g. using multiscale

Gabor descriptors (c), because a specific scale is chosen rather

than combining multiple scales with equal weights, and the

reference and destination images of different scales (including

scaling up and scaling down) may be matched, which is not

considered using multiscale matching.

B. Location aware correction of matching results

Our cross-scale matching makes colour matching more ro-

bust. However, since only low-level texture features are used, it

cannot eliminate semantically unreasonable matching entirely.

An example is shown in Fig. 4(e). The blue sky is matched to

the green grass. A human observer can obviously see this as

semantically implausible. However, learning generic semantic

constraints requires a large number of training images and

sophisticated learning. We find that for examples similar to

Fig. 4(e) where semantically incorrect colourisation is related

to up-down location violation (i.e. grass should not appear

above the sky), and such location based “knowledge” can be

automatically learnt from the single reference image — in

this case green pixels should not appear above majority of

blue pixels as this hardly happens in the reference image. As

TABLE I
THE PROBABILITY pij OF EACH UP-DOWN DISTRIBUTION PROBABILITY

FOR THE EXAMPLE IN FIG. 4 (A). IMPLAUSIBLE COLOUR PAIRS WITH

pij < γ ARE HIGHLIGHTED. γ IS CHOSEN AS 0.1.

ci

cj 1 2 3 4

1 - 0 0.0359 0.3159

2 1.0000 - 0.9935 0.9998

3 0.9644 0.0060 - 0.8635

4 0.6852 0.0002 0.1356 -

we will demonstrate later, such semantic violation is often

produced by existing colourisation methods and this simple

strategy works well to fix such challenging cases.

We now describe our algorithm. Firstly, the pixels of the

reference image are clustered by k-means clustering according

to colour components (a and b channels). The number of

clusters k can be automatically determined, e.g. by maximising

the Bayesian Information Criterion (BIC) [54]. The colour

labels are denoted by C = {c1, c2, . . . , ck}. An example is

shown in Fig. 4(c) where k = 4. To identify the implausible

up-down relationship, we measure the probability pij of pixels

with one colour label ci being above pixels of another colour

label cj . The probability pij can be naively computed by

checking each pair of pixels with specific labels in the image,

and working out the proportion with ci being above cj .

However, the computational complexity for directly counting

an m̃× ñ image will reach O((m̃× ñ)2), where m̃ and ñ are

the height and width of the image, which is very expensive.

In this paper, we propose a fast algorithm for computing the

probability pij , which gives the exact solution. Our observation

is that the up-down relationship is only affected by the row,

so all the pixels in the same row can be grouped and their

contributions to the probability can be worked out together,

without enumerating individual pixel pairs. For each row, we

compute the histogram of colour labels, hr = (hr
1, h

r
2, . . . , h

r
k),

where hr
j means the number of pixels with colour label cj in

the r-th row. The probability pij can be computed efficiently

by

pij =

∑m̃−1
r=1

∑

r′>r h
r
ih

r′

j
∑m̃−1

r=1

∑m̃

r′=1 h
r
ih

r′

j

, (2)

The computational complexity of our method is O(m̃ñ+ ñ2),
where O(m̃ñ) is the time for building the row-based his-

tograms, and O(ñ2) for working out Eq. (2).

For the reference image as shown in Fig. 4(b), the obtained

up-down probabilities for colour label pairs are shown in

Table I. We can see that the values of p12, p32 and p42 are

almost zero, which implies that the colours of green grass

and tree c1, c3 and c4 rarely appear above the blue sky c2.

It is in line with the real colour distribution of the reference

image. We consider an up-down distribution as unreasonable

if pij < γ, where γ is a given threshold.

For the destination image, given the original matching

result (Fig. 4(d)), the colour labels can be directly obtained

since the chrominance channels are always transferred from

pixels in the reference image (Fig. 4(e)). The statistics of up-

down probability distribution of colour pairs p′ij can also be
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(a) (b) 

(c) (d) 

(e) 

(f) (g) 

(h) 

Fig. 4. The framework of the proposed location aware matching correction. (a) the reference image, (b) the destination image, (c) the cluster label of colours
in the reference image, (d) the matching label in the destination image with semantic errors, (e) the colour matching result image, (f) the mismatched region
identified using our location aware analysis, (g) the result after location aware matching correction, (h) the final colourised image with semantic errors fixed.

computed efficiently using the method (2). As we assume

that the destination image has strong correlation with the

reference image, if implausible up-down relationships appear

in the matching result (i.e. if pij < γ and p′ij > γ), they

are regarded as semantically wrong matches. For example,

green appearing above blue as shown in Figure 4(e), rarely

happens in the reference image. We assume the majority of

pixels are correctly labelled, so we mark either those pixels

with label ci appearing above pixels with label cj or pixels

with label cj appearing below those with label ci as wrong

pixels, depending on which group contains fewer pixels, as

highlighted in Fig. 4(f).

When wrongly matched pixels are detected, we design an

effective matching framework to correct them. Those pixels

will be re-matched against reference pixels in the feature

space, with identified implausible labels removed. In practice,

this can be very efficiently implemented by building k ANN

search trees, one for each colour cluster. We simply search for

the best match among all the trees which are not excluded. For

the example in Fig. 4, the matching results for the incorrect

green region in Fig. 4(e) will be updated, with the green search

tree excluded from matching. The best matched labels are then

found (Fig. 4(g)), and finally the best matched colour with

correct label is assigned to the query pixel (Fg. 4(h)), which

produces plausible colourisation.

Fig. 5 illustrates the performance against several other

popular example-based colourisation methods [14], [17], [18].

It is easy to find numerous matching errors in the results

generated by these methods, e.g., the green colour is mapped

above the blue sky in the first example, and the green colour is

mismatched to the body of the pyramid while the blue colour

is mapped to the grass, which is seldom found in the reference

image in the second example. In contrast, these wrong regions

are effectively corrected after the up-down location based

correction, as shown in the last column of Fig. 5.

Our location-based correction is effective in identifying and

fixing a class of semantic violations. A parameter γ is involved

which is key to the performance. Fortunately, we find that the

method is generally stable with changing γ. In Fig. 6, we

input [14] [17] [18] proposed

Fig. 5. Examples of up-down location aware correction results. (a) the first
column shows the reference and destination images. From the second column
to the last column are the corresponding results of [14], [17], [18] and the
proposed method.

0.01 0.1 

γ 

0.001 0.0001 0.2 

Fig. 6. The results of location aware correction using different values of γ.

vary γ massively from 0.0001 to 0.2, and the corresponding

result images are shown. We can see that when γ is too

small, some mismatched regions may not be identified, and no

semantic correction is performed. With the increasing value of

γ, more and more pixels are corrected. γ = 0.1 is sufficient to

produce correct results. The method however is not sensitive

to the exact choice, as e.g. the same correct result is obtained

with γ = 0.2. As it is safer to choose smaller γ to avoid

overcorrection, the parameter γ is fixed as 0.1, which provides

robust performance for all the experiments in this paper.

C. Confidence weighted nonlocal ℓ1 colour propagation

Following Section A, after local texture matching, for

each pixel p in the destination image we obtain the micro-

scribble chrominance (Fig. 7(d)) and the matching distance

dp (Fig. 7(b)). The two chrominance channels a and b in the

Lab colour space are treated separately for the transfer and

the micro-scribble chrominance value for the channel being

considered is denoted as λ(p).
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Confidence weighted nonlocal ℓ1 colour propagation. (a) the reference
image and destination image. (b) the initial confidence map. (c) the normalised
confidence map. (d) the initial colourisation result. (e) and (f) are respectively
the colour propagation results of method [3] and our method.

To make propagation more robust, we do not treat each

micro-scribble equally. Instead, a normalised confidence map

is produced to be used as weights in the later propagation

stage. For each pixel p, the confidence wc(p) ∈ (0, 1], where

one is a high confidence and is calculated as shown in Eq. (3):

wc(p) = exp

{

−d2p
τ2

}

, (3)

where τ is the scaling parameter. The value selected for τ
is able to adjust the confident distribution. Instead of using

a fixed parameter, we define τ based on the statistics of

individual images to be colourised as in Eq. (4):

τ2 = − µ2

log c
, (4)

µ is taken as the mean of the distances for all the micro-

scribbles. To normalise the mapping for various images,

Eq. (4) is defined such that the mean distance value should

map onto a confidence level of c. In practice, to make the

confident micro-scribbles more distinctive, a relatively small

c is found to work well for various images; c = 0.001 is used

in this paper.

Most of the existing colourisation methods use the confi-

dence map to produce a sparse set of micro-scribbles, which

involve a difficult task of choosing optimal threshold. In the

propagation step, the least squares optimisation [3] is usually

performed which results in obvious colour bleeding near

edges, as shown in Fig. 7(e). In contrast, with our approach

there is no need to adjust the parameter c for individual images

and the same parameter is used for all the results in the paper.

This adaptability is demonstrated also in Fig. 7(c), where the

most confident pixels are highlighted.

We further propose a novel confidence weighted nonlo-

cal ℓ1 colour propagation method based on a dense micro-

scribble image and a confidence map, used as a soft constraint

in the optimisation framework. The proposed nonlocal ℓ1
propagation framework suppresses over-smoothing at edges

effectively.

For each pixel p, let α(p) be the chrominance channel that

is calculated (which can refer to the channel a or b), and λ(p)
the micro-scribble value from the corresponding chrominance

channel of the pixel p, the energy E is formulated as

E(α) = ‖∇wα‖1 +
β1

2

∑

p∈Ω

wc(p) (α(p)− λ(p))
2
, (5)

where ‖∇wα‖1 =
∑

p∈Ω

√

∑

q∈Ω(α(p)− wp,qα(q))2 is the

nonlocal ℓ1 regularisation term, which effectively enhances the

smoothness while preserving edges and contrast of natural

images well. Ω is the entire group of pixels. wp,q is the

normalised nonlocal weight parameter defined as

wp,q =
1

Cp

exp

{

−‖α(p+ ·)−α(q + ·)‖2
2σ2

}

(6)

where Cp =
∑

q∈Ω wp,q is the normalisation factor. “+·”
indexes pixels in the neighbourhood to form a vector. In

this paper, the neighbourhood size is set to 5 × 5 and σ is

fixed as 1. From the definition (6), the weight function is

significant only if the patch around q has similar structure as

the corresponding patch around pixel p. In order to improve

the computational efficiency, for each pixel p, only 10 best

neighbours are included by the semi-local searching within a

window of 21 × 21 centred at p.

The second term
∑

p wc(p)(α(p) − λ(p))2 is the data

fidelity term weighted by the confidence map wc. This term

guarantees that pixels with high confidence tend to preserve

micro-scribble values while other pixels with low confidence

tend to receive propagation from corresponding high confi-

dence pixels. β1 is used to balance both terms, and we use

β1 = 0.001 for all examples.

The optimisation of problem (5) can be efficiently solved

by the Split-Bregman algorithm [55]. In order to make the

problem separable, a new variable d is introduced, and the

original optimisation problem can be rewritten as follows

min
d,α

‖d‖1 +
β1

2

∑

p∈Ω

wc(p) (α(p)− λ(p))
2
, s.t. d = ∇wα.

(7)

The hard constraint d = ∇wα can be guaranteed by the

following efficient equivalent Bregman iteration approach,

(αk+1,dk+1) = argmin
α,d

‖d‖1

+
β1

2

∑

p∈Ω

wc(p) (α(p)− λ(p))
2
+

β2

2

∥

∥d−∇wα− Γ
k
∥

∥

2
,

Γ
k+1 = Γ

k + d
k+1 −∇wα

k+1, (8)

where Γ is the Bregman variable. Then the optimisation

problem (7) can be solved by splitting it into several easy

subproblems, and each of the variables α,d,Γ can be updated

in turn with other variables fixed.

α
k+1 : Solve for α :

β1

∑

p∈Ω

wc(p)(α(p)− λ(p))− β2divw(d
k −∇wα− Γ

k) = 0.

d
k+1 : dk+1 = Sβ2

(∇wα
k+1 + Γ

k).

Γ
k+1 : Γk+1 = Γ

k + d
k+1 −∇wα

k+1. (9)
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[17]

(a) (b) (c)

Daisy

proposed 

SID

Fig. 8. Colourisation results with reference images of different scales.

where St is the soft-thresholding operator [55]. All of the

parameters are set the same as proposed in the code2.

Fig. 7 shows the propagation results of method [3] and the

proposed method. It can be clearly seen that [3] (Fig. 7(e))

blurs the edge structure with the tone of entire image blended.

In contrast, our method (Fig. 7(f)) not only suppresses the

over-smoothing effect of boundaries, but also ensures the tone

of image to be similar to the micro-scribble image.

IV. EXPERIMENTS

In this section, we first design experiments to evaluate the

robustness of the proposed algorithm to different scales of the

reference image, followed by an ablation study to evaulate

the effectiveness of key components. Then we compare the

performance of the proposed algorithm by visual inspection

against several state-of-the-art methods. Finally, a subjective

user study is also performed to quantitatively evaluate the

results of different methods.

We compare the colourisation results of the proposed

method against seven state-of-the-art methods, including [7],

[14], [17], [18], [32], [33], where [14], [17], [18] are example-

based methods, and [7], [32], [33] are deep learning methods.

For the example-based methods, the inputs are set as the

same as ours (reference and destination image pairs). For the

deep learning methods [7], [32], [33], only the destination

images are provided. It is noted that method [7] can also

cooperate with the reference image, so an extra experiment

is to conduct [7] as an example-based colourisation method

with the same input as our method. Therefore, 8 results will

be provided for each example image. In order to guarantee fair

comparison, the results of all of the algorithms are generated

by the code provided by the authors.

Our method only involves a small number of parameters.

As discussed, the method is insensitive to the exact choice

2http://www.math.sjtu.edu.cn/faculty/xqzhang/html/code.html

Daisy SID proposed[17][14]

Fig. 9. Colourisation results with different scales of the reference images.

of parameters so these are fixed in all our experiments.

Specifically, the normalised parameter c in the confidence

function (4) is set to 0.001, and the parameter γ in location

correction is set to 0.1 in all of the experiments.

A. Robustness to the scale of reference image

Our cross-scale matching is able to handle cases where the

reference and destination images are at different scales. We

start with a simple case where the grayscale version of the ref-

erence colour image is used as the destination image, with the

reference image at three scales (full size, 50% and 25%). We

compare the colourisation results of the proposed algorithm

against two state-of-the-art methods [14], [17]. According to

the comparison in Fig. 3, the SLS, DAISY filter flow and the

generalised patch match methods cannot produce meaningful

results for the task of image colourisation. Therefore, in

this experiment we only include the colourisation results by

matching the DAISY feature [56] and SID feature [47] for

comparison, which are known to be scale insensitive. When

the reference and destination images are at the same scale, as

shown in the second column, all the methods produce good

results. However, when the reference image is downsampled,

the performance of the other five compared methods suffer a

sharp decline (the 3rd-4th columns). Compared with DAISY,

SID is scale invariant and produces better results (the 3rd

row). However, when the scale of the reference and destination

images are far away from each other, the performance of

using SID features declines (the 4th column). In contrast, the

proposed algorithm is robust to different scales of reference

images (bottom row). The cross-scale matching proposed in

this paper automatically identifies suitable scales for matching

and produces consistent colourisation results.

We perform further comparative experiments with reference

images different from the destination images, also with varying

scales. As shown in Fig. 9, our method produces consistent

results, and so is robust to scale variation whereas the com-

pared methods fail to produce good results when there are
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destination reference Result without cross-scale Result with cross-scale

Fig. 10. Ablation study showing the effect of cross-scale matching.

large scale differences between the reference and destination

images.

B. Ablation Study

There are two main components critical to our final per-

formance: cross-scale matching and up-down location aware

correction. We perform an ablation study to assess the effec-

tiveness of each component.

In the first experiment, cross-scale matching is disabled,

and the single scale matching at the original scale of both

destination and reference images is adopted. The experimental

results are shown in Fig. 10. We can see that the radishes

and spring onions are mismatched in the first example while

the grapefruits get the wrong colour in the second example.

Overall, most of the wrong matchings can be corrected by

the cross-scale matching, as shown in the last column. As

only low-level texture features are involved in the process of

colourisation, it is difficult to distinguish different objects with

similar textures, e.g., the intensity and texture of a lemon and a

grapefruit are highly similar, and our method may occasionally

generate mismatched results.

In the second experiment, the up-down location aware

correction is disabled. From Fig. 11 we can see that many

colour distributions which are seldom found in the reference

images occur in the final results, such as the blue colour

in the water and the red colour on the roof. By combining

with the proposed up-down location aware correction, these

mismatches can be effectively avoided.

C. Visual inspection and quantitative comparisons

In this section, the colourisation results of the proposed

algorithm are evaluated by visual inspection. Fig. 14 shows

a set of colourful natural images, which covers a wide variety

of content including animals, fruits and landscapes.

We can see that in most cases the proposed algorithm

(Fig. 14 (f)) achieves better results than the seven state-of-

the-art methods in comparison. As we can see, due to texture

similarity and scale variation, existing methods produce many

mismatches for examples in the first three columns, resulting

in semantically wrong results (red roof, blue water, etc.).

With cross-scale matching and location aware correction, the

proposed method produces plausible and semantically correct

results. The examples in 4th - 9th columns contain complex

textures of different scales, making colourisation difficult,

as evidenced by substantial artefacts produced by alternative

methods. The cross-scale matching proposed in this paper

successfully finds the correct matching by choosing well-

matched spatially coherent scales.

Method [14] is a global matching algorithm, which is based

on finding and adjusting the zero-points of the histograms

of both the reference and destination images. The global

mechanism means the method can be less sensitive to local

mismatches by confusing local textures. However, it results

in mismatches in large regions when the zero-points based

correspondence has error. In the worst case, the method does

not reproduce the original colours from the reference images,

but produces images with a colourless output for the example

in the first column and generates uniform blended colour in

the 5th, 8th and 9th columns (Fig. 14 (c)).

Method [17] solves the image colourisation problem by

automatically selecting the best colour among a set of colour

candidates via a total variational framework. In [17], strong

regularisation coupling the channels of luminance and chromi-

nance is proposed to preserve the image structures during

colourisation, such as edges and colour consistency. However,

the method does not take locality consistency into account

in the process of choosing colour candidates, which leads to

results with adjacent regions colourised with different tones

(Fig. 14 (d)). Method [18] utilises spatial coherence around

image structure by adopting an edge-aware texture descriptor

based on region covariance, and reduces some misleading as-

sociations between reference and destination regions; however,

the method may still produce some artefacts due to texture

similarity and scale variation (Fig. 14 (e)).

Compared with example-based methods, the deep learning

based colourisation algorithms [7], [32], [33] use millions of

images for training the neural networks. In general, they can

generate reasonable colour images, such as shown in Fig. 14

(g-j). However, they are distinct from the reference image,

and these methods may still produce artefacts such as wrong

colours (e.g. the blue reflection of a building in the second

column for [32], [33], and the nearly uniform green colour

output in the last column of Fig. 14 (i) for [7]).

Compared with methods [32], [33], [7] can not only produce

an output without reference by the pretrained feed-forward

network, but also cooperate with a reference image. Given

a colour reference image, [7] produces a colourisation result

by minimizing the errors between the prediction of colour

distribution and the groundtruth colour distribution of the

reference image. The colourisation results equipped with the

reference images are shown in Fig. 14 (j). Compared with

Fig. 14 (i), more flexible colours from the reference images are

produced. However, the method [7] is a global colour mapping

method, and many obvious artefacts can be found since only

global colour distribution is used to guide the colourisation,

while the local texture features are ignored, such as shown in

the 5th - 7th columns in Fig. 14 (j).

D. Subjective user study

In addition to visual inspection, we would like to also make

quantitative comparisons with existing methods. However, it
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destination reference Result without up-down location aware Result with  up-down location aware

Fig. 11. Ablation study demonstrating the effect of up-down location aware correction.

Fig. 12. The distribution of user preference for the first user study.

Fig. 13. The distribution of user preference for the second user study.

is known that standard signal measures such as the standard

Peak Signal to Noise Ratio (PSNR) can deviate substantially

from human perceptual differences. Improved methods have

been developed for image quality assessment in general, such

as Structural SIMilarity (SSIM) [57]. However, such measures

are not appropriate for the task of image colourisation, e.g.

because colourisation different from the ground truth may

still be perfectly plausible. Therefore, in order to make a fair

comparison, two user studies are designed to quantitatively

evaluate our method against other seven methods.

The first user study evaluates the quality of the colourisation

results, without considering reference images. The purpose

of the first user study is to study whether the methods can

produce plausible results. For each test image, every pairwise

combination of results generated by different methods is

shown and the user is asked to choose either of them according

to their perceptual plausibility. In the second user study, in

addition to pairwise results generated by different methods, the

reference images used in example-based methods [14], [17],

[18] and deep learning method [7] are also shown to the user.

The user is asked to choose which result better matches the

colour of the given reference image.

Each user study is designed using the 2AFC (Two-

Alternative Forced Choice) paradigm, which is widely used

in psychological studies, because it is simple and reliable.

For meaningful comparisons with affordable user effort, we

use all the examples in Fig. 14 containing 9 test images and

their colourisation results generated by our method as well

as 7 state-of-the-art methods. 60 users with age between 15

and 60 were invited to participate in the user study. The

detailed results are given in the supplementary material. To

avoid bias, we randomise the order of image pairs shown

to the participants and their left/right positions. Altogether,

results of each method are compared with 9× 7 = 63 results

of alternative methods. We record the total number of user

preference (i.e. clicks) for each method, and treat them as

random variables.

The distributions of user preference for each method of two

user studies are shown in Figs. 12 and 13. The red line in

these two box figures means the average score of each method.

As results of each method are compared with other seven

methods, the highest score is 9×7 = 63. From Fig. 12, we can

see that deep learning methods can generate plausible results,

especially the most recent method [7] gains the second highest

score. In the second user study (Fig. 13), with the guidance

of reference image, most of the users prefer the results of

the proposed method. Compared with the results of the first

user study, the scores of most deep learning methods reduce

dramatically because these methods are not reference based

so in many cases the results are not related to the reference

images. We can see that [7] can get better performance when

equipped with reference images.

In addition to the average scores, a one-way analysis of

variance (ANOVA) is used for statistical analysis of the user

study results. ANOVA is designed to determine whether there

are any significant differences between the means of two or

more independent (unrelated) groups. It returns the p-value for

the null hypothesis that the means of the groups are equal. The

smaller the p-value obtained by ANOVA, the higher chance



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING 12

that the null hypothesis is rejected, meaning the groups differ

more significantly. In this paper, the p-values are computed

between our method and each compared method, and the

results are shown in Table II. We can see that in the first user

study, all of the p-values except for method [7] with reference

image are small (≪ 1e−3) which implies that the judgements

of all users on the other 6 methods are statistically significant.

While our method has higher average score compared to [7],

the difference is not statistically significant. In the second user

study, all of the p-values are smaller than 1e−7, which implies

the judgements of all users are statistically significant, and

combined with Fig. 13, we can see that the majority of the

users prefer the method proposed in this paper which has the

highest mean score.

The results of the subjective user study are in line with our

expectations. Method [7] can produce plausible colourisation

results without taking into account the reference as shown in

the first user study, while the proposed method can produce

the best example-based colourisation results, as shown in the

second user study.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel example-based image

colourisation method with three major technical advances,

namely cross-scale matching, location aware correction, and

confidence weighted structure preserving colour propagation

using nonlocal ℓ1 optimisation. These have addressed major

limitations of existing methods, and produce substantially

improved results, as shown by extensive comparisons with

state-of-the-art methods. Our method only involves a couple of

insensitive parameters, which are fixed in all our experiments.

Our location aware correction is able to learn statistics from

the single reference image. As we have shown, it is capa-

ble of correcting semantic anomalies. However, this method

relies on the assumptions of upright camera orientation, and

semantic similarity between reference and destination images.

While such assumptions are generally reasonable, they are not

always true. In the future, we would like to learn semantics

using a large number of training images and incorporate such

prior knowledge in example-based colourisation, retaining the

flexibility of controlling colour styles.
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[44] S. Süsstrunk, R. Buckley, and S. Swen, “Standard RGB color spaces,” in
Color and Imaging Conference, vol. 1999, no. 1. Society for Imaging
Science and Technology, 1999, pp. 127–134.

[45] K. I. Laws, “Rapid texture identification,” in 24th annual technical

symposium. International Society for Optics and Photonics, 1980, pp.
376–381.

[46] J. G. Daugman, “Complete discrete 2-d Gabor transforms by neural
networks for image analysis and compression,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 36, no. 7, pp. 1169–1179,
1988.

[47] I. Kokkinos, M. Bronstein, and A. Yuille, “Dense scale invariant
descriptors for images and surfaces,” Ph.D. dissertation, INRIA, 2012.

[48] T. Hassner, V. Mayzels, and L. Zelnik-Manor, “On SIFTS and their
scales,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on. IEEE, 2012, pp. 1522–1528.

[49] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, “SIFT flow:
Dense correspondence across different scenes,” in European conference

on computer vision. Springer, 2008, pp. 28–42.

[50] H. Yang, W.-Y. Lin, and J. Lu, “Daisy filter flow: A generalized
discrete approach to dense correspondences,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp.
3406–3413.

[51] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein, “The
generalized patchmatch correspondence algorithm,” in European Con-

ference on Computer Vision. Springer, 2010, pp. 29–43.

[52] D. M. Mount and S. Arya, “ANN: library for approximate nearest
neighbour searching,” 2010.

[53] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE

transactions on pattern analysis and machine intelligence, vol. 26, no. 9,
pp. 1124–1137, 2004.

[54] D. Pelleg and A. W. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters,” in International Conference on

Machine Learning, 2000, pp. 727–734.
[55] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized nonlocal

regularization for deconvolution and sparse reconstruction,” SIAM J.

Imaging Sciences, vol. 3, no. 3, pp. 253–276, 2010.
[56] E. Tola, V. Lepetit, and P. Fua, “Daisy: An efficient dense descriptor

applied to wide-baseline stereo,” IEEE transactions on pattern analysis

and machine intelligence, vol. 32, no. 5, pp. 815–830, 2010.
[57] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: from error visibility to structural similarity,” IEEE

Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING 14

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 14. Comparison of our colourisation results with alternative methods. (a) destination gray image, (b) reference image, (c) method [14], (d) method [17],
(e) method [18], (f) proposed method, (g) method [32], (h) method [33], (i) method [7] without reference and (j) method [7] with reference.


