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Simultaneous Subspace Clustering and Cluster
Number Estimating based on Triplet Relationship

Jie Liang, Jufeng Yang∗, Ming-Ming Cheng, Paul L. Rosin, Liang Wang

Abstract—In this paper we propose a unified framework to
discover the number of clusters and group the data points into
different clusters using subspace clustering simultaneously. Real
data distributed in a high-dimensional space can be disentangled
into a union of low-dimensional subspaces, which can benefit
various applications. To explore such intrinsic structure, state-
of-the-art subspace clustering approaches often optimize a self-
representation problem among all samples, to construct a pair-
wise affinity graph for spectral clustering. However, a graph with
pairwise similarities lacks robustness for segmentation, especially
for samples which lie on the intersection of two subspaces.
To address this problem, we design a hyper-correlation based
data structure termed as the triplet relationship, which reveals
high relevance and local compactness among three samples. The
triplet relationship can be derived from the self-representation
matrix, and be utilized to iteratively assign the data points
to clusters. Based on the triplet relationship, we propose a
unified optimizing scheme to automatically calculate clustering
assignments. Specifically, we optimize a model selection reward
and a fusion reward by simultaneously maximizing the similarity
of triplets from different clusters while minimizing the correlation
of triplets from same cluster. The proposed algorithm also
automatically reveals the number of clusters and fuses groups
to avoid over-segmentation. Extensive experimental results on
both synthetic and real-world datasets validate the effectiveness
and robustness of the proposed method.

Index Terms—Subspace clustering, triplet relationship, estimat-
ing the number of clusters, hyper-graph clustering

I. INTRODUCTION

W ITH the ability to disentangle latent structure of data
in an unsupervised manner [2]–[4], subspace clustering

is regarded as an important technique in the data mining
community and for various computer vision applications [5]–
[8]. Traditional subspace clustering methods approximate a
set of high-dimensional data samples into a union of lower-
dimensional linear subspaces [9], where each subspace usually
contains a subset of the samples.

In past two decades, spectral-based subspace clustering
methods have achieved state-of-the-art performance, taking
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a two-step framework as follows. First, by optimizing a self-
representation problem [4], [10], a similarity matrix (and also
a similarity graph) is constructed to depict the relationship (or
connection) among samples. Second, spectral clustering [11],
[12] is employed for calculating the final assignment based on
eigen-decomposition of the affinity graph. Note that in practice,
both the number of subspaces and their dimensionalities are
always unknown [4], [13]. Hence, the goals of subspace
clustering include finding the appropriate number of clusters
and grouping data points into them [14], [15].

Nevertheless, it is challenging to estimate the number of
clusters in a unified optimization framework, since the definition
of clusters is subjective, especially in a high-dimensional
ambient space [14]. In addition, for samples which are of
different clusters but near the intersection of two subspaces,
they may be even closer than samples from same cluster. This
may lead to a wrong estimation with several redundant clusters,
namely over-segmentation problem. Therefore, most of the
spectral-based subspace clustering algorithms depend on a
manually given and fixed number of clusters, which cannot be
generalized for multiple applications [4].

Most clustering schemes group similar patterns into the same
cluster by jointly minimizing the inter-cluster similarity and the
intra-cluster dissimilarity [16]. Considering the complexity of
the high-dimensional ambient data space, an effective way for
estimating the number of clusters is to first map the raw samples
into an intrinsic correlation space, namely similarity matrix,
followed by an iterative optimization according to the local
and global similarity relationships derived from the projection.
Elhamifar et al. [17] propose that the permuted similarity
matrix can be block-diagonal, where the number of blocks is
identical to the number of clusters. Moreover, Peng et al. [3]
verify the intra-subspace projection dominance (IPD) of such
a similarity matrix, which can be applied to self-representation
optimizations with various kinds of regularizations. The IPD
theory says that for two arbitrary samples from the same
subspace and one from another, the generated similarities
between the former samples are always larger than between
latter ones in a noise-free system.

Accordingly, considering an affinity graph derived from
the similarity matrix [18], [19], where the vertices denote
data samples and the edge weights denote similarities, an
automatic sub-graph segmentation can be greedily conducted
via the following two steps inspired by the density based
algorithms [20]: 1) constructing a proper number of initialized
cluster centers by minimizing the weighted sum of all inter-
cluster connections and maximizing the intra-cluster ones;
2) merging the remaining samples to an existing cluster by
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maximizing the weighted connections between the sample and
the cluster.

Yet, there are also difficulties for these greedy iterative
schemes. Since the ambient space can also be very dense [21],
any two points which are close by evaluating the pairwise
distance may not belong to the same subspace, especially for
samples near the intersection of two subspaces. Consequently,
a hypergraph where each edge can be connected to more than
two samples [22], [23] is proposed to solve the problem in
traditional pairwise graphs. In this paper, we further introduce
a novel data structure termed as the triplet relationship, to
explore the local geometry structure in projected space with
hyper-correlations. Each triplet consists of three points and
their correlations, which are considered as a meta-element for
clustering. We require that all correlations are large enough,
which indicates that the three points are strongly connected
according to the IPD property [3].

In contrast to evaluating similarities using pairwise distances,
the proposed triplet relationship demonstrates favorable per-
formance due to the following two reasons. On one hand,
it is more robust when partitioning the samples near the
intersection of two subspaces since the mutual relevance among
multiple samples can provide complementary information when
calculating the local segmentation. On the other hand, the triplet
evokes a hyper-similarity by efficiently counting the frequency
of intra-triplet samples, which enables a greedy way to calculate
the assignments.

Based on the newly-defined triplet relationship, in this paper,
we further propose a unified framework termed as the autoSC
to jointly estimate the number of clusters and group the samples
by exploring the local density derived from triplet relationships.
Specifically, we first calculate the self-representation for each
sample via an off-the-shelf optimization scheme, followed by
extracting the triplet relationship for all samples. Then, we
greedily initialize a proper number of clusters via optimizing a
new model selection reward, which is achieved by maximizing
inter-cluster dissimilarity among triplets. Finally, we merge each
of the remaining samples into an existing cluster to maximize
the intra-cluster similarity by optimizing a new fusion reward.
We also fuse groups to avoid over-segmentation.

The main contributions of this paper are summarized as
follows:
• First, we define a hyper-dimensional triplet relationship

which ensures a high relevance and density among three
samples to reflect their local similarity. We also validate
the effectiveness of triplets and distinguish them against
the standard pairwise relation.

• Second, we design a unified framework, i.e., autoSC,
based on the intrinsic geometrical structures depicted by
our triplet relationships. The proposed autoSC can be used
for simultaneous estimating the number of clusters and
subspace clustering in a greedy way.

Extensive experiments on benchmark datasets indicate that
our autoSC outperforms the state-of-the-art methods in both
effectiveness and efficiency.

This paper is an extended version of our earlier conference
paper [1], to which we have enriched the contributions in the
following five aspects: (1) We have added detailed analysis

of the proposed algorithm to distinguish it from comparative
methods, for example, we have added analysis and experimental
validation on the computational complexity. (2) We have
provided a visualized illustration of the proposed autoSC for
clear presentation. (3) We have designed a relaxation termed
as the neighboring based autoSC (autoSC-N), which directly
calculates the neighborhood relationship from raw data space
and is more efficient than autoSC. (4) We have conducted
experiments on evaluating the influence of the parameter m
(number of preserved neighbors for each sample). (5) We
have experimentally evaluated our method on a real-world
application, i.e., motion segmentation, which also demonstrates
the benefits of the proposed method.

II. RELATED WORK

Automatically approximating samples in high-dimensional
ambient space by a union of low-dimensional linear subspaces
is considered to be a crucial task in computer vision [24]–
[32]. In this section, we review the related contributions in
the following three aspects, i.e., self-representation calculation,
estimating the number of clusters and hyper-graph clustering.

A. Calculating Self-Representation

To separate a collection of data samples which are drawn
from a high-dimensional space according to the latent low-
dimensional structure, traditional self-expressiveness based
subspace clustering method calculates a linear representation
for each sample using the remaining samples as a basis set
or a dictionary [33], [34]. Subspace clustering assumes that
the set of data samples are drawn from a union of multiple
subspaces, which can best fit the ambient space [17]. There
are numerous real applications satisfying this assumption with
varying degrees of exactness [35], e.g., face recognition, motion
segmentation, etc.

By solving an optimization problem with self-representation
loss and regularizations, subspace clustering [36], [37] cal-
culates a similarity matrix where each entry indicates the
relevance between two samples. Different regularizing schemes
with various norms of the similarity matrix, e.g., `1 [9], `2 [38],
elastic net [39] or nuclear norm [40], can explore different
intrinsic properties of the neighborhood space. There are
mainly three types of the regularization terms, including sparse-
oriented, densely-connected and mixed norms.

Algorithms based on sparse-type norms [10], [41], e.g., `0
and `1 norms, eliminate most of the non-zero values in the sim-
ilarity matrix to ensure that there are no connections between
samples from different clusters. Elhamifar and Vidal [9] propose
the sparse representation based on `1 norm optimization.
The obtained similarity matrix recovers a sparse subspace
representation but may not satisfy the graph connectivity if the
dimension of the subspace is greater than three [18]. In addition,
the `0 based subspace clustering methods aim to compute a
sparse and subspace-preserving representation for each data
sample. Yang et al. [10] present a sparse clustering method
with a regularizer based on the `0 norm by using the proximal
gradient descent method. Numerous alternative methods have
been proposed for `0 minimization while avoiding non-convex
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problems, e.g., orthogonal matching pursuit [42] and nearest
subspace neighbor [43]. The scalable sparse subspace clustering
by orthogonal matching pursuit (SSC-OMP) method [33]
compares elements in each column of the dot product matrix
to determine which positions of the similarity matrix should
be non-zero. However, this general pairwise relationship does
not reflect the sample correlation well, especially for data pairs
in the intersection of two subspaces [44].

In contrast, dense connection based methods, such as smooth
representation [38] with `2 norm and low rank representation
with nuclear norm based methods [45], [46], propose to
preserve many non-zero values in the similarity matrix to
ensure the connectivity among intra-cluster samples [47]–
[49]. For these densely connected frameworks [50], [51], the
similarity matrix is interpreted as a projected representation
of raw samples. Each column of the matrix is considered as
the self-representation of a sample, and should be dense for
mapping invariance (also termed as the grouping effect [38],
[52]). Low-rank clustering methods [53], [54] solve a nuclear
norm based optimization problem with the aim of generating
a block diagonal solution with dense connections. However,
the nuclear norm does not enforce subset selection well when
noise exists, and the self-representation is too dense to be an
efficient feature.

Neither a sparse nor dense similarity matrix reveals a
comprehensive correlation structure among samples due to
their conflicted nature [55]–[57]. Consequently, to achieve
trade-off between sparsity and the grouping effect, numerous
mixed norms, e.g., trace Lasso [58] and elastic net [39], have
been integrated into the optimization function. Nevertheless, the
structure of the data correlations depends on the data matrix,
and the mixed norm is not effective for structure selection.
Therefore, this method does not perform consistently well on
different applications.

Recently, many frameworks that incorporate various con-
straints into the optimization function have been proposed
to detect different intrinsic properties of the subspace [40],
[59], [60]. For instance, to handle sequential samples, Guo et
al. [61] explore the neighboring relationship by incorporating
a new penalty, i.e., a lower triangular matrix with −1 on the
diagonal and 1 on the second diagonal, to force consecutive
columns in the similarity matrix to be closer. In this paper,
based on the intrinsic neighboring relevance and geometrical
structures depicted in the similarity matrix, we calculate triplet
relationships to form a hyper-correlation constraint of the
clustering system. We validate the robustness of the proposed
triplet relationship on top of different similarity matrices with
various intrinsic properties.

B. Estimating the Number of Clusters
Most of the real applications in computer vision require

estimating the number of clusters, according to the latent
distribution of data samples [9]. To solve this problem,
three main techniques exists: singular-based Laplacian matrix
decomposition, density-based greedy assignment and hyper-
graph based segmentation.

Singular-based Laplacian matrix decomposition is common
in subspace clustering [62] and spectral clustering [63] due to

the availability of the similarity matrix. Liu et al. [64] propose
a heuristic estimator inspired by the block-diagonal structure of
the similarity matrix [48]. Specifically, they estimate the number
of clusters by counting the small singular values of a normalized
Laplacian matrix which should be smaller than a given cut-off
threshold. These singular based methods [9], [65] are dependent
on a large gap between singular values, which is limited to
applications in which the subspaces are sparsely distributed
in the ambient space. Meanwhile, the matrix decomposition
process is time-consuming when extended to large scale
problems. Recently, Li et al. propose SCAMS [35], [66] which
estimates the number of clusters by minimizing the rank of
a binary relationship matrix encoding the pairwise relevance
among all data samples. Simultaneously, they incorporate a
penalty term on the clustering cost by minimizing the Frobenius
inner product of the similarity matrix and binary relationship
matrix.

Density based methods [67] greedily discover both the
optimal number of clusters and the assignments of data to
the clusters according to the local and global densities which
are calculated by the pairwise distances in ambient space.
Rodriguez et al. [20] automatically cluster samples based on
the assumption that each cluster center is characterized by
a higher density in the weight space than all its neighbors,
while different centers should be far apart enough to avoid
redundancy. Specifically, for each sample, its Euclidean-based
local density and the distance to any points with higher densities
are iteratively calculated and updated. In each iteration, the
algorithm finds a trade-off between the density of cluster centers
and the inter-cluster distance to update the assignments. Wang
et al. [13] employ the Bayesian nonparametric method based
on a Dirichlet process, and propose DP-space, which exploits a
trade-off between data fitness and model complexity. DP-space
is more tolerate to noisy and outlier values than the alternative
algebraic and geometric solutions. Recently, correlation cluster-
ing (CC) [68] first constructs an undirected graph with positive
and negative edge weights, followed by minimizing the sum of
cut weights during the segmenting process. Sequentially, the
clustering assignments can be optimized with a greedy scheme.
Nevertheless, most of these density based algorithms are limited
to pairwise correlation when evaluating the similarity of data
samples, which is not robust for densely distributed subspaces.

C. Hyper-graph Clustering

To tackle the limitations of the pairwise relation based
methods, the hyper-graph relation [69]–[71] is proposed and the
related literature follows two different directions. Some trans-
form the hyper-correlation into a simpler pairwise graph [22],
[72], followed by a standard graph clustering method, e.g.,
normalized cut [12], to calculate the assignments. In addition,
other methods [14], [45] explore a generalized way of extending
the pairwise graph to the hyper-graph or hyper-dimensional
tensor analysis. For instance, Li et al. [14] propose a tensor
affinity variant of SCAMS, i.e., SCAMSTA, which exploits
a higher order mathematical structure by providing multiple
groups of nodes in the binary matrix derived from an outer
product operation on multiple indicator vectors. However,



4 IEEE TRANSACTIONS ON IMAGE PROCESSING

X
1

x
2

x
N

x

C

Highest local density in

out
X

Less connections in

in
X

T

1 2 3

a a a

b
c

b

b

c

c

c

c

b b

c

c

b

c

b

c

Most connections in initialized clusters

√ × ×

Fig. 1. Overview of the proposed autoSC. The algorithm is composed of three steps, i.e., calculating triplet relationships T (blue dashed box), estimating the
number of clusters via model selection reward (black) and finishing the clustering assignment via fusion reward (green). Given similarity matrix C derived
from self-representation schemes, we illustrate an example of the triplet which is composed of the three samples shown with magenta frames. These samples
induce a high local correlation and should be grouped into the same cluster. By optimizing the fusion reward, sample ‘a’ is assigned into C1 since C1 has most
connections to the triplet which involves ‘a’.

estimating the number of clusters from the rank of affinity
matrix only works well for the ideal case, and can hardly be
extended to complex applications since the noise can have a
significant impact on the rank of affinity matrix.

In this paper, we estimate the number of clusters by
initializing the cluster centers with maximum inter-cluster
dissimilarities and also maximum local densities. We calculate
the initialization according to the local correlations reflected by
the proposed triplet relationships, where each of them depicts a
hyper-dimensional similarity among three samples and easily-
evaluated relevances to other triplets. Both theoretical analysis
on triplets as well as the experimental results demonstrate the
effectiveness of the proposed method.

III. METHODOLOGY

A. Preliminary

The main notations in the manuscript and the corresponding
descriptions are shown in Table I. Given a set of N data samples
X = {xi ∈ RD}Ni=1 lying in K subspaces {Si}Ki=1 where D
denotes the dimensionality of each sample, spectral-based sub-
space clustering usually takes a two-step approach to calculate
the clustering assignment. First, it learns a self-representation
for each sample to disentangle the subspace structure. The
algorithm then employs spectral clustering [12] on the learned
similarity graph derived from C for final assignments. Note
that in practice, both the number of subspaces K and their
dimensions {dj}Kj=1 are always unknown [4], [13]. Hence, the
goals of subspace clustering include finding the appropriate K
and assigning data points into K clusters [14], [17].

In this paper, inspired by the block-diagonal structure of the
similarity matrix [73], we propose to simultaneously estimate
the number of clusters and assign samples into each cluster in
a greedy manner. We design a novel meta-sample that we call
a triplet relationship, followed by optimizing both a model
selection reward and a fusion reward for clustering.

B. Learning the Self-Representation
To explore the neighboring relationship in the ambient space

X = {xi ∈ RD}Ni=1, typical subspace clustering methods first
optimize a linear representation of each data sample using
the remaining dataset as a dictionary. Specifically, spectral-
based subspace clustering calculates a similarity matrix C ∈
RN×N by solving a self-representation optimization problem
as follows:

min
C

L(X̃C, X̃) + λ‖C‖ξ, (1)

where X̃ indicates the data matrix composed of the samples in
X , L(·, ·) : RN×D−RN×D → R+ denotes the reconstruction
loss, λ is the trade-off parameter and ‖·‖ξ denotes the
regularization term where different ξ’s lead to various norms [4],
[10], e.g., ‖C‖1 [9], [17], ‖C‖∗ [48], [64], ‖C‖2F [52], or
many kinds of mixed norms like trace Lasso [58] or elastic
net [39].

The C in (1) can be explained as a new representation
of X̃ , where each sample xi ∈ RD is mapped to ci ∈ RN .
Furthermore, C is a pairwise distance matrix where each entry
cij reflects the similarity between two samples xi and xj .
Nevertheless, the pairwise distance reflects poor discriminative
capacity on partitioning samples near the intersection of two
subspaces. To handle this problem, in this paper, we explore a
higher-dimensional similarity called Triplet relationship, which
is based on a greedy combination of pairwise distances reflected
by C.

C. Discovering Triplet Relationships
Given the similarity matrix C where each entry cij reflects

the pairwise relationship between xi and xj , we propose to find
the neighboring structure in a greedy way. For each data sample
xj ∈ S, subspace clustering algorithms calculate a projected
adjacent space based on the self-expressive property, i.e., each
data sample can be reconstructed by a linear combination of
other points in the dataset X [17], [74]. Therefore, xj is
represented as

xj = X̃cj , s.t., cjj = 0, (2)
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TABLE I
SUMMARY OF MAIN NOTATIONS IN THE MANUSCRIPT AND

CORRESPONDING DESCRIPTIONS.

Notation Description

x,X data sample, a set of samples
X̃ data matrix composed of samples in X
X−N samples in X without x ∈ N
S a subspace in the ambient space
τ ,T triplet, a set of triplets
d,D dimensionality of subspace, dimensionality of sample
n,N number of triplets, number of samples

K, K̃, K̂ real number of clusters, initialized number of cluster
centers, estimated number of clusters

C similarity matrix derived from subspace representation
method

C∗ binary similarity matrix preserving the top m values
in each row of C and modifying them to 1

cij ij-th entry of the similarity matrix C
ci i-th column of C

Nm(x) set of m nearest neighbors of x
C cluster center which contains part of samples in a

subspace
T I
in,T

I
out set of triplets which are already/not assigned into

clusters in the I-th iteration
XI

in,X
I
out set of samples which are already/not assigned into

clusters in the I-th iteration, preserving the frequency
Rm(C) model selection reward of C
Ri

f (Ci|x) fusion reward that x being fused into Ci
sij connection score of xi toward xj

ρ(τ ,X) local density of τ against X
Gi,G one of the result groups, set of the result groups
NCe deviation rate between the estimated K̂ and K
A error rate of the triplets

where the data matrix X̃ is considered as a self-expression dic-
tionary for representation. In addition, cj = [c1j , c2j , · · · , cNj ]
records the coefficients of such combination system. With the
regularization from various well-designed norms on cj , the
optimized result of (2) is capable of preserving only linear
combinations of samples in S while eliminating others. Inspired
by [3], [43], for each sample xj , we first collect its m nearest
neighbors, i.e. those with the top m coefficients in cj . The m
nearest neighbors are defined as follows.

Definition 1. (m Nearest Neighbors) Let Nm(xj) ∈ R1×m

denote the m nearest neighbors for data point xj . Let:

Nm(xj) = arg max
{xil
}

m∑
l=1

|cil,j |. (3)

where il denotes the set of indices for the nearest neighbors,
and cil,j denotes the coefficient between xil and xj .

According to Definition 1, we obtain Nm(xj) for xj which
contains the m samples with the m largest coefficients in
cj . The number of preserved neighbors, i.e., the parameter
m, reflects the intrinsic dimension of the low-dimensional
subspaces [75], [76], which we empirically evaluated in the
experiment section. Based on the m nearest neighbors, we
define the triplet relationship to explore the local hyper-
correlation among samples.

Definition 2. (Triplet Relationship) A triplet τ includes
three samples, i.e., τ = {xi,xj ,xk}, and their relationships,

if and only if xi,xj and xk satisfy:

1xi∈Nm(xj) × 1xj∈Nm(xk) × 1xk∈Nm(xi) = 1, (4)

where 1x∈Nm
denotes the indicator function which equals 1

if x ∈Nm and 0 otherwise.

Based on Definition 2, we obtain n triplets where we always
have n > N , i.e., each sample is included in multiple triplet
relationships. For clarity of presentation, we define a triplet
matrix T ∈ Rn×3 for data samples X , where each row of T
records the indices of a samples in a triplet τ = {xi,xj ,xk}.

Compared against the traditional pairwise relationship evoked
from C, the triplet incorporates complementary using the
constraint in (4), which shows more robust capacity in
partitioning samples near the intersection of two subspaces.
Each triplet depicts a local geometrical structure which enables
a better performance to estimate the density of each sample.
Furthermore, the overlapped samples in multiple triplets reflect
a global hyper-similarity among each other, which can be
measured efficiently. Therefore, based on the triplet relationship,
we can jointly estimate the number of subspaces and calculate
the clustering assignment in a greedy manner.

D. Modeling Clustering Rewards

Given X , we iteratively group data samples into clusters, i.e.,
{Ci}K̂i=1, where K̂ denotes the estimated number of subspaces.
According to the greedy strategy, in the I-th iteration, the triplet
T is divided into two subsets, i.e., “in-cluster” triplets T Iin
which are already assigned into clusters, and “out-of-cluster”
triplets T Iout which are still to be assigned in the subsequent
iterations. For clear presentation, we reshape both matrices
T Iin ∈ Rp×3 and T Iout ∈ Rq×3 to vectors XI

in ∈ R3p and
XI
out ∈ R3q. In each iteration, we propose to optimize two

new rewards, i.e., the model selection and the fusion reward,
to simultaneously estimate the number of clusters and merge
samples into respective cluster.

Definition 3. (Model Selection Reward) Given XI
in and

XI
out in the I-th iteration, the model selection reward Rm(C)

for each initialized cluster C in {Ci}K̂i=1 is defined as:

Rm(C) =
∑
i

σ(Ci|XI
out)− λm

∑
i

σ(Ci|XI
in), (5)

where σ(C|X) is a counting function on the frequency that
x ∈X for all x ∈ Ci, λm denotes the trade-off parameter.

By maximizing the model selection reward Rm(C), we
generate the initialized cluster {Ci}K̂i=1 which has the following
two advantages, where K̂ is the estimated number of clusters
(see Fig. 1 for visualization). Firstly, the local density of sample
x ∈ C is high, i.e., x has a large amount of correlated samples
in Xout, which enables many to be merged in the next iteration.
Secondly, each C has little correlation with samples in Xin,
which eliminates the overlap of any inter-clusters. Consequently,
we can simultaneously estimate K̂ and initialize the clusters
by optimizing the model selection reward Rm.
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Algorithm 1 : Automatic Subspace Clustering (autoSC)
Input: X = [x1, · · · ,xN ] ∈ RD×N , m.
1: Normalize the magnitudes by xi ← xi/‖x‖2;
2: Calculate the similarity matrix C by (1);
3: for i = 1 : N do
4: Calculate the m Nearest Neighbors Nm(xi) by (3);
5: end for
6: Generate the triplet matrix T ∈ Rn×3 by (10);
7: Reshape T to Xout ∈ R3n, Xin = ∅;
8: K̃ = 1;
9: Calculate τ K̃ini by (11);

10: while ρ(τ K̃ini,Xout) > ρ(τ K̃ini,Xin) do
11: CK̃ = τ K̃ini;
12: CK̃ = CK̃ ∪ {τ

∗} where τ ∗ is calculated by (12);
13: Xin =Xin ∪ τ K̃ini ∪ {τ ∗};
14: Xout =Xout/(τ

K̃
ini ∪ {τ ∗});

15: K̂ = K̃ + 1;
16: Calculate τ K̃ini by (11);
17: end while
18: Merge Ci and Cj if we have (14); Get K̂ clusters;
19: for j = 1 : |Xout| do
20: Calculate C∗ for xj by (15);
21: end for
Output: The cluster assignment {Ci}K̂i=1.

Definition 4. (Fusion Reward) Given the initialized clusters
{Ci}K̂i=1, the fusion reward is defined as the probability that
xj ∈Xout is assigned into Ci:

Rif (Ci|xj ∈Xout) = σ(xj |Ci) + λfσ(Nm(xj)|Nm(Ci)),
(6)

where Nm(xj) denotes the m nearest neighbors of xj and
Nm(Ci) denotes the set of m nearest neighbors of samples in
Ci, λf denotes the trade-off parameters.

In the optimization procedure, we calculate K̂ fusion rewards
{Rif}K̂i=1 for each xj , which represent the probabilities that xj
is assigned into clusters {Ci}K̂i=1, respectively. We then merge
xj into the cluster with the largest fusion reward, and move
xj from Xout to Xin.

E. Automatic Subspace Clustering Algorithm

The first triplet for initializing a new cluster is chosen to
have maximal local density. The local density ρ is defined as
follows.

Definition 5. (Local Density) The local density ρ of the
triplet τ regarding to the Xout is defined as follows:

ρ(τ ,Xout) =

|n|∑
j=1

σ(xnj |Xout), (7)

where xnj denotes the sample in the current triplet τ and n
is the set of their indexes, |n| denotes the scale of n.

Also, to measure the hyper-similarity between samples and
determine the optimal triplet to merge into the initialized
clusters, we define the connection score s as follows.

Definition 6. (Connection Score) The connection score s
between samples xi and xj is defined as:

s(xi,xj) = f

xi∣∣∣∣ n
′⋂

k=1

(
1xj∈τk × τk

) , (8)

where 1xj∈τk is equal to 1 when xj ∈ τk and 0 otherwise, n′

is the number of all triplets in Tout.

We greedily optimize the proposed model selection reward
Rm and fusion reward Rf in autoSC to simultaneously estimate
the number of clusters and generate the segmentation among
samples:

max
G,K̂

K̂∑
k=1

Rm(Gk) + λ

K̂∑
k=1

Rf (Gk|X),

s.t. Gk
⋂
Gk′ 6=k = ∅,

K̂⋃
k=1

Gk = [1, · · · , N ],

(9)

where G = {G1, · · · ,GK̂} denotes the set of the result groups,
K̂ is the estimated number of clusters and [1, · · · , N ] denotes
the universal ordinal set of samples.

We present the proposed autoSC in Fig. 1 and Algorithm 1.
Specifically, the optimization includes three steps: 1) generating
the triplet relationships T from the similarity matrix C; 2)
estimating the number of clusters K̂ and initializing the clusters
C; 3) assigning the samples x ∈Xout into proper cluster.

Calculating Triplets: The similarity matrix C reflects the
correlations among samples [9], where larger values demon-
strate stronger belief for the correlation between samples. For
instance, cij > cik indicates a larger probability for xi and xj
being in the same cluster over xi and xk. Accordingly, we
explore the intrinsic local correlations among samples by the
proposed triplets derived from C.

Many subspace representations guarantee the mapping invari-
ance via a dense similarity matrix C. However, the generation
of triplets relies only on the strongest connections to avoid the
wrong assignment. Therefore, for each column of C, i.e., ci,
we preserve only the top m values which are then modified to
1 for a new binary similarity matrix C∗.

Then, we extract each triplet from C∗ by the following
function:

τ = {xn1
,xn2

,xn3
} ∈ T ,

if and only if : c∗n1n2
× c∗n2n3

× c∗n3n1
= 1,

(10)

where c∗xy denotes the xy-th value of C∗. Note each sample
x can appear in many triplets. Therefore, we consider each
τ as a meta-element in the clustering, which improves the
robustness due to the complementarity constraints.

Initializing Clusters: In the I-th iteration, we first determine
an initial triplet (termed as τ Iini) from Tout to initialize the
cluster C, followed by merging the most correlated samples of
τ Iini into each C.
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Following [20], we initialize a new cluster using τ Iini with
highest local density:

τ Iini = argmax
τ

ρ(τ ,XI
out), (11)

where ρ calculates the local density defined in Definition 5. The
high local density of the triplet reflects the most connections
between τi and other triplets, which produces the most
connections between xnij and other samples in XI

out.
Once the initialized triplet τ Iini is determined, we iteratively

extend the initialized cluster C by fusing the most confident
triplets. For each triplet τi in Tout, we calculate the sum of
the connection score regarding the samples in C to greedily
determine whether the samples in τi should be assigned into
C or not:

τ ∗ = argmax
τ

3∑
j=1

|m|∑
κ

snjmκ ,

s.t.

3∑
j=1

|m|∑
κ

snjmκ
> 1; {xnj}3j=1 ∈ τ ; {xmκ

}|m|κ=1 ∈ C,

(12)

where n,m denote the set of indexes for the samples in τ and
C, respectively. We iteratively update the auxiliary sets T Iout,
T Iin, XI

out and XI
in in the iterations.

Terminating: We terminate the process of estimating the
number of clusters and get K̃ clusters if and only if τ K̃+1

ini

satisfies:

ρ(τ K̃+1
ini ,XK̃+1

out ) ≤ ρ(τ K̃+1
ini ,XK̃+1

in ). (13)

Specifically, if the samples in τ K̃+1
ini are of high frequency in

XK̃+1
in , i.e., the triplet with the highest local density in T K̃+1

out

is already contained in T K̃+1
in , we consider that the clusters

are sufficient for modeling the intrinsic subspaces.

Avoiding Over-Segmentation: We also introduce an alterna-
tive step to check the redundancy among initialized clusters
{Ci}K̃i=1 to avoid over-segmentation. We calculate the connec-
tion scores s for small-scale clusters against others, and merge
the highly correlated clusters Ci and Cj if we have

sij > min(|Ci|, |Cj |), (14)

where |C| denotes the number of samples in C. We then get the
initialized clusters {Ci}K̂i=1, where K̂ is the estimated number
of clusters and K̂ ≤ K̃.

Assigning Rest Samples: Given {Ci}K̂i=1, we assign each of
the remaining samples into C which evokes an optimal fusion
reward. For xj , we find its optimal cluster C∗ by the following
equation:

C∗ = argmax
Ci

Rf (Ci|xj), i ∈ {1, 2, · · · , K̂}, (15)

where Rf (C|x) is the fusion reward defined by (6).

(a) (b)

(c) (d)

(f)(e)

Fig. 2. Visualization of the clustering assignments for six methods, i.e., (a)
SCAMS, (b) DP, (c) SVD, (d) DP-space, (e) autoSC-N and (f) autoSC. The
experiments are conducted on the extended Yale B dataset with 8 subjects.
SCAMS over-segments the samples, while DP-space assigns the majority into
one cluster. The proposed autoSC-N and auto-SC do not suffer from these
problems.

Algorithm 2 : Neighboring based autoSC (autoSC-N)
Input: X = {x1, · · · ,xN} ∈ RD×N , m.
1: Normalize the magnitudes by xi ← xi/‖x‖2;
2: Initialize the overall neighbor matrix N with N = ∅;
3: for j = 1 : N do
4: Initialize the spanned subspace Sj with Sj = xj ;
5: Initialize the neighbor matrix Nj with Nj = ∅;
6: for I = 1 : m do
7: Calculate the similarity sjk between xj and xk ∈
X−N using (16);

8: Update the spanned subspace Sj using (17);
9: N I+1

j ← N I
j ∪ argmaxxk∈X−N sjk;

10: end for
11: N ← N ∪Nj ;
12: end for
13: Let N replace the m Nearest Neighbors and conduct the

steps from Step 6 to Step 21 in Algorithm 1.
Output: The cluster assignment {Ci}K̂i=1.

F. An Extension: Neighboring based AutoSC Algorithm

In Definition 1, we collect m nearest neighbors according
to the magnitude of similarities between sample xj and all
other samples in X . These similarities are depicted in C by
optimizing (1) which is composed of a reconstruction loss term
and a regularization term. In this subsection, we extend the
autoSC with an alternative technique to find Nm(xj) for each
xj based on greedy search.

For each data sample xj , we let SIj be the subspace spanned
by xj and its neighbors in the I-th iteration, where the neighbor
set Nj is initialized as N 0

j = ∅, and SIj ∈ RD×dim(Nj). In
each iteration, we measure the projected similarity between xj
and other non-neighbor samples by calculating the orthonormal
ordinates in the spanned subspace. For example, to calculate
the similarity between xj and xk in the I-th iteration, we have

sjk = ‖(SIj )>xk‖2F , (16)

where ‖·‖2F denotes the Frobenius norm and xk ∈ X−N .
Consequently, for xj in the I-th iteration, we find the closest
neighbor and update Sj as follows:

SI+1
j ← SIj ∪ arg max

xk∈X−N
sjk. (17)

Here, we find one neighbor in each iteration and update the
spanned subspace accordingly. The newly spanned subspace
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reflects more local structure of the ambient space which is
assumed to cover the current sample. The neighbor set Nj is
also updated by adding the new neighbor which is found in
the I-th iteration. Finally, with m iterations for each sample,
we get an alternative m nearest neighbor set N .

Given the neighbor matrix N , we propose the neighboring
based autoSC algorithm (autoSC-N) to directly discover the
triplet relationship among data samples, followed by optimizing
both model selection and fusion rewards for clustering. The
main steps of autoSC-N are summarized in Algorithm 2.

G. Computational Complexity Analysis
In traditional subspace clustering system, the calculation

of self-representation requires solving N convex optimization
problems over D ×N constraints [21]. Spectral clustering is
based on an eigen-decomposition operation on the Laplacian
matrix followed by conducting K-means on the eigenvectors,
both of which are time-consuming, involving a complex
algebraic decomposition and iterative optimization, respec-
tively [74], [77]. The overall computational complexity can be
more than O(N3). For the proposed autoSC, it takes O(Nm2)
to collect the triplet relationships for N samples in the space
spanned by the m nearest neighbors. Here, since we have
m� N , the complexity of collecting the triplet relationships
is O(N). The optimization of both model selection and fusion
rewards takes O(Nn) where the number of triplets n has
the same order of magnitude as N . Specifically, we have
n ≈ N × m

2 , and thus the complexity of clustering is O(N2).
For the extension, i.e., autoSC-N, collecting the neighbor

matrix takes O(Nm) where the basic operation is a dot product
of the D-dimensional tensors. This avoids the calculation of
any convex optimization problem.

IV. EXPERIMENTS

A. Experimental Setup
In the experiments1, we compare the automatic methods on

the benchmark datasets, i.e., the extended Yale B [78] and the
COIL-20 [79] dataset, followed by verifying the robustness of
the proposed method to different C derived from various self-
representation schemes along with combinations of different
methods for estimating the number of clusters and segmenting
the samples. We design comprehensive evaluation metrics to
validate the clustering performance, i.e., the error rate of the
number of clusters and the triplets. For all experiments on
subsets, the reported results are the average of 50 trials. We
also conduct experiments on a motion segmentation task using
the Hopkins 155 dataset.

1) Datasets: The extended Yale B [78] dataset is a widely
used face clustering dataset which contains face images with
different illumination of 38 subjects, each subject has 64
images.

The COIL-20 [79] dataset consists of 20 different real
subjects, including cups, bottles and so on. For each subject,
there are 72 images with different camera viewpoints.

The Hopkins 155 dataset [80] consists of 155 video se-
quences. For each video sequence, there are 2 or 3 motions.

1 Code available at https://github.com/JLiangNKU/autoSC.

2) Comparative Methods: We make comparisons with the
following methods: SCAMS [14], [35], a density peak based
method (DP) [20], a singular value decomposition based
method (SVD) [64] and DP-space [13]. Besides, we utilize the
following subspace representation methods to generate different
coefficient matrices C: LRR [45], CASS [58], LSR [52],
SMR [38] and ORGEN [39]. The similarity matrix C is then
used to calculate the triplet relationships for autoSC.

3) Evaluation Metrics: To evaluate the performance of the
proposed triplets, we define the error rate A as follows:

A =
1

n

n∑
i=1

3− σ(τi|g∗i )
2

, (18)

where n denotes the number of the triplets and σ(τ |g∗) is the
counting function on the frequency that x ∈ g∗ for all x ∈ τ .
Here the output of f ranges from 0 to 2. The dynamic set g∗i
consists of samples in one subspace S according to the ground
truth, where S contains as many samples in τi as possible.

We introduce the error rate of the number of clusters (NCe)
as the primary evaluation metric for the clustering methods
which estimate the number of clusters K̂ automatically:

NCe =
1

M

M∑
i=1

|K̂i −K|, (19)

where K is the real number of clusters, M is the number of
trials and K̂i is the estimated number of clusters in the i-th
trial. We also use the standard normalized mutual information
(NMI) [81] to measure the similarity between two clustering
distributions, i.e., the prediction and the ground truth. With
respect to NMI, the entropy illustrates the nondeterminacy
of one clustering to the other, and the mutual information
quantifies the amount of information that one variable obtains
from the other.

4) Parameter m: The parameter m in Definition 1, i.e., the
number of preserved neighbors for each sample, is related
to the intrinsic dimension of the subspaces. We empirically
evaluate the influence of m on both extended Yale B and
COIL-20 datasets with 15 subjects. Besides, we use subspace
representations derived from SMR. The results are shown in
Table III. As shown in the table, the proposed method achieves
best performance when we have m = 8 for most cases. Actually,
the parameter m is robust since the performance is stable when
m > 8.

B. Comparisons among Automatic Clustering

We conduct experiments on the extended Yale B and
COIL-20 datasets with different numbers of subjects, and
compare four methods with the proposed autoSC and autoSC-
N on the metrics of NCe and NMI. For SCAMS [14], [35],
DP [20], SVD [64] and our autoSC, the optimization module
in SMR [38] is employed to generate the similarity matrix C.
The DP-space method simultaneously estimates K̂ and finds
the subspaces without the requirement of a similarity matrix.
All parameters of the contrasted methods are tuned to provide
the best performance.

Fig. 2 and Table II report the performance. As shown in
Table II, when combining SMR, the averaged NCe of autoSC

https://github.com/JLiangNKU/autoSC
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TABLE II
OVERALL COMPARISON AMONG COMPARATIVE METHODS ON SUBSETS OF THE EXTENDED YALE B AND COIL-20 DATASETS. THE SIMILARITY MATRIX C

CALCULATED BY BOTH SMR AND LSR IS UTILIZED AS THE CORRELATION MATRIX OF SCAMS, DP, SVD AND THE PROPOSED AUTOSC. THE BEST
RESULTS ARE IN BOLD FONT WHILE ∗ INDICATES THE SECOND BEST PERFORMANCE.

C Clustering Metrics extended Yale B COIL-20

8 15 25 30 38 5 10 15 20

LSR [52] SCAMS [14], [35] NCe 5.21 14.00 17.12 21.25 23.00 4.36 9.00 18.32 21.00
NMI 0.1652 0.0643 0.1544 0.3821 0.4236 0.2435 0.1524 0.1124 0.1728

SMR [38] SCAMS [14], [35] NCe 9.26 23.60 41.39 76.22 81.00 8.48 19.72 32.40 37.00
NMI 0.7183 0.7272 0.6992 0.7266 0.7425 0.5885 0.6527 0.6668 0.6712

LSR [52] DP [20] NCe 7.90 98.38 127.92 308.00 341.00 10.90 14.70 301.05 228.00
NMI 0.7060 0.6067 0.6245 0.6516 0.6611 0.7060 0.4984 0.6516 0.5283

SMR [38] DP [20] NCe 3.06 7.84 14.62 24.76 29.00 2.22 5.30 9.72 11.00
NMI 0.6196 0.5026 0.4391 0.2166 0.2384 0.6864 0.4467 0.3643 0.3547

LSR [52] SVD [64] NCe 7.00 9.42 21.04 41.23 44.00 2.76 9.00 12.05 14.00
NMI 0.2412 0.4304 0.5567 0.6523 0.6726 0.6210 0.1302 0.4092 0.4125

SMR [38] SVD [64] NCe 2.40 9.06 11.65 24.00 28.00 0.48 2.58 8.36 12.00
NMI 0.7078 0.4993 0.3739 0.2808 0.2766 0.7024 0.7127 0.7224 0.7035

- DP-space [13] NCe 2.08 8.96 15.75 23.92 26.00 0.78 4.78 9.38 14.00
NMI 0.0343 0.0226 0.0432 0.0406 0.0525 0.0904 0.0829 0.0718 0.0834

- autoSC-N NCe 0.87∗ 3.16∗ 4.32∗ 7.68∗ 9.00∗ 0.75∗ 2.21∗ 2.42 5.00
NMI 0.8306∗ 0.7328 0.7165∗ 0.6566∗ 0.6871∗ 0.7933∗ 0.6216∗ 0.7895∗ 0.7126

LSR [52] autoSC NCe 1.08 3.32 5.79 10.50 12.00 1.50 3.40 2.00∗ 4.00∗
NMI 0.8251 0.7375∗ 0.6871 0.5972 0.5833 0.7786 0.5581 0.8670 0.8239

SMR [38] autoSC NCe 0.76 2.08 3.15 4.98 4.00 0.38 1.18 0.80 2.00
NMI 0.9062 0.8589 0.8432 0.8287 0.7943 0.8315 0.7701 0.7266 0.7568∗

TABLE III
CLUSTERING PERFORMANCE OF THE PROPOSED AUTOSC WITH DIFFERENT
m (THE FIRST ROW) ON BOTH THE EXTENDED YALE B (EYALEB) AND

COIL-20 (COIL-20) DATASETS WITH 15 SUBJECTS EACH. THE SUBSPACE
REPRESENTATION IS DERIVED FROM SMR. BASED ON THE RESULTS, WE

SET m = 8 IN THE REST OF THE PAPER.

Datasets Metrics 5 6 7 8 9 10 11

EYaleB NCe 4.52 3.68 3.13 2.08 2.12 2.29 2.18
NMI 0.7125 0.7736 0.8047 0.858 0.8551 0.8423 0.8536

Coil-20 NCe 1.68 1.29 0.92 0.80 0.88 0.76 0.98
NMI 0.5647 0.6157 0.6774 0.7266 0.7107 0.7211 0.7120
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Fig. 3. Clustering results using different self-representation schemes on the
extended Yale B dataset with 8 subjects. The left figure denotes the comparison
of four methods using the NCe metric while the right one uses NMI. Each point
in the curves is derived by the combination of different clustering methods
and self-representation schemes. The proposed autoSC achieves consistent
performance on the evaluation of NCe.

is smaller than other comparative methods on all experimental
configurations, indicating that it gives a close estimation
on the number of clusters. For example, the estimated K̂

on the extended Yale B with 8 subjects has a deviation
of less than 1, and produces a NMI higher than 0.9. For
each of the proposed triplet relationships, three samples are
encouraged to be highly correlated and are considered as a
meta-element during clustering, which can introduce more
accurate information for segmenting two densely distributed
subspaces than the conventional pair-wise methods. In addition,
the operation for avoiding over-segmentation as shown in (14)
also induces a better performance on determining the number of
clusters. However, combining the similarity matrix derived from
LSR [52] can hardly outperform autoSC-N which calculates
Nm(xj) using greedy search in data space. Although it
outperforms the others without the triplet relationships, the
results still demonstrate a dependence of the proposed method
on tuning the similarity among samples. The autoSC-N gets
the second best performance on most configurations, which
demonstrates the effectiveness of both triplet relationship and
reward optimization.

In contrast, SVD achieves comparable results on the small-
scale configuration of each dataset, but the performance be-
comes poor when the number of samples increases. It is mainly
because the largest gap between the pair of singular values
decreases when the number of clusters becomes larger. When
combining SMR, SCAMS performs comparably according to
NMI on both datasets, however, as is illustrated in Fig. 2 (a)
and Table II, it provides a much larger K̂ than the ground truth,
e.g., K̂ > 100 when K = 30 on the extended Yale B dataset.
NMI does not strongly penalize over-segmentation, making the
metric NCe be the primary evaluation of the SCAMS method.
The DP-space performs well on NCe, but has poor performance
on the NMI. This is because most samples are assigned into
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TABLE IV
ERROR RATES OF TRIPLETS (A) FOR THE PROPOSED AUTOSC ON SUBSETS OF THE EXTENDED YALE B (EYALEB) AND COIL-20 DATASETS. FOR EACH
ROW, WE UTILIZE THE SIMILARITY MATRIX C DERIVED FROM ONE SELF-REPRESENTATION METHOD IN THE FIRST COLUMN. THE AUTOSC ACHIEVES

CONSISTENCY ON THE CALCULATION OF THE TRIPLETS.

C
extended Yale B COIL-20

8 15 25 30 38 5 10 15 20

LRR [45] 0.0155 0.0147 0.0158 0.0176 0.0169 0.0185 0.0252 0.0224 0.0231
CASS [58] 0.0158 0.0148 0.0140 0.0157 0.0162 0.0195 0.0198 0.0203 0.0193
LSR [52] 0.0144 0.0148 0.0162 0.0181 0.0172 0.0188 0.0188 0.0212 0.0199
SMR [38] 0.0135 0.0149 0.0154 0.0181 0.0161 0.0175 0.0182 0.0196 0.0202

ORGEN [39] 0.0166 0.0145 0.0151 0.0177 0.0169 0.0196 0.0210 0.0215 0.0220

(a) (b) (c) (d) (e)

Fig. 4. Visualization of the similarity matrix C derived from different self-representation schemes on the extended Yale B dataset with 3 subjects. The white
regions denote the locations with non-zero coefficients. Different methods, i.e., (a) LRR, (b) CASS, (c) LSR, (d) SMR and (e) ORGEN, produce C with
different characteristics, e.g., (d) derived from SMR is block-diagonal, while (e) derived from ORGEN is sparse.

one cluster, and the other clusters are small. In addition, when
combining LSR, as shown in Table II, the performance of all
methods decrease, while the proposed autoSC still achieves
best performance on most configurations against other state-
of-the-art methods. It demonstrates the generalization ability
of our autoSC. The main reason is that the three samples
in any triplet relationships are complementary and can be
more robust on wrong similarities to some extent. It is also
proved by the consistently high accuracy of triplets as shown
in Table IV, where the potential errors of similarities derived
by LSR are compensated or corrected during the extraction of
triplet relationship.

C. Robustness to Self-Representations Schemes

The methods including SCAMS [14], [35], DP [20],
SVD [64] and the proposed autoSC require the similarity
matrix C as input. Also, for DP [20], the distance among
samples needs to be calculated. We calculate the distance dij
between samples xi and xj by dij = 1

cij
rather than the

simple Euclidean distance. To verify the robustness of the
proposed autoSC regarding various subspace representations,
we calculate the similarity matrix C using 5 subspace repre-
sentation modules, followed by the combinations with the 4
methods which automatically estimate the number of clusters
and segment the samples.

Table IV shows the evaluation results of A on both datasets
with the combinations of 5 subspace representations, while
the NCe and NMI on the extended Yale B dataset with 8
subjects are reported in Fig. 3. Moreover, we visualize the
similarity matrix C derived from 5 subspace representation
modules in Fig. 4. We can see from Fig. 3 that the SCAMS, DP
and SVD methods are sensitive to the choice of the subspace
representation module. For example, DP estimates K̂ as a

relatively close value to the ground truth when combined with
SMR (NCe = 3.06), but generates a totally wrong estimation
when combined with LRR (NCe = 265.60). Different subspace
representation modules generate coefficient matrices with
various intrinsic properties [4], thus the parameter for truncation
error ε needs to be tuned carefully.

For the proposed autoSC, it is stable on different combina-
tions considering the metric of NCe and A, which demonstrates
the complementary ability of the proposed method. For all
combinations, the error rate of the triplets obtained from (10)
is less than 2%, which guarantees the consistency of the
proposed autoSC with different kinds of C. It is also the
main reason that the proposed method is robust on combining
different self-representation schemes. Furthermore, it shows
better performance when combined with CASS, LSR and SMR
than other combinations on both metrics in Fig. 3. The reason
lies on the guarantee of the mapping invariance which is termed
as the grouping effect [38], [52], [58], together with the filtering
of weak connections and the self-constraint among samples
within triplets. As shown in Fig. 4 (b), (c), (d), the coefficient
matrices are dense while it shows block-diagonal structure in
Fig. 4 (d) and each block corresponds to one cluster. Therefore,
the nearest neighbors which are used to generate the triplets
can be chosen precisely. The performance decreases when
combined with ORGEN since the similarity matrix C derived
from ORGEN is sparse with less locations for constructing
effective triplets.

D. Time Efficiency

Table V shows the run-time of comparative methods using
subsets from the extended Yale B dataset. The experiments
are conducted on a machine with a 2.93GHz CPU and 32GB
RAM. AutoSC-N requires the least run-time compared to all
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TABLE V
COMPARISON OF TIME-CONSUMPTION (IN SECONDS) ON THE EXTENDED

YALE B DATASET. THE BEST RESULTS ARE IN BOLD FONT WHILE ∗

INDICATES THE SECOND BEST PERFORMANCE.

Subjects SCAMS DP SVD DP-
space

autoSC-
N autoSC

8 12.45 6.92 17.32 9.52 1.69 2.02∗
15 30.12 13.04 44.13 18.05 4.72 5.79∗
25 125.66 33.76 146.78 36.94 10.28 19.81∗
30 175.80 59.02 225.93 67.89 16.33 36.06∗
38 267.07 97.69 314.28 104.50 29.45 62.35∗

TABLE VI
MOTION SEGMENTATION PERFORMANCE ON HOPKINS 155 DATASET. THE

ROW OF ‘TIME’ REPORTS THE AVERAGE TIME-CONSUMPTION ON
HANDLING EACH VIDEO SEQUENCE. THE BEST RESULTS ARE IN BOLD FONT

WHILE ∗ INDICATES THE SECOND BEST PERFORMANCE. THE PROPOSED
AUTOSC OUTPERFORMS OTHER COMPARATIVE METHODS REGARDING

BOTH THE ESTIMATION OF K AND CLUSTERING.

Metrics SCAMS DP SVD DP-
space

autoSC-
N autoSC

NCe 3.67 2.12 1.29 2.97 0.52∗ 0.18
NMI 0.7892 0.8233 0.8670 0.7921 0.9155∗ 0.9871

Time/s 2.68 1.22 2.45 1.56 0.26 0.32∗

comparative methods due to the following two reasons. First,
autoSC-N explores the neighborhood relationship in the raw
data space rather than solving a convex optimization problem.
Second, it employs a greedy optimization scheme to estimate
the number of clusters and calculate the clustering assignment
rather than a complex optimizing method such as computing
the singular value decomposition. Note the proposed autoSC
method achieves the second best result among comparative
methods.

E. Real World Application: Motion Segmentation

Motion segmentation refers to the task of segmenting
multiple video sequence. The candidate video is composed
of multiple foreground objects, which are rapidly moving
and required to be clustered into spatiotemporal regions
corresponding to specific motions. Following the traditional
scheme [17], we consider the Hopkins 155 dataset [80] and
solve the motion segmentation problem by first extracting a
set of feature points for each frame followed by clustering
them based on the motions. Table VI reports the comparison
against four automatic clustering methods. For SCAMS [14],
[35], DP [20] and SVD [64], the SMR [38] is firstly conducted
to calculate the similarity matrix. As shown in the table, the
proposed autoSC achieves best performance on both metrics,
indicating that the autoSC is effective at both estimating the
number of motions (about 0.18 error rate) and segmenting the
feature points (obtains NMI of more than 0.98). In addition,
it shows favorable efficiency on the motion segmentation
task. The autoSC-N is the most efficient method (0.26s per
sequence) with second best performance on NCe and NMI. The
SVD method obtains the best result among other comparative
methods, but it consumes much more time (about more than

2.5s per sequence) due to the singular value decomposition
process.

V. CONCLUSION

In this paper, we present to jointly estimate the number
of clusters and segment the samples accordingly. We first
design a hyper-correlation oriented meta-element termed as the
triplet relationship based on the similarity matrix derived from
state-of-the-art subspace clustering methods. The calculation of
triplets is considered as a mapping from pairwise correlation
to hyper-correlations, which is more robust than pairwise
relationships when partitioning samples near the intersection of
two subspaces due to the complementarity of mutual restrictions.
The proposed autoSC and autoSC-N are verified to be effective
mainly due to the robustness and effectiveness of the triplet
relationship. Experimental results also show generalization
capacity of the proposed method on various schemes when
calculating the similarity matrix. It would be interesting to
explore this effective triplet relationship in other hot topics
which rely on modeling the relationship among samples, such
as metric learning [82] and zero-shot learning [83]. etc. In
addition, it is also a potential topic to combine the triplet
relationship with graph neural networks (GNN, [84]) since
GNN is a powerful tool on relational reasoning by learn the
relationship between nodes and can also benefit from hyper-
correlations.
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