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Abstract

3D reconstruction from 2D inputs, especially for non-rigid objects like hu-
mans, presents unique challenges due to the significant range of possible de-
formations. Traditional methods often struggle with non-rigid shapes, which
require extensive training data to cover the entire deformation space. This
study addresses these limitations by proposing a canonical pose reconstruc-
tion model that transforms single-view depth images of deformable shapes
into a canonical form. This alignment facilitates shape reconstruction by en-
abling the application of rigid object reconstruction techniques, and supports
recovering the input pose in voxel representation as part of the reconstruction
task, utilizing both the original and deformed depth images. Notably, our
model achieves effective results with using a small dataset with 300 samples
in total, containing variations in shape (obese, slim and fit bodies) and gen-
der (female and male) and size (child and adult). Experimental results on
animal and human datasets demonstrate that our model outperforms other
state-of-the-art methods.
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1. Introduction

3D reconstruction aims to turn 2D inputs such as images into 3D shapes.
Most 3D reconstruction methods are designed for rigid shapes. But for non-
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rigid objects that can bend or twist, such as humans or animals, it gets tricky.
These objects can have a large range of deformation, making them hard to
handle, especially for reconstruction tasks, since many training examples
are required to cover the deformation space. To make the problem more
manageable, an effective approach is to bring non-rigid shapes back to a
default or standardised pose. This default pose is called the canonical form.
Using this form can help simplify and improve various geometric processing
tasks, from shape retrieval to shape reconstruction.

Canonical form refers to a normalised representation of a deformable
shape such that various instances of similar objects are represented in a
unified pose which removes the non-rigid deformation. This uniform repre-
sentation aids in reducing variability [1], ensuring consistency, and simplify-
ing subsequent computational processes [2]. The canonical form is commonly
used in retrieval tasks, enabling us to search for and identify similar 3D mod-
els regardless of their deformations. However, current canonical form meth-
ods often prioritise discriminating between shapes but fail to retain good
quality of shape appearance. These approaches typically rely on either Eu-
clidean distance [3, 4] or geodesic distance [5] which can distort the deformed
shapes. Alternatively, some works suggest other approaches like mapping the
deformed shape to a template to preserve shape appearance [4]. However,
these methods all assume that the input is a complete deformed shape, so
cannot be applied to cases with depth image input.

In terms of non-rigid shape completion, unlike existing methods [6, 7, 8]
that rely heavily on large-scale datasets to achieve accurate 3D reconstruc-
tion, our model demonstrates effective non-rigid shape reconstruction from a
single depth image, utilising a considerably smaller dataset. This approach
addresses the challenge of data efficiency in 3D reconstruction and highlights
the model’s capability to generalise accurately even with limited training
samples.

In this study, we address the problem of transforming a deformable shape,
represented as a single-view depth image, into its canonical form as the first
stage of our approach. This initial step is particularly challenging, as the in-
put does not represent a complete shape. In the second stage, we utilise the
reconstructed canonical pose to estimate the full 3D shape of the non-rigid ob-
ject. Our two-stage design makes this task more manageable, especially with
limited training data, by breaking the problem down into simpler subparts.
Moreover, as we will later demonstrate, the first-stage results are already
sufficient for many applications such as retrieval of deformable shapes.
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To address the first stage challenge, we introduce a learning-based model
that converts a single depth image to a default pose. Given a 2D depth im-
age and its corresponding mask, our model aims to produce a depth image
that corresponds to the input shape in a canonical pose. Figure 1 displays
an overview of the model for the first stage (canonical pose estimation),
which begins with an encoder-decoder that produces high-dimensional local
features. Additionally, we introduce parallel encoders utilising sparse con-
volution to detect neighbour sizes, thereby fusing multiscale features that
contribute to preserving shape appearance. These fused features serve as a
basis to generate high-dimensional attributes. Ultimately, we use an encoder-
decoder model to reconstruct the canonical pose depth image.

In Stage Two, our model incorporates both a pose encoder and a shape
encoder to estimate the 3D shape from the canonical pose depth image and
the original input depth image. The pose encoder processes the original input
depth image, while the shape encoder processes the canonical depth image
to capture structural details. Finally, we employ a discriminator, where
(following [9]) GAN divergence is used to smooth the volume surface and
refine 3D reconstruction quality. This setting allows the model to recover
the complete 3D shape with high fidelity.

Our contributions are:

� We propose a canonical pose reconstruction model, which is an end-to-
end 2D network designed for the canonical pose reconstruction of single-
view depth images. It comprises three components, Local Features
Extractor (LF), Multi-Scale Features Extractor (MSF) and canonical
pose reconstruction.

� We propose parallel encoders and a single decoder block that extract
features at different scales and use a fusing decoder to decode multi-
scale, high-dimensional features.

� We propose a model that estimates the full 3D shape with its recovered
pose.

� The extensive experimental results on TOSCA [10] and human [11]
datasets demonstrate that our model outperforms the existing state-
of-the-art methods. Moreover, our model is also capable of preserving
high-quality shape details while deforming shapes across different types
of forms, such as humans and animals with limited datasets.
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Figure 1: Overview of our first-stage model, which takes a depth image in any pose as
input and outputs the canonical front-facing depth image. The Local Feature Extractor
(LFE) processes the input to generate a local feature map. Then, the Multi-Scale Feature
Extractor (MSFE) processes both the original input (X) and the local feature map (LF)
to extract a multi-scale feature map (MSF). Finally, the Canonical Component processes
all the previous maps (LF and MSF) along with the original input (X) to estimate the
canonical depth image. Each component is further illustrated in the subsequent figures.

2. Related Work

As mentioned before, our method involves two stages, namely canonical-
isation of deformable shapes and single-view 3D shape completion from the
canonical form. Related work in these two areas is described below.

2.1. Canonicalisation of Deformable Shapes from Single Depth Input

Many tasks including 3D reconstruction and shape retrieval benefit from
putting deformable shapes into some standardised poses (such as T-pose for
human bodies), which are referred to as canonical forms. For example, shape
retrieval is an important task that aims to find similar shapes to the query.
Many methods work well on rigid bodies where all shapes have fixed pose.
However, these methods may work poorly on non-rigid shapes, where the
same shape can have different poses. Without a standardised pose (canonical
form), determining correspondence between points on two non-rigid shapes
can be ambiguous, as the geometric distances caused by pose difference are
often much larger than those of different instances. Also, machine learning
algorithms, especially those based on deep learning, require consistent data
representation for effective training, such as learning-based 3D reconstruc-
tion. Different poses can be seen as “noise” or “variations” that can affect the
learning process if not standardised through canonical forms. To solve that,
a canonical form standardises the shapes to a fixed pose. In this section, we
will review canonical form for non-rigid shapes techniques.
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Canonical form reconstruction for non-rigid shapes has been a hot area
of research due to its utility in tasks like shape matching and retrieval. Early
approaches often relied on geometrically motivated transformations. Lian et
al. [4] introduced a feature-preserving canonical form using Multidimensional
Scaling (MDS) to transform non-rigid 3D watertight meshes. Their method
segments objects into near-rigid parts and optimises alignment, preserving
key features by minimising non-linear deformations. Although effective, this
method can be computationally intensive, limiting its scalability to larger
datasets. In contrast, Pickup et al. [3] achieved computational efficiency by
using Euclidean distances between selected vertices to approximate global
geodesic distances, offering a faster alternative suitable for high-resolution
meshes. However, this approach is limited in adaptability, as it depends on
vertex conformal factors to identify structural features, which can be insuf-
ficient for highly deformable shapes. Other efforts, like the work of Lian et
al. [12], approached shape matching with image-based methods, using MDS
and PCA to capture the canonical pose of objects in multi-view depth images.
Though computationally lighter, these multi-view representations require ex-
tensive feature extraction, adding complexity to real-time applications.

Another major stream of works have focused on embedding techniques
and multi-feature fusion to handle more complex, non-rigid deformations.
Wang and Zha [13] introduced the contour canonical form, leveraging geodesic
constraints to ensure isometry invariance but at a cost of increased geodesic
calculations. Building on the need for more flexible approaches, Zeng et
al. [14] combined canonical forms with multi-view convolutional neural net-
works, enhancing feature extraction through multi-feature fusion methods,
though heavily reliant on extensive data. Meanwhile, Jribi and Ghorbel [15]
proposed a method using geodesic distances to reference points, addressing
the challenge of inelastic deformations. More recent works by [2, 16] used
random walks and local commute time distance, allowing shape retrieval by
segmenting objects into localised regions, which are then merged for pose-
invariant canonical forms. Although these local methods improve retrieval
accuracy by preserving salient features, they can struggle to maintain global
shape coherence, underscoring the need for approaches that balance global
structure with local detail retention.

2.2. Single-View 3D Shape Completion from Canonical Form
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While many 3D shape completion methods have shown strong perfor-
mance on rigid objects, they often struggle with non-rigid bodies due to the
inherent variability in pose and articulation. Rigid objects typically main-
tain consistent structure across instances, allowing models to learn reliable
geometric priors. In contrast, non-rigid shapes – such as human bodies,
animals, etc. – can appear in a large range of poses, making it difficult for
standard completion models to generalise effectively. Without a standardised
pose or canonical form, completing the 3D shape from partial observations
becomes ambiguous, as differences in pose can overshadow structural similar-
ity. To address this challenge, recent works have explored pose normalisation
or canonicalisation as a preprocessing step, enabling the model to focus on
shape completion from a consistent reference frame. In our approach, we
leverage a canonical depth representation from stage one as the input for
3D reconstruction, allowing the network to disentangle pose variation from
geometric completion and thereby improving the accuracy and robustness of
shape recovery for non-rigid objects.

Recent research has extensively explored 3D human shape reconstruc-
tion from monocular RGB or depth inputs using parametric models such as
SMPL [17, 18]. Many of these approaches, while achieving impressive results
for human avatars, remain limited in scope due to their reliance on human-
specific priors, fixed topology, and large annotated datasets. For example,
Wang et al. [17] proposed a hybrid method that fits the SMPL model to
depth maps using deep dense correspondences, achieving accurate results for
clothed human models by leveraging a double U-Net architecture followed
by optimisation. However, their method is constrained to human anatomy
and heavily depends on the SMPL mesh structure, making generalisation to
non-rigid non-human shapes – such as animals – unfeasible.

Dong et al. [18] introduced PINA, an implicit neural avatar framework
that reconstructs personalised human avatars from a single RGB-D sequence.
Their method fuses partial observations into a canonical signed distance field
and learns skinning weights and deformations jointly via global optimisa-
tion. While powerful, PINA also relies on pose-conditioned deformation
fields aligned with SMPL priors and is not easily transferable to subjects
with different body plans or articulation models, such as quadrupeds.

Similarly, PSHuman [19] adopts a multiview diffusion-based framework to
generate textured 3D meshes from a single RGB image. It leverages SMPL-
X priors for geometry stabilisation and combines cross-scale generation with
explicit remeshing for high fidelity. While it achieves high-quality recon-
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structions and appearance consistency, it is fundamentally built upon human
body assumptions, including face-body scale separation and SMPL-X initial-
isation, which make it unsuitable for generalised shape completion tasks in
animals or unfamiliar topologies.

Xue et al. [20] proposed Neural Surface Fields (NSF), which generate
animatable human models from monocular depth by learning deformation
fields over a canonical implicit base shape. NSF excels in mesh coherence
and efficiency, and supports arbitrary resolution outputs without retraining.
Yet, like prior works, it depends on SMPL-based canonicalization and human-
specific priors. Although powerful in generalising across human poses and
clothing, NSF’s applicability to non-human categories remains unexplored.

In contrast, our approach removes this dependency on SMPL or any hu-
man parametric model. We reconstruct a full 3D shape from a single canoni-
cal depth map without requiring large datasets, registered meshes, or human-
specific priors. Moreover, our model is explicitly designed to generalise to
non-human, highly deformable categories – such as animals – by learning
pose-independent shape priors directly from canonicalised depth representa-
tions. This generalisation beyond the human domain makes our approach
more flexible and applicable to diverse shape completion tasks where para-
metric models like SMPL do not exist.
3. Methodology

The canonical form involves addressing deformation by eliminating it,
aiming to transform the input depth image to align with a standardized
canonical form. This model comprises four main components. First, the
initial component interprets the depth image to extract high-dimensional
local features, which are then integrated with the original depth information
(Section 3.1). Next, the model employs parallel encoders alongside a fusing
decoder to generate multi-scale features (Section 3.2). These multi-scale
features are subsequently concatenated with the local features, creating skip
connections for the canonical pose reconstruction component and grouping
local features with multi-scale features to assist in reconstructing the depth
image into its canonical form (Section 3.3). Finally, we combine the original
depth image with the estimated canonical depth image to reconstruct the 3D
shape with pose recovery (Section 3.4).
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Figure 2: The Local Feature Extractor (LFE) takes the single-view depth image Xd and
the corresponding mask Xm as input and produces a local feature output, of the same
input size, denoted as LF

3.1. Local Feature Extractor

Given an input depth image Xd and mask Xm, where Xd = {xd
i ∈

R500×500}, Xm = {xm
i ∈ {0, 1}500×500} in our implementation, the LFE

component processes both in order to generate local features. The compo-
nent consists ofN down-sample blocks andK up-sample blocks, whereN = 3
and K = 5. For the down-sample blocks, each block consists of a convolution
with a kernel size of 5×5 and strides of 1×1. We use LeakyReLU as the activa-
tion function, and a MaxPool layer is employed for spatial reduction. For the
up-sample blocks, the transpose-convolutions use three different kernel sizes:
[5, 3, 2]. The output features, denoted as LF in Eq. 1, are concatenated with
the original input Xd,m as an extra channel. The network is shown in Figure
2.

LF = LFE(Xd, Xm) (1)

LFE attaches local features to the original depth image and its mask, so each
pixel is associated with both a local feature and a mask value. Consequently,
in Section 3.3, the reconstruction component has access to both the local
features and the original input depth image.
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3.2. Multi-Scale Feature Extractor

The Multi-scale Feature Extractor (MSFE) described in Eq. 2 comprises
three parallel encoders Edilation1, Edilation2 and Edilation3.

MSF = MSFE(Xd, Xm, LF ) (2)

z1 = Edilation1(X
d, Xm, LF ) (3)

z2 = Edilation2(X
d, Xm, LF ) (4)

z3 = Edilation3(X
d, Xm, LF ) (5)

Each encoder captures a different spatial neighbourhood size owing to the
inherent nature of convolutions with distinct dilation values. Specifically, the
three encoders possess dilation values of 1, 2, and 3 (Eqs. 3, 4 and 5) in their
convolution layers. We could not add more than 3 encoders as computation
consumption exceeds GPU limits, also 1,2,3 variation is a natural way to
expand. Every encoder outputs a latent code of size 1600 (dim(z1) = 1600,
dim(z2) = 1600 and dim(z3) = 1600, where dim(·) is the dimension of the
latent code). We found that using less than 1600 for the latent code degrades
the reconstruction results. When concatenated, this results in a latent code
with a length of 4800.

These parallel encoders handle pixels from different scales, thereby yield-
ing multi-scale features. To fuse these multi-scale features, we use a single
decoder, as described in Eq. 6.

MSF = Dfuser(z1, z2, z3) (6)

As an initial step, the 4800D latent codes are processed through two MLP
layers to identify inter-code relationships, ultimately generating 500D latent
codes. Subsequently, six transpose-convolutions are applied. Following each
convolution, a ReLU activation function is employed. The output MSF has
the spatial resolution aligned with the original input size. This design enables
the association of multi-scale features with each input pixel. The overview
of MSF is shown in figure 3.

3.3. Canonical Pose Depth Reconstruction

Deformation involves transforming a shape from any pose to a default
pose. In terms of an image, this means shifting the pixels to recreate a
canonical pose. However, conventional convolution cannot adequately attend
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Figure 3: The model takes as input the original depth Xd, its mask Xm where [Xd, Xm] =
X, and the local feature output YLFE . It features three encoders, each having a distinct
dilation rate, with each encoder made up of down-sample blocks. Following the encoders,
the latent codes are concatenated and passed through a fuser for inter-mapping. The
subsequent decoder consists of up-sample blocks, culminating in the reconstructed multi-
scale features, denoted as MSF .

to long dependencies. As a solution, we generate both local and multi-scale
features of the same size as the input image, allowing the reconstruction
component in Eq. 7 to access both feature types for each pixel.

Similar to the LF component, the reconstruction component incorporates
four channels: the original input and its mask, local feature data generated
by the LF component, and multi-scale features produced by MSF. Note that
combining features from different stages of the model helps reduce vanishing
gradients. The reconstruction component comprises N down-sample blocks
and K up-sample blocks, where N = 3 and K = 5. Each down-sample
block consists of a convolution layer, followed by a LeakyReLU and a MaxPool
layer, with kernels of size 5 and stride 1. On the other hand, each up-sample
block features a transpose-convolution and a ReLU layer. The final output
from the canonical pose component Cd,m is a reconstructed depth image
alongside a reconstructed mask, where Cd = {cdi ∈ R500×500}, Cm = {cmi ∈
{0, 1}500×500} in our implementation. The overview of the reconstruction
component is shown in figure 4.

Cd,m = canonical(Xd, Xm, LF,MSF ) (7)
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Canonical

Down-sample Block [DB] Up-sample Block [UB]

DBDB UB UB UB UB UB

Convolution LeakyReLU MaxPool Transposed-Convolution ReLU

[LF , X , MSF] C = [Cd , Cm]DB

Figure 4: The canonical reconstruction component leverages the original input X, the
LFE output LF , and the MSFE output MSF . The model uses these inputs to determine
the canonical form C which consists of canonical form depth image Cd and its mask Cm.

3.4. Pose Recovery

After reconstructing the default pose, the next stage focuses on 3D volume
shape reconstruction, using both the original pose depth image Xd,m and the
reconstructed default pose Cd,m. The architecture consists of two encoders
and a decoder, collectively forming the generator in our GAN framework,
as shown in Figure 5. Specifically, the pose encoder Eq. 9 processes the
original input depth image Xd,m, while the shape encoder Eq. 8 processes the
predicted canonical depth image Cd,m. Since the pose may occlude parts of
the shape, the shape encoder is designed to avoid obstructions and capture
the complete shape for accurate reconstruction. The decoder Eq. 10 then
reconstructs the voxelized shape (Yshape ∈ R256×256×256).

zshape = ShapeEncoder(Y d, Y m) (8)

zpose = PoseEncoder(Xd, Xm) (9)

Yshape = recon(Xd, Xm, Y d, Y m) (10)

To smooth the volume surface, we incorporate WGAN-GP in the architec-
ture [9]. We customise the discriminator output to produce a vector rather
than a scalar, which stabilises training and improves the quality of the gen-
erated surfaces.
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Figure 5: Stage two, in this stage we employ both the original input Xd,m and the esti-
mated depth image Cd,m to reconstruct 3D shape (Yshape).

3.5. Loss Function

The model is divided into two stages during training. Stage One focuses
on reconstructing the default pose depth image, while Stage Two is dedi-
cated to reconstructing the original pose in the 3D space.
Stage One: This stage employs two loss functions: depth loss and mask
loss.

Depth Loss. We use Mean Squared Error (MSE) for the depth loss,
modified to concentrate on the foreground region.

LDepth =
1

N

N∑
i=1

ŷmym(ŷd − yd)
2

Here, ŷm and ym denote the predicted mask and the ground truth mask,
respectively. Likewise, ŷd and yd represent the predicted depth and the
ground truth depth, respectively. By leveraging the intersection of the masks,
we can exclude the background from the depth image, thereby reducing false
positive predictions.
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Mask Loss. For depth image reconstruction, we desire the model to
concentrate on the target shape. Consequently, we aim for the model to
learn the canonical form mask.

LMask =
1

N

N∑
i=1

(ŷm − ym)
2 (11)

Combined stage one (S1) loss. Since the model has two objectives,
we introduce coefficients γ and β to balance the training.

LS1 = γLDepth + βLMask

Stage two: employs two loss function: reconstruction loss and GAN loss.
Reconstruction Loss. We use Binary Cross-Entropy (BCE) as the loss

function. However, empty voxels dominate the reconstruction, leading to
false negatives. To address this, we add weights to balance the learning
process. The modified BCE is shown below.

LBCE = − 1

N

N∑
i=1

[−ȳi log(yi)− α(1− ȳi) log(1− yi)].

The α is the cost weight on the terms, y and ȳ are the estimated shape
and ground truth shape respectively.

GAN loss. LG (Eq. 12) is the loss for the fake estimation, while LD

(Eq. 13) is the discriminator loss used by WGAN-GP [21]. y represents the
reconstructed shape and ȳ is the ground truth shape. In order to tackle
vanishing gradients a weight is introduced (λ) that pushes the gradient norm
of the discriminator to be close to 1.

LG = −E[D(y|x)]. (12)

LD = E[D(y|x)]− E[D(ȳ|x)] + λE[(∥∇ŷD(ŷ|x)∥2 − 1)2].

Combined stage two (S2) loss. As the generator has two objectives,
a weight is applied to balance both losses during optimisation as follows:

LS2 = γLBCE + (1− γ)LG. (13)

LS2 is minimised when training the generator, and LD is minimised when
training the discriminator.
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4. Experiments

4.1. Training Details

We split the non-rigid reconstruction task into two stages: Stage One,
which focuses on reconstructing the canonical pose of a non-rigid object in
a depth image, and Stage Two, which reconstructs the volume shape using
both the original input depth image and the reconstructed depth image (in
the canonical pose).

Stage One. The model was trained for 800 epochs. In the initial phase,
specifically for the first 100 epochs, we prioritized mask learning. As men-
tioned in 4.1, depth images are sensitive to mask intersections; therefore, we
set α = 10 and β = 1000. In the next 200 epochs, we shifted focus toward the
depth objective, setting both α and β to 1000. For the remaining epochs, we
allowed the model to concentrate primarily on the depth objective by setting
α = 1000 and β = 100. The learning rate was set to 0.001, and we used the
Adam optimiser [22].

Stage Two. The model was trained for 500 epochs. During this stage,
we froze the model parameters from Stage One while training the Stage Two
model. We set γ = 0.8 and the WGAN-GP gradient penalty to λ = 10. The
learning rate was set to 0.001, and we again used the Adam optimiser [22].

4.2. Datasets

We conducted our experiments on three datasets, all of which contain non-
rigid shapes. Specifically, the dataset from [11] features real human data.
This dataset was constructed using the Civilian American and European
Surface Anthropometry Resource (CAESAR) [23], in which point clouds were
fit to templates. In total, it comprises 40 subjects, equally split with 20 males
and 20 females. Each subject is represented in 10 different poses.

The second dataset, also from [11], is a synthetic human dataset. It was
created in a parameterised manner using 3D modelling software to control
the shape and generate poses. This dataset contains 300 shapes, distributed
among 15 subjects: 5 males, 5 females, and 5 children. Each subject has 20
poses.

While the aforementioned datasets focus on humans, real-life scenarios
present a variety of non-human, non-rigid subjects. As such, we also chose
the TOSCA dataset [10], which includes both humans and animals. In total,
the dataset has 80 objects. Due to the varied nature of animals, the numbers
of poses differ across objects: two males with 7 and 20 poses respectively;
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one female with 12 poses; one cat with 11 poses; one dog with 9 poses; one
wolf with 3 poses; a horse with 8 poses; a centaur with 6 poses; and one
gorilla with 4 poses.

For all datasets, the generation process is as follows: Each shape within
the datasets is centred, after which we render an image of size 500 × 500.
However, for the TOSCA dataset [10], the sizes of the shapes vary across
classes, such as horses and cats. To address this, we scale the shapes to a
fixed size (bounding box). We used blender for the dataset generation as we
can bind python code to automate the process.

For voxelised ground truth shapes, the datasets offer mesh files which we
used for generation.

5. Evaluation

Stage one. For canonical forms, the evaluation measure is typically
based on retrieval results [24]. As in previous works [24, 25], we used Clock
Matching and Bag-of-Features (CM-BOF) [26] for performing retrieval. The
framework starts by computing a descriptor for a given 3D shape. Initially,
we centralise the mesh, normalise its scale, and employ a combination of
principal component analysis (PCA) and rectilinearity for orientation nor-
malisation. Following this, 66 depth images of the mesh are rendered from
66 viewpoints that are distributed evenly in all directions around a geodesic
sphere. Subsequently, SIFT features are extracted from these depth im-
ages. Using the bag-of-words method, we generate a histogram descriptor of
length 1000 for each image of the shape. The degree of similarity between
two shapes is determined by aggregating the similarities of their correspond-
ing views. The retrieval task involves ranking the shapes. For each shape
in the dataset, we rank the remaining shapes in relation to it. Once ranked,
we employ evaluation metrics to assess the retrieval outcomes. From the
literature, we adopt four evaluation metrics: Nearest Neighbour (NN) where
the 1-NN algorithm identifies the single nearest neighbour of a query point
based on a distance metric (such as Euclidean distance) and assigns the cat-
egory of this nearest neighbour to the query point. First Tier (FT) refers
to a metric that measures the precision at the first rank or the top-n results
of the retrieval, assessing how many of the most relevant (or similar) items
are correctly identified and ranked by the algorithm at the very top of its
output list. Second Tier (ST): while first tier focuses on the precision of the
top-ranked results, second tier typically extends this evaluation to a broader
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set of top results. Discounted Cumulative Gain (DCG) is a measure used to
evaluate the effectiveness of ranking algorithms.

Stage two. Treating reconstructed shape and ground truth shape as
occupancy volumes, we evaluate our result using Intersection over Union
(IoU). The second evaluation metric is mean value Cross-Entropy, Finally,
we calculate the Chamfer Distance (CD) by uniformly sampling 30000 points
from the surface of both the predicted and ground truth shapes. The resulting
CD value is then multiplied by 103.
Comparison to prior work.

Stage One. To the best of our knowledge, there exists no learning-based
canonical form model specifically tailored for non-rigid shapes. Consequently,
all referenced works herein are non learning-based models.

The majority of the methods mentioned in the literature leverage the Mul-
tidimensional Scaling (MDS) technique [5]. Hence, (1) MDS-based results are
also included in our comparisons. (2) Fast-MDS [27] projects geodesic dis-
tances into a Euclidean space. (3) Non Metric MDS, emphasises preserving
the ordering of distances rather than their exact values. (4) Least Squares
MDS [5], employs the SMACOF (Scaling by Majorising a Convex Function)
algorithm. (5) Constrained MDS [28] capitalises on the exact correspondence
between an original shape and its Landmark MDS embedding. (6) Detail-
preserving Mesh Unfolding method [29] is based on finite elements and omits
the use of geodesics. (7) Global Point Signatures (GPS) technique computes
the embedding of a mesh. (8) the skeleton based method [30] suggests that
a skeleton is derived from a mesh to produce a canonical form. For more
details about the previous works, please see the supplementary material.

Stage Two. To evaluate our work, we compare it with methods that
perform human reconstruction from a single depth image. Few approaches
address this specific task: (1) ShapeFormer, presented by [6], estimates shape
from partial point clouds. We extracted point clouds from the depth image
to run this model. (2) IF-Net, introduced by [8], provides two different res-
olution settings for shape completion experiments. Consequently, we used
300-point clouds (IF-Net:300) and 3000-point clouds (IF-Net:3000) for com-
parison. The method by [7] did not make the code available.

5.1. Results

Stage One. Our model is trained on two datasets and tested on three as
stated earlier in Section 4.2. For the synthetic human dataset [11], the results
are shown in Table 1. The model is trained using a cross validation method
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Figure 6: Qualitative results on the synthetic human dataset. The second column shows
the estimated canonical pose (Stage 1 result), while the third and fourth columns display
the reconstructed shape from different views (Stage 2 result).

where we perform cross validation across the subjects and poses since poses
are similar across the whole subjects. Specifically, the subjects and poses are
split into groups. Every time, shapes belonging to a chosen group of subjects
and a chosen group of poses are used as the test set, while we only use shapes
not containing any of these subjects or any of these poses as the training set.
This process ensures strict separation of training and test sets during cross
validation. The same protocol is applied to other experiments as well.

For the real human dataset [11], the results are shown in Table 2. We
trained the model on the synthetic dataset and then tested on the real human
dataset. Lastly, for the TOSCA dataset [10] the results are shown in Table
3. In the quantitative results, our model outperforms the state-of-the-art
models, except for real human results, our result was the second on the
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Figure 7: Unseen Canonical form results on real dataset. The model is first trained on
synthetic human dataset and then tested on real human dataset. Our meshes are extracted
from the output depth images

NN metric, probably due to the domain gap. All the methods performed
quite poorly on this dataset, indicating the difficulties for this task. For the
qualitative results, for synthetic human dataset [11], the results are shown in
the supplementary material, and for the real human dataset [11], the results
are shown in Figure 7. For the TOSCA dataset [10] the results are shown in
Figure 9.

Stage Two. After training Stage One, we freeze its parameters and
train Stage Two. We trained our model on two datasets. For the synthetic
human dataset, the results are shown in Table 4. For the TOSCA dataset,
the results are shown in Table 5. Our model outperforms the state-of-the-art
on both datasets. Results for the qualitative results are shown in Figure 6
and Figure 8.
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Figure 8: Qualitative results on the synthetic human dataset for Stage two: Pose Recovery
in 3D Space.

Generalisability vs. Scalability

Our method is designed with a focus on generalisability rather than scal-
ability. The goal is to achieve robust canonical pose reconstruction from a
limited number of training samples, across both human and non-human non-
rigid shapes. The model shows strong performance despite being trained on
small datasets, demonstrating its potential for broader applicability without
relying on large-scale data. While scalability to larger datasets is outside the
scope of this work, it remains an important direction for future exploration.

5.2. Ablation Studies

In this section, we conduct two ablation studies using the TOSCA dataset,
chosen due to its varied content. Due to space limitations, the qualitative
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Figure 9: Some canonical form results on the TOSCA dataset. The meshes are extracted
from the output depth images

results are presented in the supplementary material.
LFE. Training the model without the LFE component resulted in lower

performance compared to the full model. Results are presented in Table 8.
MSFE. Without the MSFE component, the model’s performance was

worse compared to the complete model (Table 8). For classes like dog or cat
(which do not have hand or T-pose features), the model could reconstruct
the canonical pose. However, for shapes with outstretched hands and legs,
such as centaur or human, the results often missed those body parts.

Shape Encoder. As stated earlier in Section 3.4, the shape encoder
helps the model to enhance the reconstruction results. We conducted ex-
periments where the shape encoder was disabled to observe if this led to a
degradation in results, see table 6.

Effect of the Discriminator. To evaluate the contribution of the ad-
versarial component, we perform an ablation by removing the discriminator
from our model. Without the discriminator, the generator is trained solely
with the reconstruction loss, which leads to noisy outputs in the canonical
space. These imperfections result in degraded geometric consistency and loss
of fine details in the final reconstructions. The discriminator plays a critical
role in enforcing global coherence and local surface plausibility, especially
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Table 1: Retrieval results for the Synthetic human dataset.

NN ↑ FT ↑ ST ↑ DCG ↑
Classic MDS 0.10 0.22 0.39 0.54
Fast MDS 0.14 0.20 0.35 0.53
Non-metric MDS 0.09 0.24 0.41 0.55
Least Square MDS 0.01 0.13 0.31 0.45
Constrained MDS 0.04 0.14 0.25 0.46
GPS 0.40 0.20 0.32 0.56
Mesh Unfolding 0.04 0.18 0.34 0.49
Skeleton-based 0.01 0.14 0.32 0.46
Our Method 0.51 0.32 0.41 0.63

in regions with ambiguous depth input or occlusion. Quantitatively, we ob-
serve a notable increase in Chamfer Distance and a reduction in IoU scores
when the discriminator is removed, confirming its importance in producing
high-fidelity and realistic 3D shapes. The results are shown in Table 7.

6. Conclusion

In conclusion, our research presents a novel learning-based approach that
transforms a single depth image into a standard canonical pose (as a depth
image) and then recovers the pose in 3D space. Utilising both a depth image
and its associated mask, our model successfully estimates the canonical form
even for unseen poses. This approach not only aligns diverse input poses into
a unified pose but also extends to accurate shape completion in 3D space.
Our method demonstrates robustness in generalizing across varied poses and
achieves high fidelity in reconstructing detailed 3D shapes.
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Table 2: Retrieval results for the real human dataset, trained on the synthetic human
dataset and tested on the real human dataset

NN ↑ FT ↑ ST ↑ DCG ↑
Classic MDS 0.01 0.03 0.07 0.28
Fast MDS 0.00 0.02 0.04 0.27
Non-metric MDS 0.02 0.04 0.08 0.30
Least Squares MDS 0.00 0.00 0.01 0.26
Constrained MDS 0.00 0.01 0.03 0.27
GPS 0.07 0.06 0.12 0.33
Mesh Unfolding 0.00 0.01 0.03 0.28
Skeleton-based 0.01 0.01 0.02 0.27
Our Method 0.04 0.023 0.051 0.23
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