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a b s t r a c t

Retrieval of 3D shapes is a challenging problem, especially for non-rigid shapes. One approach giving

favourable results uses multidimensional scaling (MDS) to compute a canonical form for each mesh, after

which rigid shape matching can be applied. However, a drawback of this method is that it requires

geodesic distances to be computed between all pairs of mesh vertices. Due to the super-quadratic

computational complexity, canonical forms can only be computed for low-resolution meshes. We

suggest a linear time complexity method for computing a canonical form, using Euclidean distances

between pairs of a small subset of vertices. This approach has comparable retrieval accuracy but lower

time complexity than using global geodesic distances, allowing it to be used on higher resolution

meshes, or for more meshes to be considered within a time budget.

& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Content-based 3D shape retrieval is a key research topic, as the

large and ever increasing number of available 3D models makes

effectively searching for models with a desired shape an increas-

ingly important task. In the case of non-rigid models, where

similar objects may appear in many different poses, the task of

accurately comparing shapes is an especially challenging problem.

One of the most effective approaches to solving this non-rigid

retrieval problem is to convert each shape to a canonical form, i.e. a

standard pose, and perform rigid shape retrieval on those [1,2].

Lian et al. [3] gave a method which computes a canonical form (see

Fig. 1) for a mesh using the method of Elad and Kimmel [4] to map

the geodesic distances between every pair of points on the surface

to 3D Euclidean distances using multidimensional scaling (MDS). A

view-based method is then used to perform shape retrieval. The

drawback of this method is the high, super-quadratic, computa-

tional cost of geodesic distance computation, which requires the

models to be simplified to approximately 2000 vertices to achieve

a reasonable run-time.

Our method computes a canonical form without the need for

geodesic distances. Instead of mapping geodesic distances to

Euclidean distances, we instead maximise the Euclidean distances

between a subset of feature points while attempting to preserve

the original mesh edge lengths. These feature points are selected

based upon the conformal factor of the vertices [5]. This is a pose-

invariant measure that represents the amount of local work

required to globally transform the mesh into a sphere.

We select
ffiffiffiffi

N
p

feature points, where N is the number of mesh

vertices, which allows the distances between each pair of feature

points to be computed in linear time. This reduced computational

complexity compared to using geodesic distances means that our

algorithm can not only produce canonical forms much faster for

simplified meshes, but also allows canonical forms to be computed

for higher resolution meshes within a reasonable time. When

substituting our canonical forms into Lian et al.'s retrieval method

[3], we achieve comparable results to those using Elad and

Kimmel's canonical forms [4], but much more quickly. We are

also able to produce canonical forms for the dataset used by Lian

et al., but without the need to simplify the models first. Another

way in which greater speed can be put to use is to allow a larger

number of meshes to be compared within a fixed time budget if

the search space is a large database.

2. Related work

Many works consider rigid shape matching, including ones

based on lightfield descriptors [6] and spherical harmonics [7]. For a
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detailed review of rigid shape retrieval methods, we refer the

reader to two survey papers [8,9].

Since our work contributes to non-rigid shape retrieval, we

concentrate our review on this topic. Such work is based on shape

invariance under isometric transformations. A popular approach

compares models based on their local features. Some of these

methods directly follow successful methods in computer vision,

including meshSIFT [10] and meshHOG [11]. Sun et al. [12] pro-

posed heat kernal signatures (HKS) as a shape descriptor. Inspired

by Video Google [13], Bronstein et al. [14] used the heat kernel

signature and the bags-of-features approach to produce shape

signatures for retrieval. Abdelrahman et al. [15] also proposed a

similar shape retrieval method based on HKS. Hou et al. [16] used

HKS and a novel bag-of-features graph method which incorporates

spatial relationships of local features. Wang et al. [17] proposed an

extension to spin images [18] to allow for non-rigid matching,

computing intrinsic spin images from a high-dimensional MDS

embedding of a 3D model. Both Tabia et al. [19] and Koury et al.

[20] describe each detected feature point of a model in terms of a

set of local closed curves on its surface.

A second category of techniques uses graphs to represent

objects. Hilaga et al. [21] use multiresolution Reeb graphs to match

the topology of 3D shapes. Sundar et al. [22] use a thinning

technique to produce an object's skeleton, and graph matching to

compare skeletons. Sfikas et al. [23] produce a graph representa-

tion using geometry-based discrete conformal factors [5].

Methods using global information have also been proposed. The

shapeDNA method of Reuter et al. [24] uses the Laplace–Beltrami

operator to provide an isometrically invariant shape descriptor.

Smeets et al. [25,26] showed that both singular value decomposi-

tion and a histogram of the geodesic distance matrix can be used as

global shape descriptors. They showed that singular value decom-

position is especially effective for shape retrieval. Jain and Zhang

[27] rely on a spectral embedding of a 3D object using the

eigenvalues of the geodesic distance matrix. Bronstein et al. [28]

directly compute the distance between two non-rigid shapes by

formulating the Gromov–Hausdorff distance as a multidimensional-

scaling-like continuous optimisation problem. Tam and Lau [29]

showed that manifold learning can be used to improve the shape

retrieval accuracy of existing methods.

Elad and Kimmel [4] proposed computing a canonical form for

a mesh using multidimensional scaling (MDS) to map the geodesic

distances of a mesh into three-dimensional Euclidean distances.

Rigid matching can then be performed on the resulting canonical

forms. Lian et al. [3] used these canonical forms, along with a view-

based retrieval method to match non-rigid shapes. It renders depth

images of 66 different views of an object, extracts SIFT features

from each of these images, and uses the bag of features approach

to form a shape descriptor from these features. Recently, Lian et al.

[30] created a feature preserving canonical form by transforming

parts of the original mesh to positions and orientations that

correspond to equivalent segments of the mesh's canonical form.

Lian et al. [31] have also used a convexity measurement of the

canonical forms as a global feature for shape retrieval. The draw-

back of these methods is the super-quadratic computational com-

plexity of finding the geodesic distances between all pairs of

vertices, requiring the canonical forms to be computed from a

simplified version of the original mesh in practice.

Ying et al. [32] gave a parallel geodesic distance algorithm to

improve the efficiency of computing these distances. This algo-

rithm still exhibits higher computational complexity than our

method described below, but claims an order of magnitude

improvement of computation time for meshes containing more

than 500,000 faces. However, even if the computation time of the

fastest geodesic-distance-based retrieval method we use as a basis

for comparison in Section 6 were an order of magnitude faster,

our method would still be 3.5 times faster than an approach

using Ying's method, even for meshes with a resolution of about

10,000 vertices. Unfortunately, as the authors of [32] have not

made their code available, we are unable to directly compare

computation speeds with a canonical form method using their

algorithm. Ultimately, however parallelisation can only lead to a

constant factor speed-up, and not a decrease in computational

complexity.

A similar approach to ours has been proposed by Wang and Zha

[33], who also avoid computing geodesic distances between all

pairs of vertices. They also select feature points, but based on local

maxima and minima of geodesic distances to the two most

geodesic distant vertices [34]. They then use the geodesic distances

between all pairs of feature points to create target axes used to

align local sets of geodesic contours. They compared the result of

using their canonical forms for shape retrieval against classical

MDS with all-pairs geodesic distances, but not using least squares

MDS, which has been shown to produce improved results [4,3].

Their method is also much more complex than ours, and requires

more parameters to be defined by the user. While their method is

faster than ours for meshes of approximately 9000 vertices, they

did not examine how their method scales to finer meshes. We are

unable to determine the exact time complexity of their method, as

they omit details of how to minimise certain cost functions. We

can deduce however that their geodesic computations have time

complexity at least OðMN log NÞ, whereM is the number of feature

points, and N is the number of mesh vertices. Our distance

calculations have time complexity of O(N), and so will eventually

be faster for large enough meshes. Our retrieval results are also

more accurate than theirs for each dataset tested later, but these

are based on the use of a different retrieval method.

For further insight, we refer the reader to Lian et al. [2] for an

in-depth comparison of several non-rigid 3D shape retrieval

methods.

Fig. 1. Canonical forms produced using geodesic distances and multidimensional scaling. The limbs of the models are stretched so that their extremities are distant from one

another. (a) Original meshes and (b) Canonical forms.
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3. Preliminaries

We first give a brief overview of the canonical form computa-

tion by Elad and Kimmel [4], which uses least squares multi-

dimensional scaling to map geodesic distances into Euclidean

distances. We also give an overview of the shape retrieval method

by Lian et al. [3], which successfully uses these canonical forms for

non-rigid shape retrieval, as we later substitute our canonical

forms into this method in order to evaluate their effectiveness

against those of Elad and Kimmel [4].

3.1. Multidimensional scaling for canonical form computation

Multidimensional scaling (MDS) maps a chosen distance mea-

sure between pairs of points to Euclidean distances in a low-

dimensional space. The use of MDS to compute a pose invariant

canonical form of a mesh was first proposed by Elad and Kimmel

[4]. They use least squares MDS to map the geodesic distances

between all points on a 3D mesh to 3D Euclidean distances. The

geodesic distances are computed using the fast marching method of

Kimmel and Sethian [35]. They use the SMACOF (scaling by

maximising a convex function) algorithm [36] to compute the

MDS. SMACOF minimises the following functional:

SðXÞ ¼
X

N

i ¼ 1

X

N

j ¼ iþ1

wi;jðδi;j�di;jðXÞÞ2; ð1Þ

where N is the number of vertices, wi;j are weighting coefficients,

δi;j is the geodesic distance between vertices i and j of the original

mesh, and di;j is the Euclidean distance between vertices i and j of

the resulting canonical mesh X.

This is solved by iteratively computing

Xi ¼ V þBðXi�1ÞXi�1; ð2Þ

where the elements of matrix BðX i�1Þ are

bi;j ¼
�wi;jδi;j=di;jðXi�1Þ ia j and di;jðX i�1Þa0

0 ia j and di;jðX i�1Þ ¼ 0

(

ð3Þ

bi;i ¼
X

N

j ¼ 1;ja i

bi;j: ð4Þ

The matrix V is given by

V ¼
X

N

i ¼ 1

X

N

j ¼ iþ1

wi;jAi;j; ð5Þ

Ai;j ¼ ðei�ejÞðei�ejÞT ; ð6Þ

where ei is the ith column of the identity matrix. V þ is the Moore–

Penrose pseudo-inverse of V. The algorithm iterates until

SðXiÞ�SðXi�1Þ is less than a user specified value ϵ. For more details,

see [4].

This canonical form computation is used for 3D shape retrieval

by Lian et al. [3]. Due to the super-quadratic computational

expense, they first simplify the input meshes to approximately

2000 vertices. In Section 4 we give a method for computing

canonical forms which instead of using a quadratic number of

global geodesic distances, only uses the edge lengths of the mesh

plus a linear number of Euclidean distances.

3.2. Non-rigid shape retrieval using canonical forms

The state-of-the art method for using canonical forms for non-

rigid shape retrieval is due to Lian et al. [3]; their method

performed very well in the 2011 Shape Retrieval Competition

(SHREC'11) [2,37]. They extract a shape descriptor from a model

using canonical forms and visual features.

An outline of the steps used is shown in Fig. 2. They first

simplify the original model (Fig. 2(a)) to produce a new mesh with

approximately 2000 vertices (Fig. 2(b)). They next produce a

canonical form of the mesh (Fig. 2(c)), as explained in Section

3.1. It takes too long to process higher resolution meshes without

simplification due to the use of all pairs of geodesic distances.

Once the canonical form has been computed, the position and

orientation of the model are normalised using a combination of

PCA and rectilinearity [38]. A set of 66 depth images are captured

of the model, from viewpoints located at the vertices of a geodesic

sphere (Fig. 2(d)). For each of these depth images a set of SIFT

features [39] are extracted (Fig. 2(e)). The set of SIFT features is

used to generate a histogram (bag-of-features) for each image

(Fig. 2(f)).

Fig. 2. Computing an object descriptor, according to Lian et al. [3]. (a) Original mesh. (b) Simplify mesh. (c) Compute canonical form. (d) Capture multiple depth images.

(e) Extract SIFT features. (f) Construct bag of features.
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The distance between two models is computed by comparing

the feature histograms for the models using the maximum dissim-

ilarity histogram intersection distance.

Our method can be used in this framework to provide alter-

native canonical forms to those of Elad and Kimmel, significantly

speeding up this bottleneck step of the matching algorithm, and

eliminating the need to simplify the meshes to such a small

number of vertices. We later show that we can compute canonical

forms for the models in the SHREC'11 dataset without the need for

simplification.

4. Euclidean distance based canonical form computation

Fig. 1 shows two canonical forms produced by Lian et al. [3]

from their original meshes. The limbs and similar parts of

articulated objects are stretched out, so that their extremities are

distant from one another. We achieve this effect more efficiently

by maximising the Euclidean distances between certain selected

feature points on the mesh, while attempting to preserving the

original edge lengths to ensure isometric deformation. The feature

points are selected based upon the conformal factors of the

vertices [5]. The conformal factor increases along the length of

mesh protrusions, which results in high values at the extremities

of the mesh.

We first scale the mesh so that the maximum distance of any

point on its surface to the centroid of all vertices is one. We then

use the method of Ben-Chen and Gotsman [5] to calculate the

conformal factor Φ of the mesh as

LΦ¼ KT �K0; ð7Þ

where L is the discrete Laplace–Beltrami operator with cotangent

weights [40], K0 is a vector containing the Gaussian curvature for

each vertex, and KT is a vector containing a target Gaussian

curvature for each vertex.

The Gaussian curvature κ
0
v at a vertex v is defined as

κ0v ¼
2π�

P

tATv

θt v=2B

π�
P

tATv

θt vAB

8

>

<

>

:

; ð8Þ

where θt is the angle subtended at vertex v in triangle t, Tv is the

set of triangles connected to v, and B is the set of all vertices on the

mesh boundary (if any). The target curvature κ
t
v at a vertex v is set

to

κtv ¼
X

iAV

κ0i

 !

P

tATv
AreaðtÞ=3

P

tATAreaðtÞ
; ð9Þ

where V is the set of all vertices and T is the set of all triangles.

Eq. (7) can be solved for Φ using Cholesky factorisation. An

example of the conformal factors of a mesh in various poses is

shown in Fig. 3.

To obtain a set of feature points for a mesh with N vertices, we

sample the
ffiffiffiffi

N
p

vertices which have the largest conformal factors

and also satisfy the requirement that they are local maxima. A

vertex is defined to be a local maximum if its conformal factor is

greater than that of all its neighbours in a 2-ring neighbourhood.

Our experiments show that points at the extremities of the mesh

are likely to be present within this set of chosen feature points

(Fig. 4). Our experiments on a previous dataset [41] show that

using 1, 2, or 3-ring neighbourhoods all result in similar final

retrieval results; using 2-ring gives marginally better performance.

We select
ffiffiffiffi

N
p

feature points, as this is the largest number of

features we can have while being able to compute the distances

between all pairs of feature points in linear time (with respect to

the number of mesh vertices). Reducing the number of feature

points further would not reduce the overall time complexity of our

algorithm, as other aspects of our method also have a linear time

complexity. On the other hand, our experiments demonstrate that
ffiffiffiffi

N
p

feature points are sufficient to give good shape retrieval in our

tests. A further reason for using exactly
ffiffiffiffi

N
p

feature points is

given later.

We compute the canonical form of the mesh by setting the

value of δi;j in Eq. (1) for all connected vertices i and j equal to the

length of the edge connecting them. This aims to preserve the

edge lengths of the mesh, to ensure isometric deformation. In

order to maximise the distance between feature points, the value

of δi;j for each pair of the
ffiffiffiffi

N
p

sampled vertices is set to a high value

α. We want this value to be large enough to straighten all the limbs

of the model, and our experiments show 10 is large enough. As

long as α is large enough and the parameter β discussed below is

optimised accordingly, any value of α can be chosen.

Fig. 3. Conformal factors for a human mesh model in varying poses. The conformal factor increases towards the ends of the model's limbs.

Fig. 4. Feature points selected using conformal factors. The mesh extremities are

successfully included in this set.
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If the two vertices i and j are neither a pair of feature points nor

connected by an edge, we do not enforce a target distance between

them, so δi;j and wi;j are both set to zero for such cases. Not having

to compute and optimise the distances between these points is

crucial in keeping the linear time complexity of our distance

calculations. The weights wi;j in Eq. (1) for all i and j that are

connected by an edge are set to β=δ2i;j, where β is a user defined

parameter for preserving edge lengths. (We consider the optimal

choice for β in the Experiments section later.) We divide by the

square of the edge length δ2i;j so that the distance in Eq. (1) becomes

a relative, rather than absolute, difference, making the weighting

independent of the length of the edge. The conformal factor is

normalised to lie in the interval ½0;1�, and the entries in the

weighting matrix wi;j for each pair of feature points are set to the

mean of their conformal factors. This results in vertices which are

nearer the ends of long ‘limbs’ of the object having a higher impact

on the resulting canonical form, and avoids stretching out inap-

propriate parts of the mesh (Fig. 5). The SMACOF algorithm can then

be used to minimise Eq. (1) as previously described in Section 3.1.

In many cases the number of local maxima of conformal factor

is less than
ffiffiffiffi

N
p

. We want the number of feature points to be

exactly
ffiffiffiffi

N
p

so that the number of edges connecting pairs of feature

points grows at the same rate as the number of mesh vertices. This

in turn ensures that we can use the same value for the parameter β

for preserving edge lengths, regardless of mesh resolution. We

offer two different solutions to handling this issue. The first is to

increase the number of feature points to
ffiffiffiffi

N
p

by adding extra

randomly selected vertices as feature points.

The second is to separately normalise the weightings wi;j used

for pairs of feature points, and for adjacent vertices. We normalise

the weights for adjacent vertices by dividing by the total number

of edges, and we normalise the feature point pair weights by

dividing by the sum of all feature point pair weights. Thus, we may

rewrite the final functional to be minimised as

SðXÞ ¼
X

iA F

X

jA F;ja i

0:5ðΦiþΦjÞ
P

iA F

P

jA F;ja i0:5ðΦiþΦjÞ
ðδi;j�di;jðXÞÞ2

þ
X

ði;jÞAE

β

jEj δ2i;j
ðδi;j�di;jðXÞÞ2; ð10Þ

where F is the set of all feature points, E is the set of all edges, and

Φi is the conformal factor of vertex i.

Examples of canonical forms produced by both versions of our

method are shown later in Fig. 8.

5. Computational complexity

In this section we analyse the computational complexity of

our canonical form computation and compare it to the original

method of Elad and Kimmel described in Section 3.1. We first

examine the computational complexity of calculating the target

distance matrix δ, used in Eq. (1). Elad and Kimmel used the

geodesic distance matrix produced by the fast marching method

[35], which has a time complexity of OðN2 log NÞ, where N is the

number of vertices in the mesh.

Our method instead uses a constant high value α for N entries in

the distance matrix. These N entries correspond to pairs of feature

points. To locate feature points we calculate the conformal factor of

each vertex on the mesh, identify at most
ffiffiffiffi

N
p

local maxima, and in

the first version of our method we add randomly selected vertices if

we have fewer than
ffiffiffiffi

N
p

local maxima. The conformal factor has

several components. Both the Laplace–Beltrami and Gaussian cur-

vature computations are O(NM), where M is the average valence of a

vertex on the mesh. Euler's formula tells us that the average valence

of a vertex on a triangular mesh is 6 [42]. The computational

complexity of locating the feature points is therefore equal to O(N)

as M may be considered constant. The computation of the target

curvature has a complexity of OðNþTÞ, where T is the number of

triangles in the mesh. Again, this is O(N) as the number of triangles

is linearly related to the number of vertices. As the matrix L in Eq. (7)

has size N�N but is sparse with O(N) non-zero elements, the linear

system can be solved for the conformal factor in O(N) time.

Our method also requires calculation of the edge lengths for all

pairs of connected vertices, which has a computational complexity

of O(N). Computing the set of feature points, along with all the

distance computations is significantly more efficient—linear—than

computing the geodesic distances—super-quadratic—required by

previous canonical form computations.

Calculating the values of bi;j and di;j for each iteration of the

SMACOF algorithm (Section 3.1) has a computational complexity of

OðN2Þ when the distance between all pairs of points is used. Our

method uses all pairs of
ffiffiffiffi

N
p

feature points plus all edge lengths,

which lowers the computational complexity to O(N).

6. Experiments

Here we present the results of our experiments. In Section 6.1 we

experimentally decide on the best value for the edge preservation

weight β. Section 6.2 compares the run-time of our method with that

of the method by Elad and Kimmel [4] based on MDS and geodesic

distances (Section 3.1). Finally we substitute our canonical forms into

the shape retrieval method of Lian et al. [3], described in Section 3.2,

to analyse their effectiveness for non-rigid shape retrieval.

6.1. Parameter optimisation

We used the TOSCA non-rigid models dataset [41] to determine

the best value to use for the edge preserving weight β. This dataset

Fig. 5. Setting the MDS weighting for each pair of feature points to the mean of their conformal factors avoids undesirable extrusions at parts of the mesh where feature

points do not lie at extremities. (a) Original mesh. (b) Weightings set to 1. (c) Weightings set to the mean of the conformal factors.
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consists of 148 meshes, divided into 12 classes. Each class consists

of the same model in different articulated poses. We performed

shape retrieval on this dataset using Lian et al.'s method, but using

our canonical forms instead of Elad and Kimmel's. The output of

the shape retrieval test is a distance matrix between all pairs of

models.

We performed shape retrieval several times, each time using a

different β value. We evaluated the distance matrices produced

using each of these results using five quantitative measures of how

well they perform: nearest neighbour (NN), 1-tier, 2-tier, e-mea-

sure, and discounted cumulative gain (DCG); see [2] for a descrip-

tion of these measures and their use in assessing shape retrieval

performance. The measures all lie in the range ½0;1�, and we

average over them all and plot the performance against β. We do

this for both variants of our method which deal differently with

meshes of varying resolution (adding random features, or normal-

ising the weights in the MDS formulation) (see Fig. 6). This test

shows that β¼10 is approximately the best choice when adding

random features, while performance only drops off by less than 2%

if we choose β anywhere between 5 and 15. We also come to the

same conclusion when studying each statistical measure indivi-

dually, except for the e-measure which shows high performance

for a wider range of parameter values. When using the weight

normalisation variant of our method, β¼130 is the best choice, but

again, the method is insensitive to changes in β.

6.2. Run-time

The main advantage of our technique over the existing state of

the art is that we do not require the expensive computation of

geodesic distances to produce canonical forms. In this section, we

therefore present a run-time comparison between our method,

and a related method using geodesic distances. Our run-time tests

were performed on a Linux PC with a 3.2 GHz Intel Core i7-3930k

CPU and 32 GB of memory. In Table 1 the timings for computing

our canonical forms are compared to the times taken to produce

the canonical forms using geodesic distances, for all the models in

the SHREC'11 non-rigid dataset [37]. This dataset consists of 600

watertight meshes, with an average of 9300 vertices. The method

by Lian et al. [3] simplified these meshes to contain approximately

2000 vertices, before computing their canonical forms using least

squares MDS and geodesic distances. The run-time for both our

method and the geodesic distance based method is shown for

Fig. 6. Shape retrieval performance using our canonical forms for different values for the edge length preserving parameter β. (a) Additional random feature points.

(b) Normalised weightings.

Table 1

Run-time for computing canonical forms for the SHREC'11 dataset. Our method

takes significantly less time, especially for the original meshes. Our method is faster

using the original meshes, than the geodesic distance based method using the

simplified meshes.

Method All models Average/model

Geodesic distances (C, simplified meshes) 8.5 h 51 s

Geodesic distances (C, original meshes) – 21 mina

Geodesic distances (F, simplified meshes) 8.5 h 51 s

Geodesic distances (F, original meshes) – 19 mina

Geodesic distances (LS, simplified meshes) 11 h 66 s

Geodesic distances (LS, original meshes) – 24 mina

Our method (simplified meshes) 20 min 2 s

Our method (original meshes) 5.5 h 33 s

a Geodesic distances (original meshes) were assessed for a single mesh only

due to the length of time needed. Key: C, Classical MDS; F, Fast MDS; LS, Least

Squares MDS.

Fig. 7. Run-time for a single model, resampled to different mesh resolutions. Run-

times grow significantly faster when using geodesic distances than for our method.
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these simplified meshes, but only our method to compute cano-

nical forms could be run on the original meshes in a reasonable

enough time for all 600 models. We therefore only tested the run-

time when using geodesic distances for one of the original models,

which consists of 9300 vertices. The timings for the geodesic

distance based method are shown for classical, fast [43] and least

squares MDS. We do not include the timings for the simplification

process, as they are negligible.

We also compared how the run-time of both our method and

using geodesic distances grows as the number of vertices is

increased. We selected a single ‘typical’ model, and created several

different versions of it, each simplified to a different number of

vertices. A graph showing time taken versus the number of

vertices is presented in Fig. 7. When computing canonical forms

with geodesic distances, the run-time grows significantly faster

than our method as the number of vertices is increased. Our

Fig. 8. Comparison of canonical forms for a selection of the SHREC'11 dataset, produced by Elad's method (b), and our methods, both for simplified (c, e) and unsimplified (d,

f) meshes. Our method stretches out the limbs of the models, with less distortion along the ‘limbs’. Key: S, simplified mesh; O, original mesh; A, additional random features;

N, normalised weightings. (a) Original meshes, (b) Canonical forms produced using Least Squares MDS and geodesic distances with simplified meshes, (c) Canonical forms

produced using our method (SA), (d) Canonical forms produced using our method (OA), (e) Canonical forms produced using our method (SN) and (f) Canonical forms

produced using our method (ON)
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method scales better for higher resolution meshes, as predicted

theoretically.

6.3. Shape retrieval

We used the models from the non-rigid track of the 2011 Shape

Retrieval Contest (SHREC'11) [37] to evaluate the effectiveness of

our method at producing canonical forms suitable for shape

retrieval. This dataset consists of 600 watertight meshes, divided

into 30 classes. Each class consists of the same shape in 20

different poses. We evaluated the canonical forms using both

variants of our method. In experiments using our method with

additional random feature points we set β¼10, and with weight-

ings normalised, we set β¼130.

Fig. 8 displays a selection of canonical forms produced by our

method, for comparison with the canonical forms calculated using

least squares MDS and geodesic distances [4] as used by Lian et al.

[3] (Section 3.1). The canonical forms using geodesic distances

were computed from simplified meshes consisting of approxi-

mately 2000 vertices; the original meshes were simplified using

Fig. 9. Canonical forms of the same object initially in different poses, produced by our method, both for simplified (b, d) and unsimplified (c, e) meshes. Key: S, simplified

mesh; O, original mesh; A, additional random features; N, normalised weightings. (a) Original meshes, (b) Canonical forms produced using our method (SA), (c) Canonical

forms produced using our method (OA), (d) Canonical forms produced using our method (SN) and (e) Canonical forms produced using our method (ON).
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MeshLab [44]. For our method, we show both the canonical forms

computed using the simplified and original meshes, which on

average had approximately 9300 vertices.

Our canonical forms produced using feature points based on

conformal factors (Fig. 8(c)) successfully stretch out the ‘limbs’ of

the models, as do the canonical forms produced using geodesic

distances (see Fig. 8(b)). Our canonical forms however result in

less distortion towards the ends of the extremities. Several

canonical forms of the same object, but in different poses, are

shown in Fig. 9.

We next demonstrate the results of using our method for non-

rigid shape retrieval. We computed the distance matrix between

all models from the SHREC'11 non-rigid track [37] by substituting

our canonical forms into Lian's view-based retrieval method. We

compare our results to those from their original method, which

uses least squares MDS and geodesic distances to calculate the

canonical forms, we also show results for classical and fast MDS.

Results based on comparing the original meshes without any

canonical form computations are also shown. We evaluate the

distance matrices produced using each of these methods using the

same five quantitative measures used earlier when tuning the

parameter β, and analyse them using precision-recall plots. We

have also tested our canonical forms using a different view-based

method [6], and the results exhibit the same trend. We have

therefore not included them in our paper.

Table 2 shows the qualitative measures for each method;

higher numbers are better. Using original meshes instead of

canonical forms consistently performs worse on all measures,

demonstrating the effectiveness of using canonical forms. When

using additional random points to allow for varying numbers of

feature points, our experiments show that using the original full

resolution meshes achieves better results than when the meshes

are simplified. The opposite appears true when we instead

normalised the weightings of the MDS formulation. The original

least squares MDS and geodesic distance method outperforms our

method on most of the performance measures, but only by a small

amount. Our method outperforms the geodesic based method

used with classical or fast MDS.

Table 2 also shows a comparison with the highest performing

submission of each research group to the SHREC'11 non-rigid

track. This table shows that our method is ranked in the same

position (2nd) as Lian et al.'s method with geodesic distance based

canonical forms. Note that the best performing method (SD-

GDMþmeshSIFT [25,10]) also uses all pairs of geodesic distances

and therefore suffers from high computational complexity.

Table 2

Comparison of retrieval results on the SHREC'11 non-rigid dataset. Our method achieves the same ranking as Lian et al.'s method [3] with geodesic distances. Key: C, Classical

MDS; F, Fast MDS; LS, Least Squares MDS; S, simplified mesh; O, original mesh; A, additional random features; N, normalised weightings.

Method NN 1-Tier 2-Tier e-Measure DCG

Canonical Original meshes 0.985 0.746 0.863 0.627 0.931

Geodesic distances (C) 0.987 0.855 0.943 0.691 0.964

Geodesic distances (F) 0.978 0.795 0.905 0.657 0.945

Geodesic distances (LS) 0.995 0.913 0.969 0.717 0.982

Our method (SA) 0.983 0.867 0.966 0.709 0.974

Our method (OA) 0.988 0.870 0.969 0.710 0.976

Our method (SN) 0.995 0.875 0.970 0.713 0.977

Our method (ON) 0.982 0.867 0.964 0.708 0.974

SHREC'11 SD-GDMþmeshSIFT 1.000 0.972 0.990 0.736 0.996

ShapeDNA 0.992 0.915 0.957 0.705 0.978

FOGþMRR 0.960 0.881 0.946 0.696 0.959

BOGH 0.993 0.811 0.884 0.647 0.949

LSF 0.995 0.799 0.863 0.633 0.943

BOW-LSD 0.955 0.672 0.803 0.579 0.897

PatchBOF 0.748 0.642 0.833 0.588 0.837

HKS 0.837 0.406 0.497 0.353 0.730

Fig. 10. Precision-recall plots of retrieval results on the SHREC'11 non-rigid dataset.

Table 3

Retrieval results for the McGill dataset. Key: C, Classical MDS; F, Fast MDS; LS, Least

Squares MDS; S, simplified mesh; O, original mesh; A, additional random features;

N, normalised weightings.

Method NN 1-Tier 2-Tier e-Measure DCG

Original meshes 0.980 0.744 0.896 0.691 0.940

Geodesic

distances (C)

0.961 0.728 0.868 0.678 0.931

Geodesic

distances (F)

0.918 0.692 0.860 0.649 0.909

Geodesic

distances (LS)

0.996 0.830 0.947 0.778 0.970

Our method (SA) 0.988 0.771 0.919 0.728 0.951

Our method (OA) 0.973 0.793 0.925 0.737 0.954

Our method (SN) 0.977 0.780 0.909 0.731 0.945

Our method (ON) 0.969 0.761 0.891 0.710 0.940

Wang and Zha [33] 0.980 0.746 0.895 0.707 0.938
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Fig. 10 displays precision-recall plots for both the geodesic

distance based method, and our method. Again, any canonical

form method performs better than using only the original meshes.

Our method produced very similar precision-recall plots when

using simplified or original meshes. Using least squares MDS with

geodesic distances shows a slight advantage over our method.

We have also produced retrieval results for the McGill articu-

lated dataset [45]. This dataset consists of 255 models, made up of

10 different shape classes, with an average mesh resolution of

about 14,000 vertices. As with the SHREC'11 dataset, the models

were simplified to 2000 vertices to be able to produce canonical

forms with the geodesic distance based method. Table 3 shows the

retrieval performance of each method, and Fig. 11 displays

precision-recall plots. On this dataset the use of canonical forms

does not show as large an advantage over using the original

articulated meshes. This may be because the differences between

each class are still mostly visible, even when the meshes are in

different poses. Both the classical and fast MDS with geodesic

distances perform worse than when using the original articulated

meshes. This may be because the large distortions they apply to

the mesh cause greater retrieval error than the non-rigid articula-

tions. For this dataset our method with additional random features

outperforms using weighting normalisation when using the origi-

nal full resolution meshes. Table 3 also shows the retrieval results

presented by Wang and Zha [33]. Our method produces more

accurate results than those which they report, but we use a

different retrieval framework to compare canonical forms.

As our method for computing canonical forms does not distort

the local details of the mesh as much as the original geodesic

distances method, we would expect our method to perform better

when such details are important. We tested this hypothesis on a

specialised subset of the SHREC'11 dataset, comprising models in

which all share the same basic shape (humanoid), but which vary

in local detail. There are 80 models in this subset, split equally into

the classes armadillo, gorilla, man, and woman. An example from

each of these classes is shown in Fig. 12.

Results of running shape retrieval on the humanoid subset are

shown in Table 4: our method outperforms the best geodesic

distance method on all but one measure, both when using the

simplified models with normalised weightings, and when using

the full resolution models with additional random features. WhenFig. 11. Precision-recall plots of retrieval results on the McGill articulated dataset.

Fig. 12. Examples from the humanoid subset of the SHREC'11 dataset.

Table 4

Retrieval results for the SHREC'11 humanoid subset. Variants of our method outperform the original method using MDS and geodesic distances. Key: C, Classical MDS; F, Fast

MDS; LS, Least Squares MDS; S, simplified mesh; O, original mesh; A, additional random features; N, normalised weightings.

Method NN 1-Tier 2-Tier e-Measure DCG

Original meshes 0.963 0.657 0.870 0.607 0.880

Geodesic distances (C) 0.975 0.691 0.910 0.649 0.919

Geodesic distances (F) 0.925 0.688 0.936 0.658 0.916

Geodesic distances (LS) 0.975 0.761 0.949 0.678 0.928

Our method (SA) 0.913 0.773 0.948 0.677 0.938

Our method (OA) 0.963 0.767 0.952 0.679 0.945

Our method (SN) 1.000 0.753 0.959 0.685 0.948

Our method (ON) 0.913 0.731 0.938 0.667 0.935
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using normalised weightings, we achieve a score of 100% for the

nearest neighbour performance measure. The least squares MDS

geodesic based method performs slightly better overall than the

other two runs of our algorithm, but not across all measures. We

are able to both outperform best-of-class previous methods on

such data, and produce results much more quickly.

Precision-recall plots for these results are shown in Fig. 13;

again results for our method are still very similar for both the

original and simplified meshes.

For both datasets, using our method to produce canonical

forms using either the original or simplified meshes leads to very

similar shape retrieval accuracy. This is likely to be for two

reasons. The first is that the feature point locations chosen using

conformal factors are stable over a wide range of mesh resolutions,

leading to the same standardised pose. The second is that there is

a large dissimilarity between the classes in the SHREC'11 non-rigid

dataset, and so the different shapes are distinguishable even

without the finer details discarded during simplification.

7. Limitations

Our method restricts the number of feature points to
ffiffiffiffi

N
p

, and

in the unlikely case that the mesh has more than
ffiffiffiffi

N
p

extremities,

our method will not be able to detect them all, so sections of the

mesh will not be straightened out. All the models in the datasets

we have used have fewer than
ffiffiffiffi

N
p

extremities, and therefore we

have not encountered this problem.

To test how our method deals with noise, we have used the

normalised weightings version of our method to produce canoni-

cal forms for the SHREC'11 dataset, but with noise added to each of

the meshes. The noise was added by randomly displacing each

vertex by a small amount using Meshlab [44]. We have alsoFig. 13. Precision-recall plots of the retrieval results on the SHREC'11 humanoid subset.

Fig. 14. Canonical forms of the same object with and without additional noise. Key: S, simplified mesh; O, original mesh; N, normalised weightings. Top: No noise, bottom:

additional noise. (a) Original meshes, (b) Geodesic distance, (c) Our method (SN) and (d) Our method (ON).

Table 5

Retrieval results for the SHREC'11 dataset, with added noise. The noise has resulted in a decline of retrieval results for all methods. Key: C, Classical MDS; F, Fast MDS; LS,

Least Squares MDS; S, simplified mesh; O, original mesh; A, additional random features; N, normalised weightings.

Method NN 1-Tier 2-Tier e-Measure DCG

Geodesic distances (C) 0.985 0.802 0.918 0.670 0.948

Geodesic distances (F) 0.920 0.687 0.839 0.599 0.895

Geodesic distances (LS) 0.992 0.863 0.960 0.701 0.970

Our method (SN) 0.963 0.797 0.909 0.664 0.944

Our method (ON) 0.947 0.736 0.868 0.630 0.918
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produced canonical forms of these meshes using the geodesic

based method by Elad and Kimmel [4]. Fig. 14 shows an example of

the effect of noise on the canonical forms for a single mesh. The

canonical forms for the meshes with additional noise are still

reasonable, but they are not completely consistent with the

canonical forms produced from the original meshes. Table 5 shows

the retrieval results when using the noisy meshes. The results

show a drop in performance for each method, but the results using

our method show a larger drop in performance than when using

the least squares or classical MDS geodesic distance based meth-

ods. It is unclear, however, how much the drop in retrieval

performance is caused by deterioration in the canonical forms,

or by noise affecting the view-based retrieval method.

8. Conclusions

We have presented a novel linear-time method for producing

canonical forms of meshes for non-rigid shape retrieval. Our

method maximises the Euclidean distance between a small num-

ber of feature points, while attempting to preserve the original

edge lengths. The feature points are chosen based on the con-

formal factors of the mesh vertices, which concentrates the feature

points at the extremities of the model. Our method has lower

computational complexity, and is much faster in practice, than

methods that require all pairs of geodesic distances to be com-

puted, while resulting in only a small drop in performance for both

the SHREC'11 and McGill datasets. We furthermore show that

when considering models with a similar basic shape (humanoids),

our method can provide the best retrieval performance.

Using the original meshes of both datasets only produces a very

small improvement over using simplified versions of the models

when using one variant of our method, and produces a small

decline in retrieval results for another. This may be because of the

large dissimilarity between the classes in these datasets. This

means that any finer details of the models, which are lost during

simplification, are mostly unnecessary for distinguishing between

models of different classes. Our method for finding feature points

based on the conformal factors of the mesh vertices is able to find

very similar points at different mesh resolutions, therefore the

pose of the canonical forms will be similar over a wide range of

mesh resolutions. The higher resolution meshes may also exhibit

more noise, which could negatively affect the retrieval process.
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